]> git.saurik.com Git - redis.git/blame_incremental - src/ziplist.c
Fixed bug breaking rdbSaveMillisecondTime() in 32 bit systems. Thanks to @anydot...
[redis.git] / src / ziplist.c
... / ...
CommitLineData
1/* The ziplist is a specially encoded dually linked list that is designed
2 * to be very memory efficient. It stores both strings and integer values,
3 * where integers are encoded as actual integers instead of a series of
4 * characters. It allows push and pop operations on either side of the list
5 * in O(1) time. However, because every operation requires a reallocation of
6 * the memory used by the ziplist, the actual complexity is related to the
7 * amount of memory used by the ziplist.
8 *
9 * ----------------------------------------------------------------------------
10 *
11 * ZIPLIST OVERALL LAYOUT:
12 * The general layout of the ziplist is as follows:
13 * <zlbytes><zltail><zllen><entry><entry><zlend>
14 *
15 * <zlbytes> is an unsigned integer to hold the number of bytes that the
16 * ziplist occupies. This value needs to be stored to be able to resize the
17 * entire structure without the need to traverse it first.
18 *
19 * <zltail> is the offset to the last entry in the list. This allows a pop
20 * operation on the far side of the list without the need for full traversal.
21 *
22 * <zllen> is the number of entries.When this value is larger than 2**16-2,
23 * we need to traverse the entire list to know how many items it holds.
24 *
25 * <zlend> is a single byte special value, equal to 255, which indicates the
26 * end of the list.
27 *
28 * ZIPLIST ENTRIES:
29 * Every entry in the ziplist is prefixed by a header that contains two pieces
30 * of information. First, the length of the previous entry is stored to be
31 * able to traverse the list from back to front. Second, the encoding with an
32 * optional string length of the entry itself is stored.
33 *
34 * The length of the previous entry is encoded in the following way:
35 * If this length is smaller than 254 bytes, it will only consume a single
36 * byte that takes the length as value. When the length is greater than or
37 * equal to 254, it will consume 5 bytes. The first byte is set to 254 to
38 * indicate a larger value is following. The remaining 4 bytes take the
39 * length of the previous entry as value.
40 *
41 * The other header field of the entry itself depends on the contents of the
42 * entry. When the entry is a string, the first 2 bits of this header will hold
43 * the type of encoding used to store the length of the string, followed by the
44 * actual length of the string. When the entry is an integer the first 2 bits
45 * are both set to 1. The following 2 bits are used to specify what kind of
46 * integer will be stored after this header. An overview of the different
47 * types and encodings is as follows:
48 *
49 * |00pppppp| - 1 byte
50 * String value with length less than or equal to 63 bytes (6 bits).
51 * |01pppppp|qqqqqqqq| - 2 bytes
52 * String value with length less than or equal to 16383 bytes (14 bits).
53 * |10______|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt| - 5 bytes
54 * String value with length greater than or equal to 16384 bytes.
55 * |1100____| - 1 byte
56 * Integer encoded as int16_t (2 bytes).
57 * |1101____| - 1 byte
58 * Integer encoded as int32_t (4 bytes).
59 * |1110____| - 1 byte
60 * Integer encoded as int64_t (8 bytes).
61 */
62
63#include <stdio.h>
64#include <stdlib.h>
65#include <string.h>
66#include <stdint.h>
67#include <assert.h>
68#include <limits.h>
69#include "zmalloc.h"
70#include "util.h"
71#include "ziplist.h"
72#include "endian.h"
73
74#define ZIP_END 255
75#define ZIP_BIGLEN 254
76
77/* Different encoding/length possibilities */
78#define ZIP_STR_06B (0 << 6)
79#define ZIP_STR_14B (1 << 6)
80#define ZIP_STR_32B (2 << 6)
81#define ZIP_INT_16B (0xc0 | 0<<4)
82#define ZIP_INT_32B (0xc0 | 1<<4)
83#define ZIP_INT_64B (0xc0 | 2<<4)
84
85/* Macro's to determine type */
86#define ZIP_IS_STR(enc) (((enc) & 0xc0) < 0xc0)
87#define ZIP_IS_INT(enc) (!ZIP_IS_STR(enc) && ((enc) & 0x30) < 0x30)
88
89/* Utility macros */
90#define ZIPLIST_BYTES(zl) (*((uint32_t*)(zl)))
91#define ZIPLIST_TAIL_OFFSET(zl) (*((uint32_t*)((zl)+sizeof(uint32_t))))
92#define ZIPLIST_LENGTH(zl) (*((uint16_t*)((zl)+sizeof(uint32_t)*2)))
93#define ZIPLIST_HEADER_SIZE (sizeof(uint32_t)*2+sizeof(uint16_t))
94#define ZIPLIST_ENTRY_HEAD(zl) ((zl)+ZIPLIST_HEADER_SIZE)
95#define ZIPLIST_ENTRY_TAIL(zl) ((zl)+ZIPLIST_TAIL_OFFSET(zl))
96#define ZIPLIST_ENTRY_END(zl) ((zl)+ZIPLIST_BYTES(zl)-1)
97
98/* We know a positive increment can only be 1 because entries can only be
