]>
Commit | Line | Data |
---|---|---|
1 | #include "redis.h" | |
2 | ||
3 | #include <signal.h> | |
4 | ||
5 | void SlotToKeyAdd(robj *key); | |
6 | void SlotToKeyDel(robj *key); | |
7 | ||
8 | /*----------------------------------------------------------------------------- | |
9 | * C-level DB API | |
10 | *----------------------------------------------------------------------------*/ | |
11 | ||
12 | /* Important notes on lookup and disk store. | |
13 | * | |
14 | * When disk store is enabled on lookup we can have different cases. | |
15 | * | |
16 | * a) The key is in memory: | |
17 | * - If the key is not in IO_SAVEINPROG state we can access it. | |
18 | * As if it's just IO_SAVE this means we have the key in the IO queue | |
19 | * but can't be accessed by the IO thread (it requires to be | |
20 | * translated into an IO Job by the cache cron function.) | |
21 | * - If the key is in IO_SAVEINPROG we can't touch the key and have | |
22 | * to blocking wait completion of operations. | |
23 | * b) The key is not in memory: | |
24 | * - If it's marked as non existing on disk as well (negative cache) | |
25 | * we don't need to perform the disk access. | |
26 | * - if the key MAY EXIST, but is not in memory, and it is marked as IO_SAVE | |
27 | * then the key can only be a deleted one. As IO_SAVE keys are never | |
28 | * evicted (dirty state), so the only possibility is that key was deleted. | |
29 | * - if the key MAY EXIST we need to blocking load it. | |
30 | * We check that the key is not in IO_SAVEINPROG state before accessing | |
31 | * the disk object. If it is in this state, we wait. | |
32 | */ | |
33 | ||
34 | robj *lookupKey(redisDb *db, robj *key) { | |
35 | dictEntry *de = dictFind(db->dict,key->ptr); | |
36 | if (de) { | |
37 | robj *val = dictGetEntryVal(de); | |
38 | ||
39 | /* Update the access time for the aging algorithm. | |
40 | * Don't do it if we have a saving child, as this will trigger | |
41 | * a copy on write madness. */ | |
42 | if (server.bgsavechildpid == -1 && server.bgrewritechildpid == -1) | |
43 | val->lru = server.lruclock; | |
44 | server.stat_keyspace_hits++; | |
45 | return val; | |
46 | } else { | |
47 | server.stat_keyspace_misses++; | |
48 | return NULL; | |
49 | } | |
50 | } | |
51 | ||
52 | robj *lookupKeyRead(redisDb *db, robj *key) { | |
53 | expireIfNeeded(db,key); | |
54 | return lookupKey(db,key); | |
55 | } | |
56 | ||
57 | robj *lookupKeyWrite(redisDb *db, robj *key) { | |
58 | expireIfNeeded(db,key); | |
59 | return lookupKey(db,key); | |
60 | } | |
61 | ||
62 | robj *lookupKeyReadOrReply(redisClient *c, robj *key, robj *reply) { | |
63 | robj *o = lookupKeyRead(c->db, key); | |
64 | if (!o) addReply(c,reply); | |
65 | return o; | |
66 | } | |
67 | ||
68 | robj *lookupKeyWriteOrReply(redisClient *c, robj *key, robj *reply) { | |
69 | robj *o = lookupKeyWrite(c->db, key); | |
70 | if (!o) addReply(c,reply); | |
71 | return o; | |
72 | } | |
73 | ||
74 | /* Add the key to the DB. It's up to the caller to increment the reference | |
75 | * counte of the value if needed. | |
76 | * | |
77 | * The program is aborted if the key already exists. */ | |
78 | void dbAdd(redisDb *db, robj *key, robj *val) { | |
79 | sds copy = sdsdup(key->ptr); | |
80 | int retval = dictAdd(db->dict, copy, val); | |
81 | ||
82 | redisAssert(retval == REDIS_OK); | |
83 | if (server.cluster_enabled) SlotToKeyAdd(key); | |
84 | } | |
85 | ||
86 | /* Overwrite an existing key with a new value. Incrementing the reference | |
