#
# bind 127.0.0.1
-# Close the connection after a client is idle for N seconds
+# Close the connection after a client is idle for N seconds (0 to disable)
timeout 300
+# Set server verbosity to 'debug'
+# it can be one of:
+# debug (a lot of information, useful for development/testing)
+# verbose (many rarely useful info, but not a mess like the debug level)
+# notice (moderately verbose, what you want in production probably)
+# warning (only very important / critical messages are logged)
+loglevel verbose
+
+# Specify the log file name. Also 'stdout' can be used to force
+# the demon to log on the standard output. Note that if you use standard
+# output for logging but daemonize, logs will be sent to /dev/null
+logfile stdout
+
+# Set the number of databases. The default database is DB 0, you can select
+# a different one on a per-connection basis using SELECT <dbid> where
+# dbid is a number between 0 and 'databases'-1
+databases 16
+
+################################ SNAPSHOTTING #################################
+#
# Save the DB on disk:
#
# save <seconds> <changes>
# after 900 sec (15 min) if at least 1 key changed
# after 300 sec (5 min) if at least 10 keys changed
# after 60 sec if at least 10000 keys changed
+#
+# Note: you can disable saving at all commenting all the "save" lines.
+
save 900 1
save 300 10
save 60 10000
+# Compress string objects using LZF when dump .rdb databases?
+# For default that's set to 'yes' as it's almost always a win.
+# If you want to save some CPU in the saving child set it to 'no' but
+# the dataset will likely be bigger if you have compressible values or keys.
+rdbcompression yes
+
+# The filename where to dump the DB
+dbfilename dump.rdb
+
# For default save/load DB in/from the working directory
# Note that you must specify a directory not a file name.
dir ./
-# Set server verbosity to 'debug'
-# it can be one of:
-# debug (a lot of information, useful for development/testing)
-# notice (moderately verbose, what you want in production probably)
-# warning (only very important / critical messages are logged)
-loglevel debug
-
-# Specify the log file name. Also 'stdout' can be used to force
-# the demon to log on the standard output. Note that if you use standard
-# output for logging but daemonize, logs will be sent to /dev/null
-logfile stdout
-
-# Set the number of databases.
-databases 16
-
################################# REPLICATION #################################
# Master-Slave replication. Use slaveof to make a Redis instance a copy of
# another Redis server. Note that the configuration is local to the slave
# so for example it is possible to configure the slave to save the DB with a
# different interval, or to listen to another port, and so on.
-
+#
# slaveof <masterip> <masterport>
+# If the master is password protected (using the "requirepass" configuration
+# directive below) it is possible to tell the slave to authenticate before
+# starting the replication synchronization process, otherwise the master will
+# refuse the slave request.
+#
+# masterauth <master-password>
+
+################################## SECURITY ###################################
+
+# Require clients to issue AUTH <PASSWORD> before processing any other
+# commands. This might be useful in environments in which you do not trust
+# others with access to the host running redis-server.
+#
+# This should stay commented out for backward compatibility and because most
+# people do not need auth (e.g. they run their own servers).
+#
+# requirepass foobared
+
+################################### LIMITS ####################################
+
+# Set the max number of connected clients at the same time. By default there
+# is no limit, and it's up to the number of file descriptors the Redis process
+# is able to open. The special value '0' means no limits.
+# Once the limit is reached Redis will close all the new connections sending
+# an error 'max number of clients reached'.
+#
+# maxclients 128
+
+# Don't use more memory than the specified amount of bytes.
+# When the memory limit is reached Redis will try to remove keys with an
+# EXPIRE set. It will try to start freeing keys that are going to expire
+# in little time and preserve keys with a longer time to live.
+# Redis will also try to remove objects from free lists if possible.
+#
+# If all this fails, Redis will start to reply with errors to commands
+# that will use more memory, like SET, LPUSH, and so on, and will continue
+# to reply to most read-only commands like GET.
+#
+# WARNING: maxmemory can be a good idea mainly if you want to use Redis as a
+# 'state' server or cache, not as a real DB. When Redis is used as a real
+# database the memory usage will grow over the weeks, it will be obvious if
+# it is going to use too much memory in the long run, and you'll have the time
+# to upgrade. With maxmemory after the limit is reached you'll start to get
+# errors for write operations, and this may even lead to DB inconsistency.
+#
+# maxmemory <bytes>
+
+############################## APPEND ONLY MODE ###############################
+
+# By default Redis asynchronously dumps the dataset on disk. If you can live
+# with the idea that the latest records will be lost if something like a crash
+# happens this is the preferred way to run Redis. If instead you care a lot
+# about your data and don't want to that a single record can get lost you should
+# enable the append only mode: when this mode is enabled Redis will append
+# every write operation received in the file appendonly.log. This file will
+# be read on startup in order to rebuild the full dataset in memory.
+#
+# Note that you can have both the async dumps and the append only file if you
+# like (you have to comment the "save" statements above to disable the dumps).
+# Still if append only mode is enabled Redis will load the data from the
+# log file at startup ignoring the dump.rdb file.
+#
+# The name of the append only file is "appendonly.log"
+#
+# IMPORTANT: Check the BGREWRITEAOF to check how to rewrite the append
+# log file in background when it gets too big.
