]>
Commit | Line | Data |
---|---|---|
1 | #include "redis.h" | |
2 | ||
3 | #include <signal.h> | |
4 | ||
5 | void SlotToKeyAdd(robj *key); | |
6 | void SlotToKeyDel(robj *key); | |
7 | ||
8 | /*----------------------------------------------------------------------------- | |
9 | * C-level DB API | |
10 | *----------------------------------------------------------------------------*/ | |
11 | ||
12 | /* Important notes on lookup and disk store. | |
13 | * | |
14 | * When disk store is enabled on lookup we can have different cases. | |
15 | * | |
16 | * a) The key is in memory: | |
17 | * - If the key is not in IO_SAVEINPROG state we can access it. | |
18 | * As if it's just IO_SAVE this means we have the key in the IO queue | |
19 | * but can't be accessed by the IO thread (it requires to be | |
20 | * translated into an IO Job by the cache cron function.) | |
21 | * - If the key is in IO_SAVEINPROG we can't touch the key and have | |
22 | * to blocking wait completion of operations. | |
23 | * b) The key is not in memory: | |
24 | * - If it's marked as non existing on disk as well (negative cache) | |
25 | * we don't need to perform the disk access. | |
26 | * - if the key MAY EXIST, but is not in memory, and it is marked as IO_SAVE | |
27 | * then the key can only be a deleted one. As IO_SAVE keys are never | |
28 | * evicted (dirty state), so the only possibility is that key was deleted. | |
29 | * - if the key MAY EXIST we need to blocking load it. | |
30 | * We check that the key is not in IO_SAVEINPROG state before accessing | |
31 | * the disk object. If it is in this state, we wait. | |
32 | */ | |
33 | ||
34 | void lookupWaitBusyKey(redisDb *db, robj *key) { | |
35 | /* FIXME: wait just for this key, not everything */ | |
36 | waitEmptyIOJobsQueue(); | |
37 | processAllPendingIOJobs(); | |
38 | redisAssert((cacheScheduleIOGetFlags(db,key) & REDIS_IO_SAVEINPROG) == 0); | |
39 | } | |
40 | ||
41 | robj *lookupKey(redisDb *db, robj *key) { | |
42 | dictEntry *de = dictFind(db->dict,key->ptr); | |
43 | if (de) { | |
44 | robj *val = dictGetEntryVal(de); | |
45 | ||
46 | /* Update the access time for the aging algorithm. | |
47 | * Don't do it if we have a saving child, as this will trigger | |
48 | * a copy on write madness. */ | |
49 | if (server.bgsavechildpid == -1 && server.bgrewritechildpid == -1) | |
50 | val->lru = server.lruclock; | |
51 | ||
52 | if (server.ds_enabled && | |
53 | cacheScheduleIOGetFlags(db,key) & REDIS_IO_SAVEINPROG) | |
54 | { | |
55 | /* Need to wait for the key to get unbusy */ | |
56 | redisLog(REDIS_DEBUG,"Lookup found a key in SAVEINPROG state. Waiting. (Key was in the cache)"); | |
57 | lookupWaitBusyKey(db,key); | |
58 | } | |
59 | server.stat_keyspace_hits++; | |
60 | return val; | |
61 | } else { | |
62 | time_t expire; | |
63 | robj *val; | |
64 | ||
65 | /* Key not found in the in memory hash table, but if disk store is | |
66 | * enabled we may have this key on disk. If so load it in memory | |
67 | * in a blocking way. */ | |
68 | if (server.ds_enabled && cacheKeyMayExist(db,key)) { | |
69 | long flags = cacheScheduleIOGetFlags(db,key); | |
70 | ||
71 | /* They key is not in cache, but it has a SAVE op in queue? | |
72 | * The only possibility is that the key was deleted, since | |
73 | * dirty keys are not evicted. */ | |
74 | if (flags & REDIS_IO_SAVE) { | |
