--- /dev/null
+/******************************************************************************/
+#ifdef JEMALLOC_H_TYPES
+
+/*
+ * Simple linear congruential pseudo-random number generator:
+ *
+ * prn(y) = (a*x + c) % m
+ *
+ * where the following constants ensure maximal period:
+ *
+ * a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4.
+ * c == Odd number (relatively prime to 2^n).
+ * m == 2^32
+ *
+ * See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints.
+ *
+ * This choice of m has the disadvantage that the quality of the bits is
+ * proportional to bit position. For example. the lowest bit has a cycle of 2,
+ * the next has a cycle of 4, etc. For this reason, we prefer to use the upper
+ * bits.
+ *
+ * Macro parameters:
+ * uint32_t r : Result.
+ * unsigned lg_range : (0..32], number of least significant bits to return.
+ * uint32_t state : Seed value.
+ * const uint32_t a, c : See above discussion.
+ */
+#define prn32(r, lg_range, state, a, c) do { \
+ assert(lg_range > 0); \
+ assert(lg_range <= 32); \
+ \
+ r = (state * (a)) + (c); \
+ state = r; \
+ r >>= (32 - lg_range); \
+} while (false)
+
+/* Same as prn32(), but 64 bits of pseudo-randomness, using uint64_t. */
+#define prn64(r, lg_range, state, a, c) do { \
+ assert(lg_range > 0); \
+ assert(lg_range <= 64); \
+ \
+ r = (state * (a)) + (c); \
+ state = r; \
+ r >>= (64 - lg_range); \
+} while (false)
+
+#endif /* JEMALLOC_H_TYPES */
+/******************************************************************************/
+#ifdef JEMALLOC_H_STRUCTS
+
+#endif /* JEMALLOC_H_STRUCTS */
+/******************************************************************************/
+#ifdef JEMALLOC_H_EXTERNS
+
+#endif /* JEMALLOC_H_EXTERNS */
+/******************************************************************************/
+#ifdef JEMALLOC_H_INLINES
+
+#endif /* JEMALLOC_H_INLINES */
+/******************************************************************************/