]> git.saurik.com Git - redis.git/blame_incremental - doc/Benchmarks.html
undoed all the sds hacking that lead just to random bugs and no memory saving ;)
[redis.git] / doc / Benchmarks.html
... / ...
CommitLineData
1
2<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
3<html>
4 <head>
5 <link type="text/css" rel="stylesheet" href="style.css" />
6 </head>
7 <body>
8 <div id="page">
9
10 <div id='header'>
11 <a href="index.html">
12 <img style="border:none" alt="Redis Documentation" src="redis.png">
13 </a>
14 </div>
15
16 <div id="pagecontent">
17 <div class="index">
18<!-- This is a (PRE) block. Make sure it's left aligned or your toc title will be off. -->
19<b>Benchmarks: Contents</b><br>&nbsp;&nbsp;<a href="#How Fast is Redis?">How Fast is Redis?</a><br>&nbsp;&nbsp;<a href="#Latency percentiles">Latency percentiles</a>
20 </div>
21
22 <h1 class="wikiname">Benchmarks</h1>
23
24 <div class="summary">
25
26 </div>
27
28 <div class="narrow">
29 <h1><a name="How Fast is Redis?">How Fast is Redis?</a></h1>Redis includes the <code name="code" class="python">redis-benchmark</code> utility that simulates SETs/GETs done by N clients at the same time sending M total queries (it is similar to the Apache's <code name="code" class="python">ab</code> utility). Below you'll find the full output of the benchmark executed against a Linux box.<br/><br/><ul><li> The test was done with 50 simultaneous clients performing 100000 requests.</li><li> The value SET and GET is a 256 bytes string.</li><li> The Linux box is running <b>Linux 2.6</b>, it's <b>Xeon X3320 2.5Ghz</b>.</li><li> Text executed using the loopback interface (127.0.0.1).</li></ul>
30Results: <b>about 110000 SETs per second, about 81000 GETs per second.</b><h1><a name="Latency percentiles">Latency percentiles</a></h1><pre class="codeblock python" name="code">
31./redis-benchmark -n 100000
32
33====== SET ======
34 100007 requests completed in 0.88 seconds
35 50 parallel clients
36 3 bytes payload
37 keep alive: 1
38
3958.50% &lt;= 0 milliseconds
4099.17% &lt;= 1 milliseconds
4199.58% &lt;= 2 milliseconds
4299.85% &lt;= 3 milliseconds
4399.90% &lt;= 6 milliseconds
44100.00% &lt;= 9 milliseconds
45114293.71 requests per second
46
47====== GET ======
48 100000 requests completed in 1.23 seconds
49 50 parallel clients
50 3 bytes payload
51 keep alive: 1
52
5343.12% &lt;= 0 milliseconds
5496.82% &lt;= 1 milliseconds
5598.62% &lt;= 2 milliseconds
56100.00% &lt;= 3 milliseconds
5781234.77 requests per second
58
59====== INCR ======
60 100018 requests completed in 1.46 seconds
61 50 parallel clients
62 3 bytes payload
63 keep alive: 1
64
6532.32% &lt;= 0 milliseconds
6696.67% &lt;= 1 milliseconds
6799.14% &lt;= 2 milliseconds
6899.83% &lt;= 3 milliseconds
6999.88% &lt;= 4 milliseconds
7099.89% &lt;= 5 milliseconds
7199.96% &lt;= 9 milliseconds
72100.00% &lt;= 18 milliseconds
7368458.59 requests per second
74
75====== LPUSH ======
76 100004 requests completed in 1.14 seconds
77 50 parallel clients
78 3 bytes payload
79 keep alive: 1
80
8162.27% &lt;= 0 milliseconds
8299.74% &lt;= 1 milliseconds
8399.85% &lt;= 2 milliseconds
8499.86% &lt;= 3 milliseconds
8599.89% &lt;= 5 milliseconds
8699.93% &lt;= 7 milliseconds
8799.96% &lt;= 9 milliseconds
88100.00% &lt;= 22 milliseconds
89100.00% &lt;= 208 milliseconds
9088109.25 requests per second
91
92====== LPOP ======
93 100001 requests completed in 1.39 seconds
94 50 parallel clients
95 3 bytes payload
96 keep alive: 1
97
9854.83% &lt;= 0 milliseconds
9997.34% &lt;= 1 milliseconds
10099.95% &lt;= 2 milliseconds
10199.96% &lt;= 3 milliseconds
10299.96% &lt;= 4 milliseconds
103100.00% &lt;= 9 milliseconds
104100.00% &lt;= 208 milliseconds
10571994.96 requests per second
106</pre>Notes: changing the payload from 256 to 1024 or 4096 bytes does not change the numbers significantly (but reply packets are glued together up to 1024 bytes so GETs may be slower with big payloads). The same for the number of clients, from 50 to 256 clients I got the same numbers. With only 10 clients it starts to get a bit slower.<br/><br/>You can expect different results from different boxes. For example a low profile box like <b>Intel core duo T5500 clocked at 1.66Ghz running Linux 2.6</b> will output the following:
107<pre class="codeblock python python" name="code">
108 ./redis-benchmark -q -n 100000
109SET: 53684.38 requests per second
110GET: 45497.73 requests per second
111INCR: 39370.47 requests per second
112LPUSH: 34803.41 requests per second
113LPOP: 37367.20 requests per second
114</pre>Another one using a 64 bit box, a Xeon L5420 clocked at 2.5 Ghz:<br/><br/><pre class="codeblock python python python" name="code">
115 ./redis-benchmark -q -n 100000
116PING: 111731.84 requests per second
117SET: 108114.59 requests per second
118GET: 98717.67 requests per second
119INCR: 95241.91 requests per second
120LPUSH: 104712.05 requests per second
121LPOP: 93722.59 requests per second
122</pre>
123 </div>
124
125 </div>
126 </div>
127 </body>
128</html>
129