75 | server.stat_keyspace_misses++; | |
76 | return NULL; | |
77 | } | |
78 | ||
79 | /* At this point we need to blocking load the key in memory. | |
80 | * The first thing we do is waiting here if the key is busy. */ | |
81 | if (flags & REDIS_IO_SAVEINPROG) { | |
82 | redisLog(REDIS_DEBUG,"Lookup found a key in SAVEINPROG state. Waiting (while force loading)."); | |
83 | lookupWaitBusyKey(db,key); | |
84 | } | |
85 | ||
86 | redisLog(REDIS_DEBUG,"Force loading key %s via lookup", key->ptr); | |
87 | val = dsGet(db,key,&expire); | |
88 | if (val) { | |
89 | dbAdd(db,key,val); | |
90 | if (expire != -1) setExpire(db,key,expire); | |
91 | server.stat_keyspace_hits++; | |
92 | return val; | |
93 | } else { | |
94 | cacheSetKeyDoesNotExist(db,key); | |
95 | } | |
96 | } | |
97 | server.stat_keyspace_misses++; | |
98 | return NULL; | |
99 | } | |
100 | } | |
101 | ||
102 | robj *lookupKeyRead(redisDb *db, robj *key) { | |
103 | expireIfNeeded(db,key); | |
104 | return lookupKey(db,key); | |
105 | } | |
106 | ||
107 | robj *lookupKeyWrite(redisDb *db, robj *key) { | |
108 | expireIfNeeded(db,key); | |
109 | return lookupKey(db,key); | |
110 | } | |
111 | ||
112 | robj *lookupKeyReadOrReply(redisClient *c, robj *key, robj *reply) { | |
113 | robj *o = lookupKeyRead(c->db, key); | |
114 | if (!o) addReply(c,reply); | |
115 | return o; | |
116 | } | |
117 | ||
118 | robj *lookupKeyWriteOrReply(redisClient *c, robj *key, robj *reply) { | |
119 | robj *o = lookupKeyWrite(c->db, key); | |
120 | if (!o) addReply(c,reply); | |
121 | return o; | |
122 | } | |
123 | ||
124 | /* Add the key to the DB. It's up to the caller to increment the reference | |
125 | * counte of the value if needed. | |
126 | * | |
127 | * The program is aborted if the key already exists. */ | |
128 | void dbAdd(redisDb *db, robj *key, robj *val) { | |
129 | sds copy = sdsdup(key->ptr); | |
130 | int retval = dictAdd(db->dict, copy, val); | |
131 | ||
132 | redisAssert(retval == REDIS_OK); | |
133 | if (server.ds_enabled) cacheSetKeyMayExist(db,key); | |
134 | if (server.cluster_enabled) SlotToKeyAdd(key); | |
135 | } | |
136 | ||
137 | /* Overwrite an existing key with a new value. Incrementing the reference | |
138 | * count of the new value is up to the caller. | |
139 | * This function does not modify the expire time of the existing key. | |
140 | * | |
141 | * The program is aborted if the key was not already present. */ | |
142 | void dbOverwrite(redisDb *db, robj *key, robj *val) { | |
143 | struct dictEntry *de = dictFind(db->dict,key->ptr); | |
144 | ||
145 | redisAssert(de != NULL); | |
146 | dictReplace(db->dict, key->ptr, val); | |
147 | if (server.ds_enabled) cacheSetKeyMayExist(db,key); | |
148 | } | |
149 | ||
150 | /* High level Set operation. This function can be used in order to set | |
151 | * a key, whatever it was existing or not, to a new object. | |
152 | * | |
153 | * 1) The ref count of the value object is incremented. | |
154 | * 2) clients WATCHing for the destination key notified. | |
155 | * 3) The expire time of the key is reset (the key is made persistent). */ | |
156 | void setKey(redisDb *db, robj *key, robj *val) { | |
157 | if (lookupKeyWrite(db,key) == NULL) { | |
158 | dbAdd(db,key,val); | |
159 | } else { | |
160 | dbOverwrite(db,key,val); | |
161 | } | |
162 | incrRefCount(val); | |
163 | removeExpire(db,key); | |
