]> git.saurik.com Git - redis.git/blame_incremental - src/ziplist.c
Release notes updated with the new 2.6 features.
[redis.git] / src / ziplist.c
... / ...
CommitLineData
1/* The ziplist is a specially encoded dually linked list that is designed
2 * to be very memory efficient. It stores both strings and integer values,
3 * where integers are encoded as actual integers instead of a series of
4 * characters. It allows push and pop operations on either side of the list
5 * in O(1) time. However, because every operation requires a reallocation of
6 * the memory used by the ziplist, the actual complexity is related to the
7 * amount of memory used by the ziplist.
8 *
9 * ----------------------------------------------------------------------------
10 *
11 * ZIPLIST OVERALL LAYOUT:
12 * The general layout of the ziplist is as follows:
13 * <zlbytes><zltail><zllen><entry><entry><zlend>
14 *
15 * <zlbytes> is an unsigned integer to hold the number of bytes that the
16 * ziplist occupies. This value needs to be stored to be able to resize the
17 * entire structure without the need to traverse it first.
18 *
19 * <zltail> is the offset to the last entry in the list. This allows a pop
20 * operation on the far side of the list without the need for full traversal.
21 *
22 * <zllen> is the number of entries.When this value is larger than 2**16-2,
23 * we need to traverse the entire list to know how many items it holds.
24 *
25 * <zlend> is a single byte special value, equal to 255, which indicates the
26 * end of the list.
27 *
28 * ZIPLIST ENTRIES:
29 * Every entry in the ziplist is prefixed by a header that contains two pieces
30 * of information. First, the length of the previous entry is stored to be
31 * able to traverse the list from back to front. Second, the encoding with an
32 * optional string length of the entry itself is stored.
33 *
34 * The length of the previous entry is encoded in the following way:
35 * If this length is smaller than 254 bytes, it will only consume a single
36 * byte that takes the length as value. When the length is greater than or
37 * equal to 254, it will consume 5 bytes. The first byte is set to 254 to
38 * indicate a larger value is following. The remaining 4 bytes take the
39 * length of the previous entry as value.
40 *
41 * The other header field of the entry itself depends on the contents of the
42 * entry. When the entry is a string, the first 2 bits of this header will hold
43 * the type of encoding used to store the length of the string, followed by the
44 * actual length of the string. When the entry is an integer the first 2 bits
45 * are both set to 1. The following 2 bits are used to specify what kind of
46 * integer will be stored after this header. An overview of the different
47 * types and encodings is as follows:
48 *
49 * |00pppppp| - 1 byte
50 * String value with length less than or equal to 63 bytes (6 bits).
51 * |01pppppp|qqqqqqqq| - 2 bytes
52 * String value with length less than or equal to 16383 bytes (14 bits).
53 * |10______|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt| - 5 bytes
54 * String value with length greater than or equal to 16384 bytes.
55 * |11000000| - 1 byte
56 * Integer encoded as int16_t (2 bytes).
57 * |11010000| - 1 byte
58 * Integer encoded as int32_t (4 bytes).
59 * |11100000| - 1 byte
60 * Integer encoded as int64_t (8 bytes).
61 * |11110000| - 1 byte
62 * Integer encoded as 24 bit signed (3 bytes).
63 * |11111110| - 1 byte
64 * Integer encoded as 8 bit signed (1 byte).
65 * |1111xxxx| - (with xxxx between 0000 and 1101) immediate 4 bit integer.
66 * Unsigned integer from 0 to 12. The encoded value is actually from
67 * 1 to 13 because 0000 and 1111 can not be used, so 1 should be
68 * subtracted from the encoded 4 bit value to obtain the right value.
69 * |11111111| - End of ziplist.
70 *
71 * All the integers are represented in little endian byte order.