+
+appendonly no
+
+# The fsync() call tells the Operating System to actually write data on disk
+# instead to wait for more data in the output buffer. Some OS will really flush
+# data on disk, some other OS will just try to do it ASAP.
+#
+# Redis supports three different modes:
+#
+# no: don't fsync, just let the OS flush the data when it wants. Faster.
+# always: fsync after every write to the append only log . Slow, Safest.
+# everysec: fsync only if one second passed since the last fsync. Compromise.
+#
+# The default is "everysec" that's usually the right compromise between
+# speed and data safety. It's up to you to understand if you can relax this to
+# "no" that will will let the operating system flush the output buffer when
+# it wants, for better performances (but if you can live with the idea of
+# some data loss consider the default persistence mode that's snapshotting),
+# or on the contrary, use "always" that's very slow but a bit safer than
+# everysec.
+#
+# If unsure, use "everysec".
+
+# appendfsync always
+appendfsync everysec
+# appendfsync no
+
+################################ VIRTUAL MEMORY ###############################
+
+# Virtual Memory allows Redis to work with datasets bigger than the actual
+# amount of RAM needed to hold the whole dataset in memory.
+# In order to do so very used keys are taken in memory while the other keys
+# are swapped into a swap file, similarly to what operating systems do
+# with memory pages.
+#
+# To enable VM just set 'vm-enabled' to yes, and set the following three
+# VM parameters accordingly to your needs.
+
+vm-enabled no
+# vm-enabled yes
+
+# This is the path of the Redis swap file. As you can guess, swap files
+# can't be shared by different Redis instances, so make sure to use a swap
+# file for every redis process you are running.
+#
+# The swap file name may contain "%p" that is substituted with the PID of
+# the Redis process, so the default name /tmp/redis-%p.vm will work even
+# with multiple instances as Redis will use, for example, redis-811.vm
+# for one instance and redis-593.vm for another one.
+#
+# Useless to say, the best kind of disk for a Redis swap file (that's accessed
+# at random) is a Solid State Disk (SSD).
+#
+# *** WARNING *** if you are using a shared hosting the default of putting
+# the swap file under /tmp is not secure. Create a dir with access granted
+# only to Redis user and configure Redis to create the swap file there.
+vm-swap-file /tmp/redis-%p.vm
+
+# vm-max-memory configures the VM to use at max the specified amount of
+# RAM. Everything that deos not fit will be swapped on disk *if* possible, that
+# is, if there is still enough contiguous space in the swap file.
+#
+# With vm-max-memory 0 the system will swap everything it can. Not a good
+# default, just specify the max amount of RAM you can in bytes, but it's
+# better to leave some margin. For instance specify an amount of RAM
+# that's more or less between 60 and 80% of your free RAM.
+vm-max-memory 0
+
+# Redis swap files is split into pages. An object can be saved using multiple
+# contiguous pages, but pages can't be shared between different objects.
+# So if your page is too big, small objects swapped out on disk will waste
+# a lot of space. If you page is too small, there is less space in the swap
+# file (assuming you configured the same number of total swap file pages).
+#
+# If you use a lot of small objects, use a page size of 64 or 32 bytes.
+# If you use a lot of big objects, use a bigger page size.
+# If unsure, use the default :)
+vm-page-size 32
+
+# Number of total memory pages in the swap file.
+# Given that the page table (a bitmap of free/used pages) is taken in memory,
+# every 8 pages on disk will consume 1 byte of RAM.
+#
+# The total swap size is vm-page-size * vm-pages
+#
+# With the default of 32-bytes memory pages and 134217728 pages Redis will
+# use a 4 GB swap file, that will use 16 MB of RAM for the page table.
+#
+# It's better to use the smallest acceptable value for your application,
+# but the default is large in order to work in most conditions.
+vm-pages 134217728
+
+# Max number of VM I/O threads running at the same time.
+# This threads are used to read/write data from/to swap file, since they
+# also encode and decode objects from disk to memory or the reverse, a bigger
+# number of threads can help with big objects even if they can't help with
+# I/O itself as the physical device may not be able to couple with many
+# reads/writes operations at the same time.
+#
+# The special value of 0 turn off threaded I/O and enables the blocking
+# Virtual Memory implementation.
+vm-max-threads 4
+
############################### ADVANCED CONFIG ###############################
# Glue small output buffers together in order to send small replies in a
# string in your dataset, but performs lookups against the shared objects
# pool so it uses more CPU and can be a bit slower. Usually it's a good
# idea.
+#
+# When object sharing is enabled (shareobjects yes) you can use
+# shareobjectspoolsize to control the size of the pool used in order to try
+# object sharing. A bigger pool size will lead to better sharing capabilities.
+# In general you want this value to be at least the double of the number of
+# very common strings you have in your dataset.
+#
+# WARNING: object sharing is experimental, don't enable this feature
+# in production before of Redis 1.0-stable. Still please try this feature in
+# your development environment so that we can test it better.
shareobjects no
+shareobjectspoolsize 1024
+
+# Hashes are encoded in a special way (much more memory efficient) when they
+# have at max a given numer of elements, and the biggest element does not
+# exceed a given threshold. You can configure this limits with the following
+# configuration directives.
+hash-max-zipmap-entries 64
+hash-max-zipmap-value 512