99 * pushed one at a time. */
100#define ZIPLIST_INCR_LENGTH(zl,incr) { \
101 if (ZIPLIST_LENGTH(zl) < UINT16_MAX) ZIPLIST_LENGTH(zl)+=incr; }
102
103typedef struct zlentry {
104 unsigned int prevrawlensize, prevrawlen;
105 unsigned int lensize, len;
106 unsigned int headersize;
107 unsigned char encoding;
108 unsigned char *p;
109} zlentry;
110
111/* Return the encoding pointer to by 'p'. */
112static unsigned int zipEntryEncoding(unsigned char *p) {
113 /* String encoding: 2 MSBs */
114 unsigned char b = p[0] & 0xc0;
115 if (b < 0xc0) {
116 return b;
117 } else {
118 /* Integer encoding: 4 MSBs */
119 return p[0] & 0xf0;
120 }
121 assert(NULL);
122 return 0;
123}
124
125/* Return bytes needed to store integer encoded by 'encoding' */
126static unsigned int zipIntSize(unsigned char encoding) {
127 switch(encoding) {
128 case ZIP_INT_16B: return sizeof(int16_t);
129 case ZIP_INT_32B: return sizeof(int32_t);
130 case ZIP_INT_64B: return sizeof(int64_t);
131 }
132 assert(NULL);
133 return 0;
134}
135
136/* Decode the encoded length pointed by 'p'. If a pointer to 'lensize' is
137 * provided, it is set to the number of bytes required to encode the length. */
138static unsigned int zipDecodeLength(unsigned char *p, unsigned int *lensize) {
139 unsigned char encoding = zipEntryEncoding(p);
140 unsigned int len = 0;
141
142 if (ZIP_IS_STR(encoding)) {
143 switch(encoding) {
144 case ZIP_STR_06B:
145 len = p[0] & 0x3f;
146 if (lensize) *lensize = 1;
147 break;
148 case ZIP_STR_14B:
149 len = ((p[0] & 0x3f) << 8) | p[1];
150 if (lensize) *lensize = 2;
151 break;
152 case ZIP_STR_32B:
153 len = (p[1] << 24) | (p[2] << 16) | (p[3] << 8) | p[4];
154 if (lensize) *lensize = 5;
155 break;
156 default:
157 assert(NULL);
158 }
159 } else {
160 len = zipIntSize(encoding);
161 if (lensize) *lensize = 1;
162 }
163 return len;
164}
165
166/* Encode the length 'l' writing it in 'p'. If p is NULL it just returns
167 * the amount of bytes required to encode such a length. */
168static unsigned int zipEncodeLength(unsigned char *p, unsigned char encoding, unsigned int rawlen) {
169 unsigned char len = 1, buf[5];
170
171 if (ZIP_IS_STR(encoding)) {
172 /* Although encoding is given it may not be set for strings,
173 * so we determine it here using the raw length. */
174 if (rawlen <= 0x3f) {
175 if (!p) return len;
176 buf[0] = ZIP_STR_06B | rawlen;
177 } else if (rawlen <= 0x3fff) {
178 len += 1;
179 if (!p) return len;
180 buf[0] = ZIP_STR_14B | ((rawlen >> 8) & 0x3f);
181 buf[1] = rawlen & 0xff;
182 } else {
183 len += 4;
184 if (!p) return len;
185 buf[0] = ZIP_STR_32B;
186 buf[1] = (rawlen >> 24) & 0xff;
187 buf[2] = (rawlen >> 16) & 0xff;
188 buf[3] = (rawlen >> 8) & 0xff;
189 buf[4] = rawlen & 0xff;
190 }
191 } else {
192 /* Implies integer encoding, so length is always 1. */
193 if (!p) return len;
194 buf[0] = encoding;
195 }
196
197 /* Store this length at p */
198 memcpy(p,buf,len);
199 return len;
200}
201
202/* Decode the length of the previous element stored at "p". */
203static unsigned int zipPrevDecodeLength(unsigned char *p, unsigned int *lensize) {
204 unsigned int len = *p;
205 if (len < ZIP_BIGLEN) {
206 if (lensize) *lensize = 1;
207 } else {
208 if (lensize) *lensize = 1+sizeof(len);
209 memcpy(&len,p+1,sizeof(len));
210 memrev32ifbe(&len);
211 }
212 return len;
213}
214
215/* Encode the length of the previous entry and write it to "p". Return the
216 * number of bytes needed to encode this length if "p" is NULL. */
217static unsigned int zipPrevEncodeLength(unsigned char *p, unsigned int len) {
218 if (p == NULL) {
219 return (len < ZIP_BIGLEN) ? 1 : sizeof(len)+1;
220 } else {
221 if (len < ZIP_BIGLEN) {
222 p[0] = len;
223 return 1;
224 } else {
225 p[0] = ZIP_BIGLEN;
226 memcpy(p+1,&len,sizeof(len));
227 memrev32ifbe(p+1);
228 return 1+sizeof(len);
229 }
230 }
231}
232
233/* Encode the length of the previous entry and write it to "p". This only
234 * uses the larger encoding (required in __ziplistCascadeUpdate). */
235static void zipPrevEncodeLengthForceLarge(unsigned char *p, unsigned int len) {
236 if (p == NULL) return;
237 p[0] = ZIP_BIGLEN;
238 memcpy(p+1,&len,sizeof(len));
239 memrev32ifbe(p+1);
240}
241
242/* Return the difference in number of bytes needed to store the new length
243 * "len" on the entry pointed to by "p". */
244static int zipPrevLenByteDiff(unsigned char *p, unsigned int len) {
245 unsigned int prevlensize;
246 zipPrevDecodeLength(p,&prevlensize);
247 return zipPrevEncodeLength(NULL,len)-prevlensize;
248}
249
250/* Check if string pointed to by 'entry' can be encoded as an integer.