87 | * count of the new value is up to the caller. | |
88 | * This function does not modify the expire time of the existing key. | |
89 | * | |
90 | * The program is aborted if the key was not already present. */ | |
91 | void dbOverwrite(redisDb *db, robj *key, robj *val) { | |
92 | struct dictEntry *de = dictFind(db->dict,key->ptr); | |
93 | ||
94 | redisAssert(de != NULL); | |
95 | dictReplace(db->dict, key->ptr, val); | |
96 | } | |
97 | ||
98 | /* High level Set operation. This function can be used in order to set | |
99 | * a key, whatever it was existing or not, to a new object. | |
100 | * | |
101 | * 1) The ref count of the value object is incremented. | |
102 | * 2) clients WATCHing for the destination key notified. | |
103 | * 3) The expire time of the key is reset (the key is made persistent). */ | |
104 | void setKey(redisDb *db, robj *key, robj *val) { | |
105 | if (lookupKeyWrite(db,key) == NULL) { | |
106 | dbAdd(db,key,val); | |
107 | } else { | |
108 | dbOverwrite(db,key,val); | |
109 | } | |
110 | incrRefCount(val); | |
111 | removeExpire(db,key); | |
112 | touchWatchedKey(db,key); | |
113 | } | |
114 | ||
115 | int dbExists(redisDb *db, robj *key) { | |
116 | return dictFind(db->dict,key->ptr) != NULL; | |
117 | } | |
118 | ||
119 | /* Return a random key, in form of a Redis object. | |
120 | * If there are no keys, NULL is returned. | |
121 | * | |
122 | * The function makes sure to return keys not already expired. */ | |
123 | robj *dbRandomKey(redisDb *db) { | |
124 | struct dictEntry *de; | |
125 | ||
126 | while(1) { | |
127 | sds key; | |
128 | robj *keyobj; | |
129 | ||
130 | de = dictGetRandomKey(db->dict); | |
131 | if (de == NULL) return NULL; | |
132 | ||
133 | key = dictGetEntryKey(de); | |
134 | keyobj = createStringObject(key,sdslen(key)); | |
135 | if (dictFind(db->expires,key)) { | |
136 | if (expireIfNeeded(db,keyobj)) { | |
137 | decrRefCount(keyobj); | |
138 | continue; /* search for another key. This expired. */ | |
139 | } | |
140 | } | |
141 | return keyobj; | |
142 | } | |
143 | } | |
144 | ||
145 | /* Delete a key, value, and associated expiration entry if any, from the DB */ | |
146 | int dbDelete(redisDb *db, robj *key) { | |
147 | /* Deleting an entry from the expires dict will not free the sds of | |
148 | * the key, because it is shared with the main dictionary. */ | |
149 | if (dictSize(db->expires) > 0) dictDelete(db->expires,key->ptr); | |
150 | if (dictDelete(db->dict,key->ptr) == DICT_OK) { | |
151 | if (server.cluster_enabled) SlotToKeyDel(key); | |
152 | return 1; | |
153 | } else { | |
154 | return 0; | |
155 | } | |
156 | } | |
157 | ||
158 | /* Empty the whole database. | |
159 | * If diskstore is enabled this function will just flush the in-memory cache. */ | |
160 | long long emptyDb() { | |
161 | int j; | |
162 | long long removed = 0; | |
163 | ||
164 | for (j = 0; j < server.dbnum; j++) { | |
165 | removed += dictSize(server.db[j].dict); | |
166 | dictEmpty(server.db[j].dict); | |
167 | dictEmpty(server.db[j].expires); | |
168 | } | |
169 | return removed; | |
170 | } | |
171 | ||
172 | int selectDb(redisClient *c, int id) { | |
173 | if (id < 0 || id >= server.dbnum) | |
174 | return REDIS_ERR; | |
175 | c->db = &server.db[id]; | |
176 | return REDIS_OK; | |
177 | } | |
178 | ||
179 | /*----------------------------------------------------------------------------- | |
180 | * Hooks for key space changes. | |
181 | * | |