164 | touchWatchedKey(db,key); | |
165 | } | |
166 | ||
167 | int dbExists(redisDb *db, robj *key) { | |
168 | return dictFind(db->dict,key->ptr) != NULL; | |
169 | } | |
170 | ||
171 | /* Return a random key, in form of a Redis object. | |
172 | * If there are no keys, NULL is returned. | |
173 | * | |
174 | * The function makes sure to return keys not already expired. */ | |
175 | robj *dbRandomKey(redisDb *db) { | |
176 | struct dictEntry *de; | |
177 | ||
178 | while(1) { | |
179 | sds key; | |
180 | robj *keyobj; | |
181 | ||
182 | de = dictGetRandomKey(db->dict); | |
183 | if (de == NULL) return NULL; | |
184 | ||
185 | key = dictGetEntryKey(de); | |
186 | keyobj = createStringObject(key,sdslen(key)); | |
187 | if (dictFind(db->expires,key)) { | |
188 | if (expireIfNeeded(db,keyobj)) { | |
189 | decrRefCount(keyobj); | |
190 | continue; /* search for another key. This expired. */ | |
191 | } | |
192 | } | |
193 | return keyobj; | |
194 | } | |
195 | } | |
196 | ||
197 | /* Delete a key, value, and associated expiration entry if any, from the DB */ | |
198 | int dbDelete(redisDb *db, robj *key) { | |
199 | /* If diskstore is enabled make sure to awake waiting clients for this key | |
200 | * as it is not really useful to wait for a key already deleted to be | |
201 | * loaded from disk. */ | |
202 | if (server.ds_enabled) { | |
203 | handleClientsBlockedOnSwappedKey(db,key); | |
204 | cacheSetKeyDoesNotExist(db,key); | |
205 | } | |
206 | ||
207 | /* Deleting an entry from the expires dict will not free the sds of | |
208 | * the key, because it is shared with the main dictionary. */ | |
209 | if (dictSize(db->expires) > 0) dictDelete(db->expires,key->ptr); | |
210 | if (dictDelete(db->dict,key->ptr) == DICT_OK) { | |
211 | if (server.cluster_enabled) SlotToKeyDel(key); | |
212 | return 1; | |
213 | } else { | |
214 | return 0; | |
215 | } | |
216 | } | |
217 | ||
218 | /* Empty the whole database. | |
219 | * If diskstore is enabled this function will just flush the in-memory cache. */ | |
220 | long long emptyDb() { | |
221 | int j; | |
222 | long long removed = 0; | |
223 | ||
224 | for (j = 0; j < server.dbnum; j++) { | |
225 | removed += dictSize(server.db[j].dict); | |
226 | dictEmpty(server.db[j].dict); | |
227 | dictEmpty(server.db[j].expires); | |
228 | if (server.ds_enabled) dictEmpty(server.db[j].io_negcache); | |
229 | } | |
230 | return removed; | |
231 | } | |
232 | ||
233 | int selectDb(redisClient *c, int id) { | |
234 | if (id < 0 || id >= server.dbnum) | |
235 | return REDIS_ERR; | |
236 | c->db = &server.db[id]; | |
237 | return REDIS_OK; | |
238 | } | |
239 | ||
240 | /*----------------------------------------------------------------------------- | |
241 | * Hooks for key space changes. | |
242 | * | |
243 | * Every time a key in the database is modified the function | |
244 | * signalModifiedKey() is called. | |
245 | * | |
246 | * Every time a DB is flushed the function signalFlushDb() is called. | |
247 | *----------------------------------------------------------------------------*/ | |
248 | ||
249 | void signalModifiedKey(redisDb *db, robj *key) { | |
250 | touchWatchedKey(db,key); | |
251 | if (server.ds_enabled) | |
252 | cacheScheduleIO(db,key,REDIS_IO_SAVE); | |
253 | } | |
254 | ||
255 | void signalFlushedDb(int dbid) { | |
256 | touchWatchedKeysOnFlush(dbid); | |
257 | } | |