251 * Stores the integer value in 'v' and its encoding in 'encoding'. */
252static int zipTryEncoding(unsigned char *entry, unsigned int entrylen, long long *v, unsigned char *encoding) {
253 long long value;
254
255 if (entrylen >= 32 || entrylen == 0) return 0;
256 if (string2ll((char*)entry,entrylen,&value)) {
257 /* Great, the string can be encoded. Check what's the smallest
258 * of our encoding types that can hold this value. */
259 if (value >= INT16_MIN && value <= INT16_MAX) {
260 *encoding = ZIP_INT_16B;
261 } else if (value >= INT32_MIN && value <= INT32_MAX) {
262 *encoding = ZIP_INT_32B;
263 } else {
264 *encoding = ZIP_INT_64B;
265 }
266 *v = value;
267 return 1;
268 }
269 return 0;
270}
271
272/* Store integer 'value' at 'p', encoded as 'encoding' */
273static void zipSaveInteger(unsigned char *p, int64_t value, unsigned char encoding) {
274 int16_t i16;
275 int32_t i32;
276 int64_t i64;
277 if (encoding == ZIP_INT_16B) {
278 i16 = value;
279 memcpy(p,&i16,sizeof(i16));
280 memrev16ifbe(p);
281 } else if (encoding == ZIP_INT_32B) {
282 i32 = value;
283 memcpy(p,&i32,sizeof(i32));
284 memrev32ifbe(p);
285 } else if (encoding == ZIP_INT_64B) {
286 i64 = value;
287 memcpy(p,&i64,sizeof(i64));
288 memrev64ifbe(p);
289 } else {
290 assert(NULL);
291 }
292}
293
294/* Read integer encoded as 'encoding' from 'p' */
295static int64_t zipLoadInteger(unsigned char *p, unsigned char encoding) {
296 int16_t i16;
297 int32_t i32;
298 int64_t i64, ret = 0;
299 if (encoding == ZIP_INT_16B) {
300 memcpy(&i16,p,sizeof(i16));
301 memrev16ifbe(&i16);
302 ret = i16;
303 } else if (encoding == ZIP_INT_32B) {
304 memcpy(&i32,p,sizeof(i32));
305 memrev16ifbe(&i32);
306 ret = i32;
307 } else if (encoding == ZIP_INT_64B) {
308 memcpy(&i64,p,sizeof(i64));
309 memrev16ifbe(&i64);
310 ret = i64;
311 } else {
312 assert(NULL);
313 }
314 return ret;
315}
316
317/* Return a struct with all information about an entry. */
318static zlentry zipEntry(unsigned char *p) {
319 zlentry e;
320 e.prevrawlen = zipPrevDecodeLength(p,&e.prevrawlensize);
321 e.len = zipDecodeLength(p+e.prevrawlensize,&e.lensize);
322 e.headersize = e.prevrawlensize+e.lensize;
323 e.encoding = zipEntryEncoding(p+e.prevrawlensize);
324 e.p = p;
325 return e;
326}
327
328/* Return the total number of bytes used by the entry at "p". */
329static unsigned int zipRawEntryLength(unsigned char *p) {
330 zlentry e = zipEntry(p);
331 return e.headersize + e.len;
332}
333
334/* Create a new empty ziplist. */
335unsigned char *ziplistNew(void) {
336 unsigned int bytes = ZIPLIST_HEADER_SIZE+1;
337 unsigned char *zl = zmalloc(bytes);
338 ZIPLIST_BYTES(zl) = bytes;
339 ZIPLIST_TAIL_OFFSET(zl) = ZIPLIST_HEADER_SIZE;
340 ZIPLIST_LENGTH(zl) = 0;
341 zl[bytes-1] = ZIP_END;
342 return zl;
343}
344
345/* Resize the ziplist. */
346static unsigned char *ziplistResize(unsigned char *zl, unsigned int len) {
347 zl = zrealloc(zl,len);
348 ZIPLIST_BYTES(zl) = len;
349 zl[len-1] = ZIP_END;
350 return zl;
351}
352
353/* When an entry is inserted, we need to set the prevlen field of the next
354 * entry to equal the length of the inserted entry. It can occur that this
355 * length cannot be encoded in 1 byte and the next entry needs to be grow
356 * a bit larger to hold the 5-byte encoded prevlen. This can be done for free,
357 * because this only happens when an entry is already being inserted (which
358 * causes a realloc and memmove). However, encoding the prevlen may require
359 * that this entry is grown as well. This effect may cascade throughout
360 * the ziplist when there are consecutive entries with a size close to
361 * ZIP_BIGLEN, so we need to check that the prevlen can be encoded in every
362 * consecutive entry.
363 *
364 * Note that this effect can also happen in reverse, where the bytes required
365 * to encode the prevlen field can shrink. This effect is deliberately ignored,
366 * because it can cause a "flapping" effect where a chain prevlen fields is
367 * first grown and then shrunk again after consecutive inserts. Rather, the
368 * field is allowed to stay larger than necessary, because a large prevlen
369 * field implies the ziplist is holding large entries anyway.
370 *
371 * The pointer "p" points to the first entry that does NOT need to be
372 * updated, i.e. consecutive fields MAY need an update. */
373static unsigned char *__ziplistCascadeUpdate(unsigned char *zl, unsigned char *p) {
374 size_t curlen = ZIPLIST_BYTES(zl), rawlen, rawlensize;
375 size_t offset, noffset, extra;
376 unsigned char *np;
377 zlentry cur, next;
378
379 while (p[0] != ZIP_END) {
380 cur = zipEntry(p);
381 rawlen = cur.headersize + cur.len;
382 rawlensize = zipPrevEncodeLength(NULL,rawlen);
383
384 /* Abort if there is no next entry. */
385 if (p[rawlen] == ZIP_END) break;
386 next = zipEntry(p+rawlen);
387
388 /* Abort when "prevlen" has not changed. */
389 if (next.prevrawlen == rawlen) break;
390
391 if (next.prevrawlensize < rawlensize) {
392 /* The "prevlen" field of "next" needs more bytes to hold
393 * the raw length of "cur". */
394 offset = p-zl;
395 extra = rawlensize-next.prevrawlensize;
396 zl = ziplistResize(zl,curlen+extra);
397 p = zl+offset;
398
399 /* Current pointer and offset for next element. */
400 np = p+rawlen;
401 noffset = np-zl;
402
403 /* Update tail offset when next element is not the tail element. */
404 if ((zl+ZIPLIST_TAIL_OFFSET(zl)) != np)
405 ZIPLIST_TAIL_OFFSET(zl) += extra;
406
407 /* Move the tail to the back. */
408 memmove(np+rawlensize,
409 np+next.prevrawlensize,
410 curlen-noffset-next.prevrawlensize-1);
411 zipPrevEncodeLength(np,rawlen);
412
413 /* Advance the cursor */
414 p += rawlen;
415 curlen += extra;
416 } else {
417 if (next.prevrawlensize > rawlensize) {
418 /* This would result in shrinking, which we want to avoid.
