# default. You can specify a custom pid file location here.
pidfile /var/run/redis.pid
-# Accept connections on the specified port, default is 6379
+# Accept connections on the specified port, default is 6379.
port 6379
# If you want you can bind a single interface, if the bind option is not
#
# bind 127.0.0.1
+# Specify the path for the unix socket that will be used to listen for
+# incoming connections. There is no default, so Redis will not listen
+# on a unix socket when not specified.
+#
+# unixsocket /tmp/redis.sock
+
# Close the connection after a client is idle for N seconds (0 to disable)
timeout 300
# output for logging but daemonize, logs will be sent to /dev/null
logfile stdout
+# To enable logging to the system logger, just set 'syslog-enabled' to yes,
+# and optionally update the other syslog parameters to suit your needs.
+# syslog-enabled no
+
+# Specify the syslog identity.
+# syslog-ident redis
+
+# Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.
+# syslog-facility local0
+
# Set the number of databases. The default database is DB 0, you can select
# a different one on a per-connection basis using SELECT <dbid> where
# dbid is a number between 0 and 'databases'-1
#
# masterauth <master-password>
+# When a slave lost the connection with the master, or when the replication
+# is still in progress, the slave can act in two different ways:
+#
+# 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will
+# still reply to client requests, possibly with out of data data, or the
+# data set may just be empty if this is the first synchronization.
+#
+# 2) if slave-serve-stale data is set to 'no' the slave will reply with
+# an error "SYNC with master in progress" to all the kind of commands
+# but to INFO and SLAVEOF.
+#
+slave-serve-stale-data yes
+
################################## SECURITY ###################################
# Require clients to issue AUTH <PASSWORD> before processing any other
#
# requirepass foobared
+# Command renaming.
+#
+# It is possilbe to change the name of dangerous commands in a shared
+# environment. For instance the CONFIG command may be renamed into something
+# of hard to guess so that it will be still available for internal-use
+# tools but not available for general clients.
+#
+# Example:
+#
+# rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
+#
+# It is also possilbe to completely kill a command renaming it into
+# an empty string:
+#
+# rename-command CONFIG ""
+
################################### LIMITS ####################################
# Set the max number of connected clients at the same time. By default there
# volatile-random -> remove a random key with an expire set
# allkeys->random -> remove a random key, any key
# volatile-ttl -> remove the key with the nearest expire time (minor TTL)
+# noeviction -> don't expire at all, just return an error on write operations
+#
+# Note: with all the kind of policies, Redis will return an error on write
+# operations, when there are not suitable keys for eviction.
+#
+# At the date of writing this commands are: set setnx setex append
+# incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
+# sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
+# zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
+# getset mset msetnx exec sort
+#
+# The default is:
#
# maxmemory-policy volatile-lru
# pick the one that was used less recently, you can change the sample size
# using the following configuration directive.
#
-# maxmemory-sample 3
+# maxmemory-samples 3
############################## APPEND ONLY MODE ###############################
# "no" that is the safest pick from the point of view of durability.
no-appendfsync-on-rewrite no
-################################ VIRTUAL MEMORY ###############################
+#################################### DISK STORE ###############################
-# Virtual Memory allows Redis to work with datasets bigger than the actual
-# amount of RAM needed to hold the whole dataset in memory.
-# In order to do so very used keys are taken in memory while the other keys
-# are swapped into a swap file, similarly to what operating systems do
-# with memory pages.
+# When disk store is active Redis works as an on-disk database, where memory
+# is only used as a object cache.
#
-# To enable VM just set 'vm-enabled' to yes, and set the following three
-# VM parameters accordingly to your needs.
-
-vm-enabled no
-# vm-enabled yes
-
-# This is the path of the Redis swap file. As you can guess, swap files
-# can't be shared by different Redis instances, so make sure to use a swap
-# file for every redis process you are running. Redis will complain if the
-# swap file is already in use.
+# This mode is good for datasets that are bigger than memory, and in general
+# when you want to trade speed for:
#
-# The best kind of storage for the Redis swap file (that's accessed at random)
-# is a Solid State Disk (SSD).