182 | * Every time a key in the database is modified the function | |
183 | * signalModifiedKey() is called. | |
184 | * | |
185 | * Every time a DB is flushed the function signalFlushDb() is called. | |
186 | *----------------------------------------------------------------------------*/ | |
187 | ||
188 | void signalModifiedKey(redisDb *db, robj *key) { | |
189 | touchWatchedKey(db,key); | |
190 | } | |
191 | ||
192 | void signalFlushedDb(int dbid) { | |
193 | touchWatchedKeysOnFlush(dbid); | |
194 | } | |
195 | ||
196 | /*----------------------------------------------------------------------------- | |
197 | * Type agnostic commands operating on the key space | |
198 | *----------------------------------------------------------------------------*/ | |
199 | ||
200 | void flushdbCommand(redisClient *c) { | |
201 | server.dirty += dictSize(c->db->dict); | |
202 | signalFlushedDb(c->db->id); | |
203 | dictEmpty(c->db->dict); | |
204 | dictEmpty(c->db->expires); | |
205 | addReply(c,shared.ok); | |
206 | } | |
207 | ||
208 | void flushallCommand(redisClient *c) { | |
209 | signalFlushedDb(-1); | |
210 | server.dirty += emptyDb(); | |
211 | addReply(c,shared.ok); | |
212 | if (server.bgsavechildpid != -1) { | |
213 | kill(server.bgsavechildpid,SIGKILL); | |
214 | rdbRemoveTempFile(server.bgsavechildpid); | |
215 | } | |
216 | rdbSave(server.dbfilename); | |
217 | server.dirty++; | |
218 | } | |
219 | ||
220 | void delCommand(redisClient *c) { | |
221 | int deleted = 0, j; | |
222 | ||
223 | for (j = 1; j < c->argc; j++) { | |
224 | if (dbDelete(c->db,c->argv[j])) { | |
225 | signalModifiedKey(c->db,c->argv[j]); | |
226 | server.dirty++; | |
227 | deleted++; | |
228 | } | |
229 | } | |
230 | addReplyLongLong(c,deleted); | |
231 | } | |
232 | ||
233 | void existsCommand(redisClient *c) { | |
234 | expireIfNeeded(c->db,c->argv[1]); | |
235 | if (dbExists(c->db,c->argv[1])) { | |
236 | addReply(c, shared.cone); | |
237 | } else { | |
238 | addReply(c, shared.czero); | |
239 | } | |
240 | } | |
241 | ||
242 | void selectCommand(redisClient *c) { | |
243 | int id = atoi(c->argv[1]->ptr); | |
244 | ||
245 | if (server.cluster_enabled && id != 0) { | |
246 | addReplyError(c,"SELECT is not allowed in cluster mode"); | |
247 | return; | |
248 | } | |
249 | if (selectDb(c,id) == REDIS_ERR) { | |
250 | addReplyError(c,"invalid DB index"); | |
251 | } else { | |
252 | addReply(c,shared.ok); | |
253 | } | |
254 | } | |
255 | ||
256 | void randomkeyCommand(redisClient *c) { | |
257 | robj *key; | |
258 | ||
259 | if ((key = dbRandomKey(c->db)) == NULL) { | |
260 | addReply(c,shared.nullbulk); | |
261 | return; | |
262 | } | |
263 | ||
264 | addReplyBulk(c,key); | |
265 | decrRefCount(key); | |
266 | } | |
267 | ||
268 | void keysCommand(redisClient *c) { | |
269 | dictIterator *di; | |
270 | dictEntry *de; | |
271 | sds pattern = c->argv[1]->ptr; | |
272 | int plen = sdslen(pattern), allkeys; | |
273 | unsigned long numkeys = 0; | |
274 | void *replylen = addDeferredMultiBulkLength(c); | |
275 | ||
276 | di = dictGetIterator(c->db->dict); | |
277 | allkeys = (pattern[0] == '*' && pattern[1] == '\0'); | |
278 | while((de = dictNext(di)) != NULL) { | |
279 | sds key = dictGetEntryKey(de); | |
280 | robj *keyobj; | |
281 | ||
282 | if (allkeys || stringmatchlen(pattern,plen,key,sdslen(key),0)) { | |
283 | keyobj = createStringObject(key,sdslen(key)); | |
284 | if (expireIfNeeded(c->db,keyobj) == 0) { | |
285 | addReplyBulk(c,keyobj); | |
286 | numkeys++; | |
287 | } | |