419 * So, set "rawlen" in the available bytes. */
420 zipPrevEncodeLengthForceLarge(p+rawlen,rawlen);
421 } else {
422 zipPrevEncodeLength(p+rawlen,rawlen);
423 }
424
425 /* Stop here, as the raw length of "next" has not changed. */
426 break;
427 }
428 }
429 return zl;
430}
431
432/* Delete "num" entries, starting at "p". Returns pointer to the ziplist. */
433static unsigned char *__ziplistDelete(unsigned char *zl, unsigned char *p, unsigned int num) {
434 unsigned int i, totlen, deleted = 0;
435 size_t offset;
436 int nextdiff = 0;
437 zlentry first, tail;
438
439 first = zipEntry(p);
440 for (i = 0; p[0] != ZIP_END && i < num; i++) {
441 p += zipRawEntryLength(p);
442 deleted++;
443 }
444
445 totlen = p-first.p;
446 if (totlen > 0) {
447 if (p[0] != ZIP_END) {
448 /* Tricky: storing the prevlen in this entry might reduce or
449 * increase the number of bytes needed, compared to the current
450 * prevlen. Note that we can always store this length because
451 * it was previously stored by an entry that is being deleted. */
452 nextdiff = zipPrevLenByteDiff(p,first.prevrawlen);
453 zipPrevEncodeLength(p-nextdiff,first.prevrawlen);
454
455 /* Update offset for tail */
456 ZIPLIST_TAIL_OFFSET(zl) -= totlen;
457
458 /* When the tail contains more than one entry, we need to take
459 * "nextdiff" in account as well. Otherwise, a change in the
460 * size of prevlen doesn't have an effect on the *tail* offset. */
461 tail = zipEntry(p);
462 if (p[tail.headersize+tail.len] != ZIP_END)
463 ZIPLIST_TAIL_OFFSET(zl) += nextdiff;
464
465 /* Move tail to the front of the ziplist */
466 memmove(first.p,p-nextdiff,ZIPLIST_BYTES(zl)-(p-zl)-1+nextdiff);
467 } else {
468 /* The entire tail was deleted. No need to move memory. */
469 ZIPLIST_TAIL_OFFSET(zl) = (first.p-zl)-first.prevrawlen;
470 }
471
472 /* Resize and update length */
473 offset = first.p-zl;
474 zl = ziplistResize(zl, ZIPLIST_BYTES(zl)-totlen+nextdiff);
475 ZIPLIST_INCR_LENGTH(zl,-deleted);
476 p = zl+offset;
477
478 /* When nextdiff != 0, the raw length of the next entry has changed, so
479 * we need to cascade the update throughout the ziplist */
480 if (nextdiff != 0)
481 zl = __ziplistCascadeUpdate(zl,p);
482 }
483 return zl;
484}
485
486/* Insert item at "p". */
487static unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
488 size_t curlen = ZIPLIST_BYTES(zl), reqlen, prevlen = 0;
489 size_t offset;
490 int nextdiff = 0;
491 unsigned char encoding = 0;
492 long long value = 123456789; /* initialized to avoid warning. Using a value
493 that is easy to see if for some reason
494 we use it uninitialized. */
495 zlentry entry, tail;
496
497 /* Find out prevlen for the entry that is inserted. */
498 if (p[0] != ZIP_END) {
499 entry = zipEntry(p);
500 prevlen = entry.prevrawlen;
501 } else {
502 unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl);
503 if (ptail[0] != ZIP_END) {
504 prevlen = zipRawEntryLength(ptail);
505 }
506 }
507
508 /* See if the entry can be encoded */
509 if (zipTryEncoding(s,slen,&value,&encoding)) {
510 /* 'encoding' is set to the appropriate integer encoding */
511 reqlen = zipIntSize(encoding);
512 } else {
513 /* 'encoding' is untouched, however zipEncodeLength will use the
514 * string length to figure out how to encode it. */
515 reqlen = slen;
516 }
517 /* We need space for both the length of the previous entry and
518 * the length of the payload. */
519 reqlen += zipPrevEncodeLength(NULL,prevlen);
520 reqlen += zipEncodeLength(NULL,encoding,slen);
521
522 /* When the insert position is not equal to the tail, we need to
523 * make sure that the next entry can hold this entry's length in
524 * its prevlen field. */
525 nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0;
526
527 /* Store offset because a realloc may change the address of zl. */
528 offset = p-zl;
529 zl = ziplistResize(zl,curlen+reqlen+nextdiff);
530 p = zl+offset;
531
532 /* Apply memory move when necessary and update tail offset. */
533 if (p[0] != ZIP_END) {
534 /* Subtract one because of the ZIP_END bytes */
535 memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff);
536
537 /* Encode this entry's raw length in the next entry. */
538 zipPrevEncodeLength(p+reqlen,reqlen);
539
540 /* Update offset for tail */
541 ZIPLIST_TAIL_OFFSET(zl) += reqlen;
542
543 /* When the tail contains more than one entry, we need to take
544 * "nextdiff" in account as well. Otherwise, a change in the
545 * size of prevlen doesn't have an effect on the *tail* offset. */
546 tail = zipEntry(p+reqlen);
547 if (p[reqlen+tail.headersize+tail.len] != ZIP_END)
548 ZIPLIST_TAIL_OFFSET(zl) += nextdiff;
549 } else {
550 /* This element will be the new tail. */
551 ZIPLIST_TAIL_OFFSET(zl) = p-zl;
552 }
553
554 /* When nextdiff != 0, the raw length of the next entry has changed, so
555 * we need to cascade the update throughout the ziplist */
556 if (nextdiff != 0) {
557 offset = p-zl;
558 zl = __ziplistCascadeUpdate(zl,p+reqlen);
559 p = zl+offset;
560 }
561
562 /* Write the entry */
563 p += zipPrevEncodeLength(p,prevlen);
564 p += zipEncodeLength(p,encoding,slen);
565 if (ZIP_IS_STR(encoding)) {
566 memcpy(p,s,slen);
567 } else {
568 zipSaveInteger(p,value,encoding);
569 }
570 ZIPLIST_INCR_LENGTH(zl,1);
571 return zl;
572}
573
574unsigned char *ziplistPush(unsigned char *zl, unsigned char *s, unsigned int slen, int where) {
575 unsigned char *p;
576 p = (where == ZIPLIST_HEAD) ? ZIPLIST_ENTRY_HEAD(zl) : ZIPLIST_ENTRY_END(zl);
577 return __ziplistInsert(zl,p,s,slen);
578}
579
580/* Returns an offset to use for iterating with ziplistNext. When the given
581 * index is negative, the list is traversed back to front. When the list
582 * doesn't contain an element at the provided index, NULL is returned. */
583unsigned char *ziplistIndex(unsigned char *zl, int index) {
584 unsigned char *p;
585 zlentry entry;
586 if (index < 0) {
587 index = (-index)-1;
588 p = ZIPLIST_ENTRY_TAIL(zl);
589 if (p[0] != ZIP_END) {
590 entry = zipEntry(p);
591 while (entry.prevrawlen > 0 && index--) {
592 p -= entry.prevrawlen;
593 entry = zipEntry(p);
594 }
595 }
596 } else {
597 p = ZIPLIST_ENTRY_HEAD(zl);
598 while (p[0] != ZIP_END && index--) {
599 p += zipRawEntryLength(p);
600 }
601 }
602 return (p[0] == ZIP_END || index > 0) ? NULL : p;
603}
604
605/* Return pointer to next entry in ziplist.
