+# Command renaming.
+#
+# It is possible to change the name of dangerous commands in a shared
+# environment. For instance the CONFIG command may be renamed into something
+# of hard to guess so that it will be still available for internal-use
+# tools but not available for general clients.
+#
+# Example:
+#
+# rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
+#
+# It is also possible to completely kill a command renaming it into
+# an empty string:
+#
+# rename-command CONFIG ""
+
+################################### LIMITS ####################################
+
+# Set the max number of connected clients at the same time. By default
+# this limit is set to 10000 clients, however if the Redis server is not
+# able ot configure the process file limit to allow for the specified limit
+# the max number of allowed clients is set to the current file limit
+# minus 32 (as Redis reserves a few file descriptors for internal uses).
+#
+# Once the limit is reached Redis will close all the new connections sending
+# an error 'max number of clients reached'.
+#
+# maxclients 10000
+
+# Don't use more memory than the specified amount of bytes.
+# When the memory limit is reached Redis will try to remove keys
+# accordingly to the eviction policy selected (see maxmemmory-policy).
+#
+# If Redis can't remove keys according to the policy, or if the policy is
+# set to 'noeviction', Redis will start to reply with errors to commands
+# that would use more memory, like SET, LPUSH, and so on, and will continue
+# to reply to read-only commands like GET.
+#
+# This option is usually useful when using Redis as an LRU cache, or to set
+# an hard memory limit for an instance (using the 'noeviction' policy).
+#
+# WARNING: If you have slaves attached to an instance with maxmemory on,
+# the size of the output buffers needed to feed the slaves are subtracted
+# from the used memory count, so that network problems / resyncs will
+# not trigger a loop where keys are evicted, and in turn the output
+# buffer of slaves is full with DELs of keys evicted triggering the deletion
+# of more keys, and so forth until the database is completely emptied.
+#
+# In short... if you have slaves attached it is suggested that you set a lower
+# limit for maxmemory so that there is some free RAM on the system for slave
+# output buffers (but this is not needed if the policy is 'noeviction').
+#
+# maxmemory <bytes>
+
+# MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
+# is reached? You can select among five behavior:
+#
+# volatile-lru -> remove the key with an expire set using an LRU algorithm
+# allkeys-lru -> remove any key accordingly to the LRU algorithm
+# volatile-random -> remove a random key with an expire set
+# allkeys-random -> remove a random key, any key
+# volatile-ttl -> remove the key with the nearest expire time (minor TTL)
+# noeviction -> don't expire at all, just return an error on write operations
+#
+# Note: with all the kind of policies, Redis will return an error on write
+# operations, when there are not suitable keys for eviction.
+#
+# At the date of writing this commands are: set setnx setex append
+# incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
+# sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
+# zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
+# getset mset msetnx exec sort
+#
+# The default is:
+#
+# maxmemory-policy volatile-lru
+
+# LRU and minimal TTL algorithms are not precise algorithms but approximated
+# algorithms (in order to save memory), so you can select as well the sample
+# size to check. For instance for default Redis will check three keys and
+# pick the one that was used less recently, you can change the sample size
+# using the following configuration directive.
+#
+# maxmemory-samples 3
+
+############################## APPEND ONLY MODE ###############################
+
+# By default Redis asynchronously dumps the dataset on disk. This mode is
+# good enough in many applications, but an issue with the Redis process or
+# a power outage may result into a few minutes of writes lost (depending on
+# the configured save points).
+#
+# The Append Only File is an alternative persistence mode that provides
+# much better durability. For instance using the default data fsync policy
+# (see later in the config file) Redis can lose just one second of writes in a
+# dramatic event like a server power outage, or a single write if something
+# wrong with the Redis process itself happens, but the operating system is
+# still running correctly.
+#
+# AOF and RDB persistence can be enabled at the same time without problems.
+# If the AOF is enabled on startup Redis will load the AOF, that is the file
+# with the better durability guarantees.
+#
+# Please check http://redis.io/topics/persistence for more information.
+
+appendonly no
+
+# The name of the append only file (default: "appendonly.aof")
+# appendfilename appendonly.aof
+
+# The fsync() call tells the Operating System to actually write data on disk
+# instead to wait for more data in the output buffer. Some OS will really flush
+# data on disk, some other OS will just try to do it ASAP.