288 | decrRefCount(keyobj); | |
289 | } | |
290 | } | |
291 | dictReleaseIterator(di); | |
292 | setDeferredMultiBulkLength(c,replylen,numkeys); | |
293 | } | |
294 | ||
295 | void dbsizeCommand(redisClient *c) { | |
296 | addReplyLongLong(c,dictSize(c->db->dict)); | |
297 | } | |
298 | ||
299 | void lastsaveCommand(redisClient *c) { | |
300 | addReplyLongLong(c,server.lastsave); | |
301 | } | |
302 | ||
303 | void typeCommand(redisClient *c) { | |
304 | robj *o; | |
305 | char *type; | |
306 | ||
307 | o = lookupKeyRead(c->db,c->argv[1]); | |
308 | if (o == NULL) { | |
309 | type = "none"; | |
310 | } else { | |
311 | switch(o->type) { | |
312 | case REDIS_STRING: type = "string"; break; | |
313 | case REDIS_LIST: type = "list"; break; | |
314 | case REDIS_SET: type = "set"; break; | |
315 | case REDIS_ZSET: type = "zset"; break; | |
316 | case REDIS_HASH: type = "hash"; break; | |
317 | default: type = "unknown"; break; | |
318 | } | |
319 | } | |
320 | addReplyStatus(c,type); | |
321 | } | |
322 | ||
323 | void shutdownCommand(redisClient *c) { | |
324 | if (prepareForShutdown() == REDIS_OK) | |
325 | exit(0); | |
326 | addReplyError(c,"Errors trying to SHUTDOWN. Check logs."); | |
327 | } | |
328 | ||
329 | void renameGenericCommand(redisClient *c, int nx) { | |
330 | robj *o; | |
331 | ||
332 | /* To use the same key as src and dst is probably an error */ | |
333 | if (sdscmp(c->argv[1]->ptr,c->argv[2]->ptr) == 0) { | |
334 | addReply(c,shared.sameobjecterr); | |
335 | return; | |
336 | } | |
337 | ||
338 | if ((o = lookupKeyWriteOrReply(c,c->argv[1],shared.nokeyerr)) == NULL) | |
339 | return; | |
340 | ||
341 | incrRefCount(o); | |
342 | if (lookupKeyWrite(c->db,c->argv[2]) != NULL) { | |
343 | if (nx) { | |
344 | decrRefCount(o); | |
345 | addReply(c,shared.czero); | |
346 | return; | |
347 | } | |
348 | dbOverwrite(c->db,c->argv[2],o); | |
349 | } else { | |
350 | dbAdd(c->db,c->argv[2],o); | |
351 | } | |
352 | dbDelete(c->db,c->argv[1]); | |
353 | signalModifiedKey(c->db,c->argv[1]); | |
354 | signalModifiedKey(c->db,c->argv[2]); | |
355 | server.dirty++; | |
356 | addReply(c,nx ? shared.cone : shared.ok); | |
357 | } | |
358 | ||
359 | void renameCommand(redisClient *c) { | |
360 | renameGenericCommand(c,0); | |
361 | } | |
362 | ||
363 | void renamenxCommand(redisClient *c) { | |
364 | renameGenericCommand(c,1); | |
365 | } | |
366 | ||
367 | void moveCommand(redisClient *c) { | |
368 | robj *o; | |
369 | redisDb *src, *dst; | |
370 | int srcid; | |
371 | ||
372 | if (server.cluster_enabled) { | |
373 | addReplyError(c,"MOVE is not allowed in cluster mode"); | |
374 | return; | |
375 | } | |
376 | ||
377 | /* Obtain source and target DB pointers */ | |
378 | src = c->db; | |
379 | srcid = c->db->id; | |
380 | if (selectDb(c,atoi(c->argv[2]->ptr)) == REDIS_ERR) { | |
381 | addReply(c,shared.outofrangeerr); | |
382 | return; | |
383 | } | |
384 | dst = c->db; | |
385 | selectDb(c,srcid); /* Back to the source DB */ | |
386 | ||
387 | /* If the user is moving using as target the same | |
388 | * DB as the source DB it is probably an error. */ | |
389 | if (src == dst) { | |
390 | addReply(c,shared.sameobjecterr); | |
391 | return; | |
392 | } | |
393 | ||
394 | /* Check if the element exists and get a reference */ | |
395 | o = lookupKeyWrite(c->db,c->argv[1]); | |
396 | if (!o) { | |
397 | addReply(c,shared.czero); | |
398 | return; | |
399 | } | |
400 | ||
401 | /* Return zero if the key already exists in the target DB */ | |