606 *
607 * zl is the pointer to the ziplist
608 * p is the pointer to the current element
609 *
610 * The element after 'p' is returned, otherwise NULL if we are at the end. */
611unsigned char *ziplistNext(unsigned char *zl, unsigned char *p) {
612 ((void) zl);
613
614 /* "p" could be equal to ZIP_END, caused by ziplistDelete,
615 * and we should return NULL. Otherwise, we should return NULL
616 * when the *next* element is ZIP_END (there is no next entry). */
617 if (p[0] == ZIP_END) {
618 return NULL;
619 } else {
620 p = p+zipRawEntryLength(p);
621 return (p[0] == ZIP_END) ? NULL : p;
622 }
623}
624
625/* Return pointer to previous entry in ziplist. */
626unsigned char *ziplistPrev(unsigned char *zl, unsigned char *p) {
627 zlentry entry;
628
629 /* Iterating backwards from ZIP_END should return the tail. When "p" is
630 * equal to the first element of the list, we're already at the head,
631 * and should return NULL. */
632 if (p[0] == ZIP_END) {
633 p = ZIPLIST_ENTRY_TAIL(zl);
634 return (p[0] == ZIP_END) ? NULL : p;
635 } else if (p == ZIPLIST_ENTRY_HEAD(zl)) {
636 return NULL;
637 } else {
638 entry = zipEntry(p);
639 assert(entry.prevrawlen > 0);
640 return p-entry.prevrawlen;
641 }
642}
643
644/* Get entry pointer to by 'p' and store in either 'e' or 'v' depending
645 * on the encoding of the entry. 'e' is always set to NULL to be able
646 * to find out whether the string pointer or the integer value was set.
647 * Return 0 if 'p' points to the end of the zipmap, 1 otherwise. */
648unsigned int ziplistGet(unsigned char *p, unsigned char **sstr, unsigned int *slen, long long *sval) {
649 zlentry entry;
650 if (p == NULL || p[0] == ZIP_END) return 0;
651 if (sstr) *sstr = NULL;
652
653 entry = zipEntry(p);
654 if (ZIP_IS_STR(entry.encoding)) {
655 if (sstr) {
656 *slen = entry.len;
657 *sstr = p+entry.headersize;
658 }
659 } else {
660 if (sval) {
661 *sval = zipLoadInteger(p+entry.headersize,entry.encoding);
662 }
663 }
664 return 1;
665}
666
667/* Insert an entry at "p". */
668unsigned char *ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
669 return __ziplistInsert(zl,p,s,slen);
670}
671
672/* Delete a single entry from the ziplist, pointed to by *p.
673 * Also update *p in place, to be able to iterate over the
674 * ziplist, while deleting entries. */
675unsigned char *ziplistDelete(unsigned char *zl, unsigned char **p) {
676 size_t offset = *p-zl;
677 zl = __ziplistDelete(zl,*p,1);
678
679 /* Store pointer to current element in p, because ziplistDelete will
680 * do a realloc which might result in a different "zl"-pointer.
681 * When the delete direction is back to front, we might delete the last
682 * entry and end up with "p" pointing to ZIP_END, so check this. */
683 *p = zl+offset;
684 return zl;
685}
686
687/* Delete a range of entries from the ziplist. */
688unsigned char *ziplistDeleteRange(unsigned char *zl, unsigned int index, unsigned int num) {
689 unsigned char *p = ziplistIndex(zl,index);
690 return (p == NULL) ? zl : __ziplistDelete(zl,p,num);
691}
692
693/* Compare entry pointer to by 'p' with 'entry'. Return 1 if equal. */
694unsigned int ziplistCompare(unsigned char *p, unsigned char *sstr, unsigned int slen) {
695 zlentry entry;
696 unsigned char sencoding;
697 long long zval, sval;
698 if (p[0] == ZIP_END) return 0;
699
700 entry = zipEntry(p);
701 if (ZIP_IS_STR(entry.encoding)) {
702 /* Raw compare */
703 if (entry.len == slen) {
704 return memcmp(p+entry.headersize,sstr,slen) == 0;
705 } else {
706 return 0;
707 }
708 } else {
709 /* Try to compare encoded values */
710 if (zipTryEncoding(sstr,slen,&sval,&sencoding)) {
711 if (entry.encoding == sencoding) {
712 zval = zipLoadInteger(p+entry.headersize,entry.encoding);
713 return zval == sval;
714 }
715 }
716 }
717 return 0;
718}
719
720/* Return length of ziplist. */
721unsigned int ziplistLen(unsigned char *zl) {
722 unsigned int len = 0;
723 if (ZIPLIST_LENGTH(zl) < UINT16_MAX) {
724 len = ZIPLIST_LENGTH(zl);
725 } else {
726 unsigned char *p = zl+ZIPLIST_HEADER_SIZE;
727 while (*p != ZIP_END) {
728 p += zipRawEntryLength(p);
729 len++;
730 }
731
732 /* Re-store length if small enough */
733 if (len < UINT16_MAX) ZIPLIST_LENGTH(zl) = len;
734 }
735 return len;
736}
737
738/* Return ziplist blob size in bytes. */
739size_t ziplistBlobLen(unsigned char *zl) {
740 return ZIPLIST_BYTES(zl);
741}
742
743void ziplistRepr(unsigned char *zl) {
744 unsigned char *p;
745 int index = 0;
746 zlentry entry;
747
748 printf(
749 "{total bytes %d} "
750 "{length %u}\n"
751 "{tail offset %u}\n",
752 ZIPLIST_BYTES(zl),
753 ZIPLIST_LENGTH(zl),
754 ZIPLIST_TAIL_OFFSET(zl));