258 | ||
259 | /*----------------------------------------------------------------------------- | |
260 | * Type agnostic commands operating on the key space | |
261 | *----------------------------------------------------------------------------*/ | |
262 | ||
263 | void flushdbCommand(redisClient *c) { | |
264 | server.dirty += dictSize(c->db->dict); | |
265 | signalFlushedDb(c->db->id); | |
266 | dictEmpty(c->db->dict); | |
267 | dictEmpty(c->db->expires); | |
268 | if (server.ds_enabled) dsFlushDb(c->db->id); | |
269 | addReply(c,shared.ok); | |
270 | } | |
271 | ||
272 | void flushallCommand(redisClient *c) { | |
273 | signalFlushedDb(-1); | |
274 | server.dirty += emptyDb(); | |
275 | addReply(c,shared.ok); | |
276 | if (server.bgsavechildpid != -1) { | |
277 | kill(server.bgsavechildpid,SIGKILL); | |
278 | rdbRemoveTempFile(server.bgsavechildpid); | |
279 | } | |
280 | if (server.ds_enabled) | |
281 | dsFlushDb(-1); | |
282 | else | |
283 | rdbSave(server.dbfilename); | |
284 | server.dirty++; | |
285 | } | |
286 | ||
287 | void delCommand(redisClient *c) { | |
288 | int deleted = 0, j; | |
289 | ||
290 | for (j = 1; j < c->argc; j++) { | |
291 | if (server.ds_enabled) { | |
292 | lookupKeyRead(c->db,c->argv[j]); | |
293 | /* FIXME: this can be optimized a lot, no real need to load | |
294 | * a possibly huge value. */ | |
295 | } | |
296 | if (dbDelete(c->db,c->argv[j])) { | |
297 | signalModifiedKey(c->db,c->argv[j]); | |
298 | server.dirty++; | |
299 | deleted++; | |
300 | } else if (server.ds_enabled) { | |
301 | if (cacheKeyMayExist(c->db,c->argv[j]) && | |
302 | dsExists(c->db,c->argv[j])) | |
303 | { | |
304 | cacheScheduleIO(c->db,c->argv[j],REDIS_IO_SAVE); | |
305 | deleted = 1; | |
306 | } | |
307 | } | |
308 | } | |
309 | addReplyLongLong(c,deleted); | |
310 | } | |
311 | ||
312 | void existsCommand(redisClient *c) { | |
313 | expireIfNeeded(c->db,c->argv[1]); | |
314 | if (dbExists(c->db,c->argv[1])) { | |
315 | addReply(c, shared.cone); | |
316 | } else { | |
317 | addReply(c, shared.czero); | |
318 | } | |
319 | } | |
320 | ||
321 | void selectCommand(redisClient *c) { | |
322 | int id = atoi(c->argv[1]->ptr); | |
323 | ||
324 | if (server.cluster_enabled && id != 0) { | |
325 | addReplyError(c,"SELECT is not allowed in cluster mode"); | |
326 | return; | |
327 | } | |
328 | if (selectDb(c,id) == REDIS_ERR) { | |
329 | addReplyError(c,"invalid DB index"); | |
330 | } else { | |
331 | addReply(c,shared.ok); | |
332 | } | |
333 | } | |
334 | ||
335 | void randomkeyCommand(redisClient *c) { | |
336 | robj *key; | |
337 | ||
338 | if ((key = dbRandomKey(c->db)) == NULL) { | |
339 | addReply(c,shared.nullbulk); | |
340 | return; | |
341 | } | |
342 | ||
343 | addReplyBulk(c,key); | |
344 | decrRefCount(key); | |
345 | } | |
346 | ||
347 | void keysCommand(redisClient *c) { | |
348 | dictIterator *di; | |
349 | dictEntry *de; | |
350 | sds pattern = c->argv[1]->ptr; | |
351 | int plen = sdslen(pattern), allkeys; | |
352 | unsigned long numkeys = 0; | |
353 | void *replylen = addDeferredMultiBulkLength(c); | |
354 | ||
355 | di = dictGetIterator(c->db->dict); | |
356 | allkeys = (pattern[0] == '*' && pattern[1] == '\0'); | |
357 | while((de = dictNext(di)) != NULL) { | |
358 | sds key = dictGetEntryKey(de); | |
359 | robj *keyobj; | |
360 | ||
361 | if (allkeys || stringmatchlen(pattern,plen,key,sdslen(key),0)) { | |