402 | if (lookupKeyWrite(dst,c->argv[1]) != NULL) { | |
403 | addReply(c,shared.czero); | |
404 | return; | |
405 | } | |
406 | dbAdd(dst,c->argv[1],o); | |
407 | incrRefCount(o); | |
408 | ||
409 | /* OK! key moved, free the entry in the source DB */ | |
410 | dbDelete(src,c->argv[1]); | |
411 | server.dirty++; | |
412 | addReply(c,shared.cone); | |
413 | } | |
414 | ||
415 | /*----------------------------------------------------------------------------- | |
416 | * Expires API | |
417 | *----------------------------------------------------------------------------*/ | |
418 | ||
419 | int removeExpire(redisDb *db, robj *key) { | |
420 | /* An expire may only be removed if there is a corresponding entry in the | |
421 | * main dict. Otherwise, the key will never be freed. */ | |
422 | redisAssert(dictFind(db->dict,key->ptr) != NULL); | |
423 | return dictDelete(db->expires,key->ptr) == DICT_OK; | |
424 | } | |
425 | ||
426 | void setExpire(redisDb *db, robj *key, time_t when) { | |
427 | dictEntry *de; | |
428 | ||
429 | /* Reuse the sds from the main dict in the expire dict */ | |
430 | de = dictFind(db->dict,key->ptr); | |
431 | redisAssert(de != NULL); | |
432 | dictReplace(db->expires,dictGetEntryKey(de),(void*)when); | |
433 | } | |
434 | ||
435 | /* Return the expire time of the specified key, or -1 if no expire | |
436 | * is associated with this key (i.e. the key is non volatile) */ | |
437 | time_t getExpire(redisDb *db, robj *key) { | |
438 | dictEntry *de; | |
439 | ||
440 | /* No expire? return ASAP */ | |
441 | if (dictSize(db->expires) == 0 || | |
442 | (de = dictFind(db->expires,key->ptr)) == NULL) return -1; | |
443 | ||
444 | /* The entry was found in the expire dict, this means it should also | |
445 | * be present in the main dict (safety check). */ | |
446 | redisAssert(dictFind(db->dict,key->ptr) != NULL); | |
447 | return (time_t) dictGetEntryVal(de); | |
448 | } | |
449 | ||
450 | /* Propagate expires into slaves and the AOF file. | |
451 | * When a key expires in the master, a DEL operation for this key is sent | |
452 | * to all the slaves and the AOF file if enabled. | |
453 | * | |
454 | * This way the key expiry is centralized in one place, and since both | |
455 | * AOF and the master->slave link guarantee operation ordering, everything | |
456 | * will be consistent even if we allow write operations against expiring | |
457 | * keys. */ | |
458 | void propagateExpire(redisDb *db, robj *key) { | |
459 | robj *argv[2]; | |
460 | ||
461 | argv[0] = createStringObject("DEL",3); | |
462 | argv[1] = key; | |
463 | incrRefCount(key); | |
464 | ||
465 | if (server.appendonly) | |
466 | feedAppendOnlyFile(server.delCommand,db->id,argv,2); | |
467 | if (listLength(server.slaves)) | |
468 | replicationFeedSlaves(server.slaves,db->id,argv,2); | |
469 | ||
470 | decrRefCount(argv[0]); | |
471 | decrRefCount(argv[1]); | |
472 | } | |
473 | ||
474 | int expireIfNeeded(redisDb *db, robj *key) { | |
475 | time_t when = getExpire(db,key); | |
476 | ||
477 | if (when < 0) return 0; /* No expire for this key */ | |
478 | ||
479 | /* Don't expire anything while loading. It will be done later. */ | |
480 | if (server.loading) return 0; | |
481 | ||
482 | /* If we are running in the context of a slave, return ASAP: | |
483 | * the slave key expiration is controlled by the master that will | |
484 | * send us synthesized DEL operations for expired keys. | |
485 | * | |
486 | * Still we try to return the right information to the caller, | |