755 p = ZIPLIST_ENTRY_HEAD(zl);
756 while(*p != ZIP_END) {
757 entry = zipEntry(p);
758 printf(
759 "{"
760 "addr 0x%08lx, "
761 "index %2d, "
762 "offset %5ld, "
763 "rl: %5u, "
764 "hs %2u, "
765 "pl: %5u, "
766 "pls: %2u, "
767 "payload %5u"
768 "} ",
769 (long unsigned)p,
770 index,
771 (unsigned long) (p-zl),
772 entry.headersize+entry.len,
773 entry.headersize,
774 entry.prevrawlen,
775 entry.prevrawlensize,
776 entry.len);
777 p += entry.headersize;
778 if (ZIP_IS_STR(entry.encoding)) {
779 if (entry.len > 40) {
780 if (fwrite(p,40,1,stdout) == 0) perror("fwrite");
781 printf("...");
782 } else {
783 if (entry.len &&
784 fwrite(p,entry.len,1,stdout) == 0) perror("fwrite");
785 }
786 } else {
787 printf("%lld", (long long) zipLoadInteger(p,entry.encoding));
788 }
789 printf("\n");
790 p += entry.len;
791 index++;
792 }
793 printf("{end}\n\n");
794}
795
796#ifdef ZIPLIST_TEST_MAIN
797#include <sys/time.h>
798#include "adlist.h"
799#include "sds.h"
800
801#define debug(f, ...) { if (DEBUG) printf(f, __VA_ARGS__); }
802
803unsigned char *createList() {
804 unsigned char *zl = ziplistNew();
805 zl = ziplistPush(zl, (unsigned char*)"foo", 3, ZIPLIST_TAIL);
806 zl = ziplistPush(zl, (unsigned char*)"quux", 4, ZIPLIST_TAIL);
807 zl = ziplistPush(zl, (unsigned char*)"hello", 5, ZIPLIST_HEAD);
808 zl = ziplistPush(zl, (unsigned char*)"1024", 4, ZIPLIST_TAIL);
809 return zl;
810}
811
812unsigned char *createIntList() {
813 unsigned char *zl = ziplistNew();
814 char buf[32];
815
816 sprintf(buf, "100");
817 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
818 sprintf(buf, "128000");
819 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
820 sprintf(buf, "-100");
821 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD);
822 sprintf(buf, "4294967296");
823 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD);
824 sprintf(buf, "non integer");
825 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
826 sprintf(buf, "much much longer non integer");
827 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
828 return zl;
829}
830
831long long usec(void) {
832 struct timeval tv;
833 gettimeofday(&tv,NULL);
834 return (((long long)tv.tv_sec)*1000000)+tv.tv_usec;
835}
836
837void stress(int pos, int num, int maxsize, int dnum) {
838 int i,j,k;
839 unsigned char *zl;
840 char posstr[2][5] = { "HEAD", "TAIL" };
841 long long start;
842 for (i = 0; i < maxsize; i+=dnum) {
843 zl = ziplistNew();
844 for (j = 0; j < i; j++) {
845 zl = ziplistPush(zl,(unsigned char*)"quux",4,ZIPLIST_TAIL);
846 }
847
848 /* Do num times a push+pop from pos */
849 start = usec();
850 for (k = 0; k < num; k++) {
851 zl = ziplistPush(zl,(unsigned char*)"quux",4,pos);
852 zl = ziplistDeleteRange(zl,0,1);
853 }
854 printf("List size: %8d, bytes: %8d, %dx push+pop (%s): %6lld usec\n",
855 i,ZIPLIST_BYTES(zl),num,posstr[pos],usec()-start);
856 zfree(zl);
857 }
858}
859
860void pop(unsigned char *zl, int where) {
861 unsigned char *p, *vstr;
862 unsigned int vlen;
863 long long vlong;
864
865 p = ziplistIndex(zl,where == ZIPLIST_HEAD ? 0 : -1);
866 if (ziplistGet(p,&vstr,&vlen,&vlong)) {
867 if (where == ZIPLIST_HEAD)
868 printf("Pop head: ");
869 else
870 printf("Pop tail: ");
871
872 if (vstr)
873 if (vlen && fwrite(vstr,vlen,1,stdout) == 0) perror("fwrite");
874 else
875 printf("%lld", vlong);
876
877 printf("\n");
878 ziplistDeleteRange(zl,-1,1);
879 } else {
880 printf("ERROR: Could not pop\n");
881 exit(1);
882 }
883}
884
885int randstring(char *target, unsigned int min, unsigned int max) {
886 int p, len = min+rand()%(max-min+1);
887 int minval, maxval;
888 switch(rand() % 3) {
889 case 0:
890 minval = 0;
891 maxval = 255;
892 break;
893 case 1:
894 minval = 48;
895 maxval = 122;
896 break;
897 case 2:
898 minval = 48;
899 maxval = 52;
900 break;
901 default:
902 assert(NULL);
903 }
904
905 while(p < len)
906 target[p++] = minval+rand()%(maxval-minval+1);
907 return len;
908}
909
910int main(int argc, char **argv) {
911 unsigned char *zl, *p;
912 unsigned char *entry;
913 unsigned int elen;
914 long long value;
915
916 /* If an argument is given, use it as the random seed. */
917 if (argc == 2)
918 srand(atoi(argv[1]));
919
920 zl = createIntList();
921 ziplistRepr(zl);
922
923 zl = createList();
924 ziplistRepr(zl);
925
926 pop(zl,ZIPLIST_TAIL);
927 ziplistRepr(zl);
928
929 pop(zl,ZIPLIST_HEAD);
930 ziplistRepr(zl);
931
932 pop(zl,ZIPLIST_TAIL);
933 ziplistRepr(zl);
934
935 pop(zl,ZIPLIST_TAIL);
936 ziplistRepr(zl);
937
938 printf("Get element at index 3:\n");
939 {
940 zl = createList();
941 p = ziplistIndex(zl, 3);
942 if (!ziplistGet(p, &entry, &elen, &value)) {