362 | keyobj = createStringObject(key,sdslen(key)); | |
363 | if (expireIfNeeded(c->db,keyobj) == 0) { | |
364 | addReplyBulk(c,keyobj); | |
365 | numkeys++; | |
366 | } | |
367 | decrRefCount(keyobj); | |
368 | } | |
369 | } | |
370 | dictReleaseIterator(di); | |
371 | setDeferredMultiBulkLength(c,replylen,numkeys); | |
372 | } | |
373 | ||
374 | void dbsizeCommand(redisClient *c) { | |
375 | addReplyLongLong(c,dictSize(c->db->dict)); | |
376 | } | |
377 | ||
378 | void lastsaveCommand(redisClient *c) { | |
379 | addReplyLongLong(c,server.lastsave); | |
380 | } | |
381 | ||
382 | void typeCommand(redisClient *c) { | |
383 | robj *o; | |
384 | char *type; | |
385 | ||
386 | o = lookupKeyRead(c->db,c->argv[1]); | |
387 | if (o == NULL) { | |
388 | type = "none"; | |
389 | } else { | |
390 | switch(o->type) { | |
391 | case REDIS_STRING: type = "string"; break; | |
392 | case REDIS_LIST: type = "list"; break; | |
393 | case REDIS_SET: type = "set"; break; | |
394 | case REDIS_ZSET: type = "zset"; break; | |
395 | case REDIS_HASH: type = "hash"; break; | |
396 | default: type = "unknown"; break; | |
397 | } | |
398 | } | |
399 | addReplyStatus(c,type); | |
400 | } | |
401 | ||
402 | void shutdownCommand(redisClient *c) { | |
403 | if (prepareForShutdown() == REDIS_OK) | |
404 | exit(0); | |
405 | addReplyError(c,"Errors trying to SHUTDOWN. Check logs."); | |
406 | } | |
407 | ||
408 | void renameGenericCommand(redisClient *c, int nx) { | |
409 | robj *o; | |
410 | ||
411 | /* To use the same key as src and dst is probably an error */ | |
412 | if (sdscmp(c->argv[1]->ptr,c->argv[2]->ptr) == 0) { | |
413 | addReply(c,shared.sameobjecterr); | |
414 | return; | |
415 | } | |
416 | ||
417 | if ((o = lookupKeyWriteOrReply(c,c->argv[1],shared.nokeyerr)) == NULL) | |
418 | return; | |
419 | ||
420 | incrRefCount(o); | |
421 | if (lookupKeyWrite(c->db,c->argv[2]) != NULL) { | |
422 | if (nx) { | |
423 | decrRefCount(o); | |
424 | addReply(c,shared.czero); | |
425 | return; | |
426 | } | |
427 | dbOverwrite(c->db,c->argv[2],o); | |
428 | } else { | |
429 | dbAdd(c->db,c->argv[2],o); | |
430 | } | |
431 | dbDelete(c->db,c->argv[1]); | |
432 | signalModifiedKey(c->db,c->argv[1]); | |
433 | signalModifiedKey(c->db,c->argv[2]); | |
434 | server.dirty++; | |
435 | addReply(c,nx ? shared.cone : shared.ok); | |
436 | } | |
437 | ||
438 | void renameCommand(redisClient *c) { | |
439 | renameGenericCommand(c,0); | |
440 | } | |
441 | ||
442 | void renamenxCommand(redisClient *c) { | |
443 | renameGenericCommand(c,1); | |
444 | } | |
445 | ||
446 | void moveCommand(redisClient *c) { | |
447 | robj *o; | |
448 | redisDb *src, *dst; | |
449 | int srcid; | |
450 | ||
451 | if (server.cluster_enabled) { | |
452 | addReplyError(c,"MOVE is not allowed in cluster mode"); | |
453 | return; | |
454 | } | |
455 | ||
456 | /* Obtain source and target DB pointers */ | |
457 | src = c->db; | |
458 | srcid = c->db->id; | |
459 | if (selectDb(c,atoi(c->argv[2]->ptr)) == REDIS_ERR) { | |
460 | addReply(c,shared.outofrangeerr); | |
461 | return; | |
462 | } | |
463 | dst = c->db; | |
464 | selectDb(c,srcid); /* Back to the source DB */ | |
465 | ||
466 | /* If the user is moving using as target the same | |
467 | * DB as the source DB it is probably an error. */ | |
468 | if (src == dst) { | |
469 | addReply(c,shared.sameobjecterr); | |