487 | * that is, 0 if we think the key should be still valid, 1 if | |
488 | * we think the key is expired at this time. */ | |
489 | if (server.masterhost != NULL) { | |
490 | return time(NULL) > when; | |
491 | } | |
492 | ||
493 | /* Return when this key has not expired */ | |
494 | if (time(NULL) <= when) return 0; | |
495 | ||
496 | /* Delete the key */ | |
497 | server.stat_expiredkeys++; | |
498 | propagateExpire(db,key); | |
499 | return dbDelete(db,key); | |
500 | } | |
501 | ||
502 | /*----------------------------------------------------------------------------- | |
503 | * Expires Commands | |
504 | *----------------------------------------------------------------------------*/ | |
505 | ||
506 | void expireGenericCommand(redisClient *c, robj *key, robj *param, long offset) { | |
507 | dictEntry *de; | |
508 | long seconds; | |
509 | ||
510 | if (getLongFromObjectOrReply(c, param, &seconds, NULL) != REDIS_OK) return; | |
511 | ||
512 | seconds -= offset; | |
513 | ||
514 | de = dictFind(c->db->dict,key->ptr); | |
515 | if (de == NULL) { | |
516 | addReply(c,shared.czero); | |
517 | return; | |
518 | } | |
519 | /* EXPIRE with negative TTL, or EXPIREAT with a timestamp into the past | |
520 | * should never be executed as a DEL when load the AOF or in the context | |
521 | * of a slave instance. | |
522 | * | |
523 | * Instead we take the other branch of the IF statement setting an expire | |
524 | * (possibly in the past) and wait for an explicit DEL from the master. */ | |
525 | if (seconds <= 0 && !server.loading && !server.masterhost) { | |
526 | robj *aux; | |
527 | ||
528 | redisAssert(dbDelete(c->db,key)); | |
529 | server.dirty++; | |
530 | ||
531 | /* Replicate/AOF this as an explicit DEL. */ | |
532 | aux = createStringObject("DEL",3); | |
533 | rewriteClientCommandVector(c,2,aux,key); | |
534 | decrRefCount(aux); | |
535 | signalModifiedKey(c->db,key); | |
536 | addReply(c, shared.cone); | |
537 | return; | |
538 | } else { | |
539 | time_t when = time(NULL)+seconds; | |
540 | setExpire(c->db,key,when); | |
541 | addReply(c,shared.cone); | |
542 | signalModifiedKey(c->db,key); | |
543 | server.dirty++; | |
544 | return; | |
545 | } | |
546 | } | |
547 | ||
548 | void expireCommand(redisClient *c) { | |
549 | expireGenericCommand(c,c->argv[1],c->argv[2],0); | |
550 | } | |
551 | ||
552 | void expireatCommand(redisClient *c) { | |
553 | expireGenericCommand(c,c->argv[1],c->argv[2],time(NULL)); | |
554 | } | |
555 | ||
556 | void ttlCommand(redisClient *c) { | |
557 | time_t expire, ttl = -1; | |
558 | ||
559 | expire = getExpire(c->db,c->argv[1]); | |
560 | if (expire != -1) { | |
561 | ttl = (expire-time(NULL)); | |
562 | if (ttl < 0) ttl = -1; | |
563 | } | |
564 | addReplyLongLong(c,(long long)ttl); | |
565 | } | |
566 | ||
567 | void persistCommand(redisClient *c) { | |
568 | dictEntry *de; | |
569 | ||
570 | de = dictFind(c->db->dict,c->argv[1]->ptr); | |
571 | if (de == NULL) { | |
572 | addReply(c,shared.czero); | |
573 | } else { | |
574 | if (removeExpire(c->db,c->argv[1])) { | |
575 | addReply(c,shared.cone); | |
576 | server.dirty++; | |
577 | } else { | |
578 | addReply(c,shared.czero); | |
579 | } | |
580 | } | |
581 | } | |
582 | ||
583 | /* ----------------------------------------------------------------------------- | |
584 | * API to get key arguments from commands | |
585 | * ---------------------------------------------------------------------------*/ | |
586 | ||