943 printf("ERROR: Could not access index 3\n");
944 return 1;
945 }
946 if (entry) {
947 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
948 printf("\n");
949 } else {
950 printf("%lld\n", value);
951 }
952 printf("\n");
953 }
954
955 printf("Get element at index 4 (out of range):\n");
956 {
957 zl = createList();
958 p = ziplistIndex(zl, 4);
959 if (p == NULL) {
960 printf("No entry\n");
961 } else {
962 printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", p-zl);
963 return 1;
964 }
965 printf("\n");
966 }
967
968 printf("Get element at index -1 (last element):\n");
969 {
970 zl = createList();
971 p = ziplistIndex(zl, -1);
972 if (!ziplistGet(p, &entry, &elen, &value)) {
973 printf("ERROR: Could not access index -1\n");
974 return 1;
975 }
976 if (entry) {
977 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
978 printf("\n");
979 } else {
980 printf("%lld\n", value);
981 }
982 printf("\n");
983 }
984
985 printf("Get element at index -4 (first element):\n");
986 {
987 zl = createList();
988 p = ziplistIndex(zl, -4);
989 if (!ziplistGet(p, &entry, &elen, &value)) {
990 printf("ERROR: Could not access index -4\n");
991 return 1;
992 }
993 if (entry) {
994 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
995 printf("\n");
996 } else {
997 printf("%lld\n", value);
998 }
999 printf("\n");
1000 }
1001
1002 printf("Get element at index -5 (reverse out of range):\n");
1003 {
1004 zl = createList();
1005 p = ziplistIndex(zl, -5);
1006 if (p == NULL) {
1007 printf("No entry\n");
1008 } else {
1009 printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", p-zl);
1010 return 1;
1011 }
1012 printf("\n");
1013 }
1014
1015 printf("Iterate list from 0 to end:\n");
1016 {
1017 zl = createList();
1018 p = ziplistIndex(zl, 0);
1019 while (ziplistGet(p, &entry, &elen, &value)) {
1020 printf("Entry: ");
1021 if (entry) {
1022 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1023 } else {
1024 printf("%lld", value);
1025 }
1026 p = ziplistNext(zl,p);
1027 printf("\n");
1028 }
1029 printf("\n");
1030 }
1031
1032 printf("Iterate list from 1 to end:\n");
1033 {
1034 zl = createList();
1035 p = ziplistIndex(zl, 1);
1036 while (ziplistGet(p, &entry, &elen, &value)) {
1037 printf("Entry: ");
1038 if (entry) {
1039 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1040 } else {
1041 printf("%lld", value);
1042 }
1043 p = ziplistNext(zl,p);
1044 printf("\n");
1045 }
1046 printf("\n");
1047 }
1048
1049 printf("Iterate list from 2 to end:\n");
1050 {
1051 zl = createList();
1052 p = ziplistIndex(zl, 2);
1053 while (ziplistGet(p, &entry, &elen, &value)) {
1054 printf("Entry: ");
1055 if (entry) {
1056 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1057 } else {
1058 printf("%lld", value);
1059 }
1060 p = ziplistNext(zl,p);
1061 printf("\n");
1062 }
1063 printf("\n");
1064 }
1065
1066 printf("Iterate starting out of range:\n");
1067 {
1068 zl = createList();
1069 p = ziplistIndex(zl, 4);
1070 if (!ziplistGet(p, &entry, &elen, &value)) {
1071 printf("No entry\n");
1072 } else {
1073 printf("ERROR\n");
1074 }
1075 printf("\n");
1076 }
1077
1078 printf("Iterate from back to front:\n");
1079 {
1080 zl = createList();
1081 p = ziplistIndex(zl, -1);
1082 while (ziplistGet(p, &entry, &elen, &value)) {
1083 printf("Entry: ");
1084 if (entry) {
1085 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1086 } else {
1087 printf("%lld", value);
1088 }
1089 p = ziplistPrev(zl,p);
1090 printf("\n");
1091 }
1092 printf("\n");
1093 }
1094
1095 printf("Iterate from back to front, deleting all items:\n");
1096 {
1097 zl = createList();
1098 p = ziplistIndex(zl, -1);
1099 while (ziplistGet(p, &entry, &elen, &value)) {
1100 printf("Entry: ");
1101 if (entry) {
1102 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1103 } else {
1104 printf("%lld", value);
1105 }
1106 zl = ziplistDelete(zl,&p);
1107 p = ziplistPrev(zl,p);
1108 printf("\n");
1109 }
1110 printf("\n");
1111 }
1112
1113 printf("Delete inclusive range 0,0:\n");
1114 {
1115 zl = createList();
1116 zl = ziplistDeleteRange(zl, 0, 1);
1117 ziplistRepr(zl);
1118 }
1119
1120 printf("Delete inclusive range 0,1:\n");
1121 {
1122 zl = createList();
1123 zl = ziplistDeleteRange(zl, 0, 2);
1124 ziplistRepr(zl);
1125 }
1126
1127 printf("Delete inclusive range 1,2:\n");
1128 {
1129 zl = createList();
1130 zl = ziplistDeleteRange(zl, 1, 2);
1131 ziplistRepr(zl);
1132 }
1133
1134 printf("Delete with start index out of range:\n");
1135 {
1136 zl = createList();
1137 zl = ziplistDeleteRange(zl, 5, 1);
1138 ziplistRepr(zl);
1139 }
1140
1141 printf("Delete with num overflow:\n");
1142 {
1143 zl = createList();