470 | return; | |
471 | } | |
472 | ||
473 | /* Check if the element exists and get a reference */ | |
474 | o = lookupKeyWrite(c->db,c->argv[1]); | |
475 | if (!o) { | |
476 | addReply(c,shared.czero); | |
477 | return; | |
478 | } | |
479 | ||
480 | /* Return zero if the key already exists in the target DB */ | |
481 | if (lookupKeyWrite(dst,c->argv[1]) != NULL) { | |
482 | addReply(c,shared.czero); | |
483 | return; | |
484 | } | |
485 | dbAdd(dst,c->argv[1],o); | |
486 | incrRefCount(o); | |
487 | ||
488 | /* OK! key moved, free the entry in the source DB */ | |
489 | dbDelete(src,c->argv[1]); | |
490 | server.dirty++; | |
491 | addReply(c,shared.cone); | |
492 | } | |
493 | ||
494 | /*----------------------------------------------------------------------------- | |
495 | * Expires API | |
496 | *----------------------------------------------------------------------------*/ | |
497 | ||
498 | int removeExpire(redisDb *db, robj *key) { | |
499 | /* An expire may only be removed if there is a corresponding entry in the | |
500 | * main dict. Otherwise, the key will never be freed. */ | |
501 | redisAssert(dictFind(db->dict,key->ptr) != NULL); | |
502 | return dictDelete(db->expires,key->ptr) == DICT_OK; | |
503 | } | |
504 | ||
505 | void setExpire(redisDb *db, robj *key, time_t when) { | |
506 | dictEntry *de; | |
507 | ||
508 | /* Reuse the sds from the main dict in the expire dict */ | |
509 | de = dictFind(db->dict,key->ptr); | |
510 | redisAssert(de != NULL); | |
511 | dictReplace(db->expires,dictGetEntryKey(de),(void*)when); | |
512 | } | |
513 | ||
514 | /* Return the expire time of the specified key, or -1 if no expire | |
515 | * is associated with this key (i.e. the key is non volatile) */ | |
516 | time_t getExpire(redisDb *db, robj *key) { | |
517 | dictEntry *de; | |
518 | ||
519 | /* No expire? return ASAP */ | |
520 | if (dictSize(db->expires) == 0 || | |
521 | (de = dictFind(db->expires,key->ptr)) == NULL) return -1; | |
522 | ||
523 | /* The entry was found in the expire dict, this means it should also | |
524 | * be present in the main dict (safety check). */ | |
525 | redisAssert(dictFind(db->dict,key->ptr) != NULL); | |
526 | return (time_t) dictGetEntryVal(de); | |
527 | } | |
528 | ||
529 | /* Propagate expires into slaves and the AOF file. | |
530 | * When a key expires in the master, a DEL operation for this key is sent | |
531 | * to all the slaves and the AOF file if enabled. | |
532 | * | |
533 | * This way the key expiry is centralized in one place, and since both | |
534 | * AOF and the master->slave link guarantee operation ordering, everything | |
535 | * will be consistent even if we allow write operations against expiring | |
536 | * keys. */ | |
537 | void propagateExpire(redisDb *db, robj *key) { | |
538 | robj *argv[2]; | |
539 | ||
540 | argv[0] = createStringObject("DEL",3); | |
541 | argv[1] = key; | |
542 | incrRefCount(key); | |
543 | ||
544 | if (server.appendonly) | |
545 | feedAppendOnlyFile(server.delCommand,db->id,argv,2); | |
546 | if (listLength(server.slaves)) | |
547 | replicationFeedSlaves(server.slaves,db->id,argv,2); | |
548 | ||
549 | decrRefCount(argv[0]); | |
550 | decrRefCount(argv[1]); | |
551 | } | |
552 | ||
553 | int expireIfNeeded(redisDb *db, robj *key) { | |
554 | time_t when = getExpire(db,key); | |
555 | ||