587 | int *getKeysUsingCommandTable(struct redisCommand *cmd,robj **argv, int argc, int *numkeys) { | |
588 | int j, i = 0, last, *keys; | |
589 | REDIS_NOTUSED(argv); | |
590 | ||
591 | if (cmd->firstkey == 0) { | |
592 | *numkeys = 0; | |
593 | return NULL; | |
594 | } | |
595 | last = cmd->lastkey; | |
596 | if (last < 0) last = argc+last; | |
597 | keys = zmalloc(sizeof(int)*((last - cmd->firstkey)+1)); | |
598 | for (j = cmd->firstkey; j <= last; j += cmd->keystep) { | |
599 | redisAssert(j < argc); | |
600 | keys[i++] = j; | |
601 | } | |
602 | *numkeys = i; | |
603 | return keys; | |
604 | } | |
605 | ||
606 | int *getKeysFromCommand(struct redisCommand *cmd,robj **argv, int argc, int *numkeys, int flags) { | |
607 | if (cmd->getkeys_proc) { | |
608 | return cmd->getkeys_proc(cmd,argv,argc,numkeys,flags); | |
609 | } else { | |
610 | return getKeysUsingCommandTable(cmd,argv,argc,numkeys); | |
611 | } | |
612 | } | |
613 | ||
614 | void getKeysFreeResult(int *result) { | |
615 | zfree(result); | |
616 | } | |
617 | ||
618 | int *noPreloadGetKeys(struct redisCommand *cmd,robj **argv, int argc, int *numkeys, int flags) { | |
619 | if (flags & REDIS_GETKEYS_PRELOAD) { | |
620 | *numkeys = 0; | |
621 | return NULL; | |
622 | } else { | |
623 | return getKeysUsingCommandTable(cmd,argv,argc,numkeys); | |
624 | } | |
625 | } | |
626 | ||
627 | int *renameGetKeys(struct redisCommand *cmd,robj **argv, int argc, int *numkeys, int flags) { | |
628 | if (flags & REDIS_GETKEYS_PRELOAD) { | |
629 | int *keys = zmalloc(sizeof(int)); | |
630 | *numkeys = 1; | |
631 | keys[0] = 1; | |
632 | return keys; | |
633 | } else { | |
634 | return getKeysUsingCommandTable(cmd,argv,argc,numkeys); | |
635 | } | |
636 | } | |
637 | ||
638 | int *zunionInterGetKeys(struct redisCommand *cmd,robj **argv, int argc, int *numkeys, int flags) { | |
639 | int i, num, *keys; | |
640 | REDIS_NOTUSED(cmd); | |
641 | REDIS_NOTUSED(flags); | |
642 | ||
643 | num = atoi(argv[2]->ptr); | |
644 | /* Sanity check. Don't return any key if the command is going to | |
645 | * reply with syntax error. */ | |
646 | if (num > (argc-3)) { | |
647 | *numkeys = 0; | |
648 | return NULL; | |
649 | } | |
650 | keys = zmalloc(sizeof(int)*num); | |
651 | for (i = 0; i < num; i++) keys[i] = 3+i; | |
652 | *numkeys = num; | |
653 | return keys; | |
654 | } | |
655 | ||
656 | /* Slot to Key API. This is used by Redis Cluster in order to obtain in | |
657 | * a fast way a key that belongs to a specified hash slot. This is useful | |
658 | * while rehashing the cluster. */ | |
659 | void SlotToKeyAdd(robj *key) { | |
660 | unsigned int hashslot = keyHashSlot(key->ptr,sdslen(key->ptr)); | |
661 | ||
662 | zslInsert(server.cluster.slots_to_keys,hashslot,key); | |
663 | incrRefCount(key); | |
664 | } | |
665 | ||
666 | void SlotToKeyDel(robj *key) { | |
667 | unsigned int hashslot = keyHashSlot(key->ptr,sdslen(key->ptr)); | |
668 | ||
669 | zslDelete(server.cluster.slots_to_keys,hashslot,key); | |
670 | } | |
671 | ||
672 | unsigned int GetKeysInSlot(unsigned int hashslot, robj **keys, unsigned int count) { | |
673 | zskiplistNode *n; | |
674 | zrangespec range; | |
675 | int j = 0; | |
676 | ||
677 | range.min = range.max = hashslot; | |
678 | range.minex = range.maxex = 0; | |
679 | ||
680 | n = zslFirstInRange(server.cluster.slots_to_keys, range); | |
681 | while(n && n->score == hashslot && count--) { | |
682 | keys[j++] = n->obj; | |
683 | n = n->level[0].forward; | |
684 | } | |
685 | return j; | |
686 | } |