1144 zl = ziplistDeleteRange(zl, 1, 5);
1145 ziplistRepr(zl);
1146 }
1147
1148 printf("Delete foo while iterating:\n");
1149 {
1150 zl = createList();
1151 p = ziplistIndex(zl,0);
1152 while (ziplistGet(p,&entry,&elen,&value)) {
1153 if (entry && strncmp("foo",(char*)entry,elen) == 0) {
1154 printf("Delete foo\n");
1155 zl = ziplistDelete(zl,&p);
1156 } else {
1157 printf("Entry: ");
1158 if (entry) {
1159 if (elen && fwrite(entry,elen,1,stdout) == 0)
1160 perror("fwrite");
1161 } else {
1162 printf("%lld",value);
1163 }
1164 p = ziplistNext(zl,p);
1165 printf("\n");
1166 }
1167 }
1168 printf("\n");
1169 ziplistRepr(zl);
1170 }
1171
1172 printf("Regression test for >255 byte strings:\n");
1173 {
1174 char v1[257],v2[257];
1175 memset(v1,'x',256);
1176 memset(v2,'y',256);
1177 zl = ziplistNew();
1178 zl = ziplistPush(zl,(unsigned char*)v1,strlen(v1),ZIPLIST_TAIL);
1179 zl = ziplistPush(zl,(unsigned char*)v2,strlen(v2),ZIPLIST_TAIL);
1180
1181 /* Pop values again and compare their value. */
1182 p = ziplistIndex(zl,0);
1183 assert(ziplistGet(p,&entry,&elen,&value));
1184 assert(strncmp(v1,(char*)entry,elen) == 0);
1185 p = ziplistIndex(zl,1);
1186 assert(ziplistGet(p,&entry,&elen,&value));
1187 assert(strncmp(v2,(char*)entry,elen) == 0);
1188 printf("SUCCESS\n\n");
1189 }
1190
1191 printf("Create long list and check indices:\n");
1192 {
1193 zl = ziplistNew();
1194 char buf[32];
1195 int i,len;
1196 for (i = 0; i < 1000; i++) {
1197 len = sprintf(buf,"%d",i);
1198 zl = ziplistPush(zl,(unsigned char*)buf,len,ZIPLIST_TAIL);
1199 }
1200 for (i = 0; i < 1000; i++) {
1201 p = ziplistIndex(zl,i);
1202 assert(ziplistGet(p,NULL,NULL,&value));
1203 assert(i == value);
1204
1205 p = ziplistIndex(zl,-i-1);
1206 assert(ziplistGet(p,NULL,NULL,&value));
1207 assert(999-i == value);
1208 }
1209 printf("SUCCESS\n\n");
1210 }
1211
1212 printf("Compare strings with ziplist entries:\n");
1213 {
1214 zl = createList();
1215 p = ziplistIndex(zl,0);
1216 if (!ziplistCompare(p,(unsigned char*)"hello",5)) {
1217 printf("ERROR: not \"hello\"\n");
1218 return 1;
1219 }
1220 if (ziplistCompare(p,(unsigned char*)"hella",5)) {
1221 printf("ERROR: \"hella\"\n");
1222 return 1;
1223 }
1224
1225 p = ziplistIndex(zl,3);
1226 if (!ziplistCompare(p,(unsigned char*)"1024",4)) {
1227 printf("ERROR: not \"1024\"\n");
1228 return 1;
1229 }
1230 if (ziplistCompare(p,(unsigned char*)"1025",4)) {
1231 printf("ERROR: \"1025\"\n");
1232 return 1;
1233 }
1234 printf("SUCCESS\n\n");
1235 }
1236
1237 printf("Stress with random payloads of different encoding:\n");
1238 {
1239 int i,j,len,where;
1240 unsigned char *p;
1241 char buf[1024];
1242 int buflen;
1243 list *ref;
1244 listNode *refnode;
1245
1246 /* Hold temp vars from ziplist */
1247 unsigned char *sstr;
1248 unsigned int slen;
1249 long long sval;
1250
1251 for (i = 0; i < 20000; i++) {
1252 zl = ziplistNew();
1253 ref = listCreate();
1254 listSetFreeMethod(ref,sdsfree);
1255 len = rand() % 256;
1256
1257 /* Create lists */
1258 for (j = 0; j < len; j++) {
1259 where = (rand() & 1) ? ZIPLIST_HEAD : ZIPLIST_TAIL;
1260 if (rand() % 2) {
1261 buflen = randstring(buf,1,sizeof(buf)-1);
1262 } else {
1263 switch(rand() % 3) {
1264 case 0:
1265 buflen = sprintf(buf,"%lld",(0LL + rand()) >> 20);
1266 break;
1267 case 1:
1268 buflen = sprintf(buf,"%lld",(0LL + rand()));
1269 break;
1270 case 2:
1271 buflen = sprintf(buf,"%lld",(0LL + rand()) << 20);
1272 break;
1273 default:
1274 assert(NULL);
1275 }
1276 }
1277
1278 /* Add to ziplist */
1279 zl = ziplistPush(zl, (unsigned char*)buf, buflen, where);
1280
1281 /* Add to reference list */
1282 if (where == ZIPLIST_HEAD) {
1283 listAddNodeHead(ref,sdsnewlen(buf, buflen));
1284 } else if (where == ZIPLIST_TAIL) {
1285 listAddNodeTail(ref,sdsnewlen(buf, buflen));
1286 } else {
1287 assert(NULL);
1288 }
1289 }
1290
1291 assert(listLength(ref) == ziplistLen(zl));
1292 for (j = 0; j < len; j++) {
1293 /* Naive way to get elements, but similar to the stresser
1294 * executed from the Tcl test suite. */
1295 p = ziplistIndex(zl,j);
1296 refnode = listIndex(ref,j);
1297
1298 assert(ziplistGet(p,&sstr,&slen,&sval));
1299 if (sstr == NULL) {
1300 buflen = sprintf(buf,"%lld",sval);
1301 } else {
1302 buflen = slen;
1303 memcpy(buf,sstr,buflen);
1304 buf[buflen] = '\0';
1305 }
1306 assert(memcmp(buf,listNodeValue(refnode),buflen) == 0);
1307 }
1308 zfree(zl);
1309 listRelease(ref);
1310 }
1311 printf("SUCCESS\n\n");
1312 }
1313
1314 printf("Stress with variable ziplist size:\n");
1315 {
1316 stress(ZIPLIST_HEAD,100000,16384,256);
1317 stress(ZIPLIST_TAIL,100000,16384,256);
1318 }
1319
1320 return 0;
1321}
1322
1323#endif