556 | if (when < 0) return 0; /* No expire for this key */ | |
557 | ||
558 | /* If we are running in the context of a slave, return ASAP: | |
559 | * the slave key expiration is controlled by the master that will | |
560 | * send us synthesized DEL operations for expired keys. | |
561 | * | |
562 | * Still we try to return the right information to the caller, | |
563 | * that is, 0 if we think the key should be still valid, 1 if | |
564 | * we think the key is expired at this time. */ | |
565 | if (server.masterhost != NULL) { | |
566 | return time(NULL) > when; | |
567 | } | |
568 | ||
569 | /* Return when this key has not expired */ | |
570 | if (time(NULL) <= when) return 0; | |
571 | ||
572 | /* Delete the key */ | |
573 | server.stat_expiredkeys++; | |
574 | propagateExpire(db,key); | |
575 | return dbDelete(db,key); | |
576 | } | |
577 | ||
578 | /*----------------------------------------------------------------------------- | |
579 | * Expires Commands | |
580 | *----------------------------------------------------------------------------*/ | |
581 | ||
582 | void expireGenericCommand(redisClient *c, robj *key, robj *param, long offset) { | |
583 | dictEntry *de; | |
584 | long seconds; | |
585 | ||
586 | if (getLongFromObjectOrReply(c, param, &seconds, NULL) != REDIS_OK) return; | |
587 | ||
588 | seconds -= offset; | |
589 | ||
590 | de = dictFind(c->db->dict,key->ptr); | |
591 | if (de == NULL) { | |
592 | addReply(c,shared.czero); | |
593 | return; | |
594 | } | |
595 | if (seconds <= 0) { | |
596 | if (dbDelete(c->db,key)) server.dirty++; | |
597 | addReply(c, shared.cone); | |
598 | signalModifiedKey(c->db,key); | |
599 | return; | |
600 | } else { | |
601 | time_t when = time(NULL)+seconds; | |
602 | setExpire(c->db,key,when); | |
603 | addReply(c,shared.cone); | |
604 | signalModifiedKey(c->db,key); | |
605 | server.dirty++; | |
606 | return; | |
607 | } | |
608 | } | |
609 | ||
610 | void expireCommand(redisClient *c) { | |
611 | expireGenericCommand(c,c->argv[1],c->argv[2],0); | |
612 | } | |
613 | ||
614 | void expireatCommand(redisClient *c) { | |
615 | expireGenericCommand(c,c->argv[1],c->argv[2],time(NULL)); | |
616 | } | |
617 | ||
618 | void ttlCommand(redisClient *c) { | |
619 | time_t expire, ttl = -1; | |
620 | ||
621 | if (server.ds_enabled) lookupKeyRead(c->db,c->argv[1]); | |
622 | expire = getExpire(c->db,c->argv[1]); | |
623 | if (expire != -1) { | |
624 | ttl = (expire-time(NULL)); | |
625 | if (ttl < 0) ttl = -1; | |
626 | } | |
627 | addReplyLongLong(c,(long long)ttl); | |
628 | } | |
629 | ||
630 | void persistCommand(redisClient *c) { | |
631 | dictEntry *de; | |
632 | ||
633 | de = dictFind(c->db->dict,c->argv[1]->ptr); | |
634 | if (de == NULL) { | |
635 | addReply(c,shared.czero); | |
636 | } else { | |
637 | if (removeExpire(c->db,c->argv[1])) { | |
638 | addReply(c,shared.cone); | |
639 | server.dirty++; | |
640 | } else { | |
641 | addReply(c,shared.czero); | |
642 | } | |
643 | } | |
644 | } | |
645 | ||
646 | /* ----------------------------------------------------------------------------- | |
647 | * API to get key arguments from commands | |
648 | * ---------------------------------------------------------------------------*/ | |
649 | ||
650 | int *getKeysUsingCommandTable(struct redisCommand *cmd,robj **argv, int argc, int *numkeys) { | |
651 | int j, i = 0, last, *keys; | |