+# - less memory used
+# - immediate server restart
+# - per key durability, without need for backgrond savig
#
-# *** WARNING *** if you are using a shared hosting the default of putting
-# the swap file under /tmp is not secure. Create a dir with access granted
-# only to Redis user and configure Redis to create the swap file there.
-vm-swap-file /tmp/redis.swap
-
-# vm-max-memory configures the VM to use at max the specified amount of
-# RAM. Everything that deos not fit will be swapped on disk *if* possible, that
-# is, if there is still enough contiguous space in the swap file.
+# On the other hand, with disk store enabled MULTI/EXEC are no longer
+# transactional from the point of view of the persistence on disk, that is,
+# Redis transactions will still guarantee that commands are either processed
+# all or nothing, but there is no guarantee that all the keys are flushed
+# on disk in an atomic way.
#
-# With vm-max-memory 0 the system will swap everything it can. Not a good
-# default, just specify the max amount of RAM you can in bytes, but it's
-# better to leave some margin. For instance specify an amount of RAM
-# that's more or less between 60 and 80% of your free RAM.
-vm-max-memory 0
+# Of course with disk store enabled Redis is not as fast as it is when
+# working with just the memory back end.
-# Redis swap files is split into pages. An object can be saved using multiple
-# contiguous pages, but pages can't be shared between different objects.
-# So if your page is too big, small objects swapped out on disk will waste
-# a lot of space. If you page is too small, there is less space in the swap
-# file (assuming you configured the same number of total swap file pages).
-#
-# If you use a lot of small objects, use a page size of 64 or 32 bytes.
-# If you use a lot of big objects, use a bigger page size.
-# If unsure, use the default :)
-vm-page-size 32
-
-# Number of total memory pages in the swap file.
-# Given that the page table (a bitmap of free/used pages) is taken in memory,
-# every 8 pages on disk will consume 1 byte of RAM.
-#
-# The total swap size is vm-page-size * vm-pages
-#
-# With the default of 32-bytes memory pages and 134217728 pages Redis will
-# use a 4 GB swap file, that will use 16 MB of RAM for the page table.
-#
-# It's better to use the smallest acceptable value for your application,
-# but the default is large in order to work in most conditions.
-vm-pages 134217728
-
-# Max number of VM I/O threads running at the same time.
-# This threads are used to read/write data from/to swap file, since they
-# also encode and decode objects from disk to memory or the reverse, a bigger
-# number of threads can help with big objects even if they can't help with
-# I/O itself as the physical device may not be able to couple with many
-# reads/writes operations at the same time.
-#
-# The special value of 0 turn off threaded I/O and enables the blocking
-# Virtual Memory implementation.
-vm-max-threads 4
+diskstore-enabled no
+diskstore-path redis.ds
+cache-max-memory 0
+cache-flush-delay 0
############################### ADVANCED CONFIG ###############################
-# Glue small output buffers together in order to send small replies in a
-# single TCP packet. Uses a bit more CPU but most of the times it is a win
-# in terms of number of queries per second. Use 'yes' if unsure.
-glueoutputbuf yes
-
# Hashes are encoded in a special way (much more memory efficient) when they
# have at max a given numer of elements, and the biggest element does not
# exceed a given threshold. You can configure this limits with the following
hash-max-zipmap-entries 64
hash-max-zipmap-value 512
+# Similarly to hashes, small lists are also encoded in a special way in order
+# to save a lot of space. The special representation is only used when
+# you are under the following limits:
+list-max-ziplist-entries 512
+list-max-ziplist-value 64
+
+# Sets have a special encoding in just one case: when a set is composed
+# of just strings that happens to be integers in radix 10 in the range
+# of 64 bit signed integers.
+# The following configuration setting sets the limit in the size of the
+# set in order to use this special memory saving encoding.
+set-max-intset-entries 512
+
# Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
# order to help rehashing the main Redis hash table (the one mapping top-level
# keys to values). The hash table implementation redis uses (see dict.c)