+#
+# Redis supports three different modes:
+#
+# no: don't fsync, just let the OS flush the data when it wants. Faster.
+# always: fsync after every write to the append only log . Slow, Safest.
+# everysec: fsync only one time every second. Compromise.
+#
+# The default is "everysec" that's usually the right compromise between
+# speed and data safety. It's up to you to understand if you can relax this to
+# "no" that will let the operating system flush the output buffer when
+# it wants, for better performances (but if you can live with the idea of
+# some data loss consider the default persistence mode that's snapshotting),
+# or on the contrary, use "always" that's very slow but a bit safer than
+# everysec.
+#
+# More details please check the following article:
+# http://antirez.com/post/redis-persistence-demystified.html
+#
+# If unsure, use "everysec".
+
+# appendfsync always
+appendfsync everysec
+# appendfsync no
+
+# When the AOF fsync policy is set to always or everysec, and a background
+# saving process (a background save or AOF log background rewriting) is
+# performing a lot of I/O against the disk, in some Linux configurations
+# Redis may block too long on the fsync() call. Note that there is no fix for
+# this currently, as even performing fsync in a different thread will block
+# our synchronous write(2) call.
+#
+# In order to mitigate this problem it's possible to use the following option
+# that will prevent fsync() from being called in the main process while a
+# BGSAVE or BGREWRITEAOF is in progress.
+#
+# This means that while another child is saving the durability of Redis is
+# the same as "appendfsync none", that in practical terms means that it is
+# possible to lost up to 30 seconds of log in the worst scenario (with the
+# default Linux settings).
+#
+# If you have latency problems turn this to "yes". Otherwise leave it as
+# "no" that is the safest pick from the point of view of durability.
+no-appendfsync-on-rewrite no
+
+# Automatic rewrite of the append only file.
+# Redis is able to automatically rewrite the log file implicitly calling
+# BGREWRITEAOF when the AOF log size will growth by the specified percentage.
+#
+# This is how it works: Redis remembers the size of the AOF file after the
+# latest rewrite (or if no rewrite happened since the restart, the size of
+# the AOF at startup is used).
+#
+# This base size is compared to the current size. If the current size is
+# bigger than the specified percentage, the rewrite is triggered. Also
+# you need to specify a minimal size for the AOF file to be rewritten, this
+# is useful to avoid rewriting the AOF file even if the percentage increase
+# is reached but it is still pretty small.
+#
+# Specify a percentage of zero in order to disable the automatic AOF
+# rewrite feature.
+
+auto-aof-rewrite-percentage 100
+auto-aof-rewrite-min-size 64mb
+
+################################ LUA SCRIPTING ###############################
+
+# Max execution time of a Lua script in milliseconds.
+#
+# If the maximum execution time is reached Redis will log that a script is
+# still in execution after the maximum allowed time and will start to
+# reply to queries with an error.
+#
+# When a long running script exceed the maximum execution time only the
+# SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be
+# used to stop a script that did not yet called write commands. The second
+# is the only way to shut down the server in the case a write commands was
+# already issue by the script but the user don't want to wait for the natural
+# termination of the script.
+#
+# Set it to 0 or a negative value for unlimited execution without warnings.
+lua-time-limit 5000
+
+################################## SLOW LOG ###################################
+
+# The Redis Slow Log is a system to log queries that exceeded a specified
+# execution time. The execution time does not include the I/O operations
+# like talking with the client, sending the reply and so forth,
+# but just the time needed to actually execute the command (this is the only
+# stage of command execution where the thread is blocked and can not serve
+# other requests in the meantime).
+#
+# You can configure the slow log with two parameters: one tells Redis
+# what is the execution time, in microseconds, to exceed in order for the
+# command to get logged, and the other parameter is the length of the
+# slow log. When a new command is logged the oldest one is removed from the
+# queue of logged commands.
+
+# The following time is expressed in microseconds, so 1000000 is equivalent
+# to one second. Note that a negative number disables the slow log, while
+# a value of zero forces the logging of every command.
+slowlog-log-slower-than 10000
+
+# There is no limit to this length. Just be aware that it will consume memory.
+# You can reclaim memory used by the slow log with SLOWLOG RESET.
+slowlog-max-len 128
+