652 | REDIS_NOTUSED(argv); | |
653 | ||
654 | if (cmd->firstkey == 0) { | |
655 | *numkeys = 0; | |
656 | return NULL; | |
657 | } | |
658 | last = cmd->lastkey; | |
659 | if (last < 0) last = argc+last; | |
660 | keys = zmalloc(sizeof(int)*((last - cmd->firstkey)+1)); | |
661 | for (j = cmd->firstkey; j <= last; j += cmd->keystep) { | |
662 | redisAssert(j < argc); | |
663 | keys[i++] = j; | |
664 | } | |
665 | *numkeys = i; | |
666 | return keys; | |
667 | } | |
668 | ||
669 | int *getKeysFromCommand(struct redisCommand *cmd,robj **argv, int argc, int *numkeys, int flags) { | |
670 | if (cmd->getkeys_proc) { | |
671 | return cmd->getkeys_proc(cmd,argv,argc,numkeys,flags); | |
672 | } else { | |
673 | return getKeysUsingCommandTable(cmd,argv,argc,numkeys); | |
674 | } | |
675 | } | |
676 | ||
677 | void getKeysFreeResult(int *result) { | |
678 | zfree(result); | |
679 | } | |
680 | ||
681 | int *noPreloadGetKeys(struct redisCommand *cmd,robj **argv, int argc, int *numkeys, int flags) { | |
682 | if (flags & REDIS_GETKEYS_PRELOAD) { | |
683 | *numkeys = 0; | |
684 | return NULL; | |
685 | } else { | |
686 | return getKeysUsingCommandTable(cmd,argv,argc,numkeys); | |
687 | } | |
688 | } | |
689 | ||
690 | int *renameGetKeys(struct redisCommand *cmd,robj **argv, int argc, int *numkeys, int flags) { | |
691 | if (flags & REDIS_GETKEYS_PRELOAD) { | |
692 | int *keys = zmalloc(sizeof(int)); | |
693 | *numkeys = 1; | |
694 | keys[0] = 1; | |
695 | return keys; | |
696 | } else { | |
697 | return getKeysUsingCommandTable(cmd,argv,argc,numkeys); | |
698 | } | |
699 | } | |
700 | ||
701 | int *zunionInterGetKeys(struct redisCommand *cmd,robj **argv, int argc, int *numkeys, int flags) { | |
702 | int i, num, *keys; | |
703 | REDIS_NOTUSED(cmd); | |
704 | REDIS_NOTUSED(flags); | |
705 | ||
706 | num = atoi(argv[2]->ptr); | |
707 | /* Sanity check. Don't return any key if the command is going to | |
708 | * reply with syntax error. */ | |
709 | if (num > (argc-3)) { | |
710 | *numkeys = 0; | |
711 | return NULL; | |
712 | } | |
713 | keys = zmalloc(sizeof(int)*num); | |
714 | for (i = 0; i < num; i++) keys[i] = 3+i; | |
715 | *numkeys = num; | |
716 | return keys; | |
717 | } | |
718 | ||
719 | /* Slot to Key API. This is used by Redis Cluster in order to obtain in | |
720 | * a fast way a key that belongs to a specified hash slot. This is useful | |
721 | * while rehashing the cluster. */ | |
722 | void SlotToKeyAdd(robj *key) { | |
723 | unsigned int hashslot = keyHashSlot(key->ptr,sdslen(key->ptr)); | |
724 | ||
725 | zslInsert(server.cluster.slots_to_keys,hashslot,key); | |
726 | incrRefCount(key); | |
727 | } | |
728 | ||
729 | void SlotToKeyDel(robj *key) { | |
730 | unsigned int hashslot = keyHashSlot(key->ptr,sdslen(key->ptr)); | |
731 | ||
732 | zslDelete(server.cluster.slots_to_keys,hashslot,key); | |
733 | } | |
734 | ||
735 | unsigned int GetKeysInSlot(unsigned int hashslot, robj **keys, unsigned int count) { | |
736 | zskiplistNode *n; | |
737 | zrangespec range; | |
738 | int j = 0; | |
739 | ||
740 | range.min = range.max = hashslot; | |
741 | range.minex = range.maxex = 0; | |
742 | ||
743 | n = zslFirstInRange(server.cluster.slots_to_keys, range); | |
744 | while(n && n->score == hashslot && count--) { | |
745 | keys[j++] = n->obj; | |
746 | n = n->level[0].forward; | |
747 | } | |
748 | return j; | |
749 | } |