72 */
73
74#include <stdio.h>
75#include <stdlib.h>
76#include <string.h>
77#include <stdint.h>
78#include <assert.h>
79#include <limits.h>
80#include "zmalloc.h"
81#include "util.h"
82#include "ziplist.h"
83#include "endianconv.h"
84
85#define ZIP_END 255
86#define ZIP_BIGLEN 254
87
88/* Different encoding/length possibilities */
89#define ZIP_STR_MASK 0xc0
90#define ZIP_INT_MASK 0x30
91#define ZIP_STR_06B (0 << 6)
92#define ZIP_STR_14B (1 << 6)
93#define ZIP_STR_32B (2 << 6)
94#define ZIP_INT_16B (0xc0 | 0<<4)
95#define ZIP_INT_32B (0xc0 | 1<<4)
96#define ZIP_INT_64B (0xc0 | 2<<4)
97#define ZIP_INT_24B (0xc0 | 3<<4)
98#define ZIP_INT_8B 0xfe
99/* 4 bit integer immediate encoding */
100#define ZIP_INT_IMM_MASK 0x0f
101#define ZIP_INT_IMM_MIN 0xf1 /* 11110001 */
102#define ZIP_INT_IMM_MAX 0xfd /* 11111101 */
103#define ZIP_INT_IMM_VAL(v) (v & ZIP_INT_IMM_MASK)
104
105#define INT24_MAX 0x7fffff
106#define INT24_MIN (-INT24_MAX - 1)
107
108/* Macro to determine type */
109#define ZIP_IS_STR(enc) (((enc) & ZIP_STR_MASK) < ZIP_STR_MASK)
110
111/* Utility macros */
112#define ZIPLIST_BYTES(zl) (*((uint32_t*)(zl)))
113#define ZIPLIST_TAIL_OFFSET(zl) (*((uint32_t*)((zl)+sizeof(uint32_t))))
114#define ZIPLIST_LENGTH(zl) (*((uint16_t*)((zl)+sizeof(uint32_t)*2)))
115#define ZIPLIST_HEADER_SIZE (sizeof(uint32_t)*2+sizeof(uint16_t))
116#define ZIPLIST_ENTRY_HEAD(zl) ((zl)+ZIPLIST_HEADER_SIZE)
117#define ZIPLIST_ENTRY_TAIL(zl) ((zl)+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl)))
118#define ZIPLIST_ENTRY_END(zl) ((zl)+intrev32ifbe(ZIPLIST_BYTES(zl))-1)
119
120/* We know a positive increment can only be 1 because entries can only be
121 * pushed one at a time. */
122#define ZIPLIST_INCR_LENGTH(zl,incr) { \
123 if (ZIPLIST_LENGTH(zl) < UINT16_MAX) \
124 ZIPLIST_LENGTH(zl) = intrev16ifbe(intrev16ifbe(ZIPLIST_LENGTH(zl))+incr); \
125}
126
127typedef struct zlentry {
128 unsigned int prevrawlensize, prevrawlen;
129 unsigned int lensize, len;
130 unsigned int headersize;
131 unsigned char encoding;
132 unsigned char *p;
133} zlentry;
134
135/* Extract the encoding from the byte pointed by 'ptr' and set it into
136 * 'encoding'. */
137#define ZIP_ENTRY_ENCODING(ptr, encoding) do { \
138 (encoding) = (ptr[0]); \
139 if ((encoding) < ZIP_STR_MASK) (encoding) &= ZIP_STR_MASK; \
140} while(0)
141
142/* Return bytes needed to store integer encoded by 'encoding' */
143static unsigned int zipIntSize(unsigned char encoding) {
144 switch(encoding) {
145 case ZIP_INT_8B: return 1;
146 case ZIP_INT_16B: return 2;
147 case ZIP_INT_24B: return 3;
148 case ZIP_INT_32B: return 4;
149 case ZIP_INT_64B: return 8;
150 default: return 0; /* 4 bit immediate */
151 }
152 assert(NULL);
153 return 0;
154}
155
156/* Encode the length 'l' writing it in 'p'. If p is NULL it just returns
157 * the amount of bytes required to encode such a length. */
158static unsigned int zipEncodeLength(unsigned char *p, unsigned char encoding, unsigned int rawlen) {
159 unsigned char len = 1, buf[5];
160
161 if (ZIP_IS_STR(encoding)) {
162 /* Although encoding is given it may not be set for strings,
163 * so we determine it here using the raw length. */
164 if (rawlen <= 0x3f) {
165 if (!p) return len;
166 buf[0] = ZIP_STR_06B | rawlen;
167 } else if (rawlen <= 0x3fff) {
168 len += 1;
169 if (!p) return len;
170 buf[0] = ZIP_STR_14B | ((rawlen >> 8) & 0x3f);
171 buf[1] = rawlen & 0xff;
172 } else {
173 len += 4;
174 if (!p) return len;
175 buf[0] = ZIP_STR_32B;
176 buf[1] = (rawlen >> 24) & 0xff;
177 buf[2] = (rawlen >> 16) & 0xff;
178 buf[3] = (rawlen >> 8) & 0xff;
179 buf[4] = rawlen & 0xff;
180 }
181 } else {
182 /* Implies integer encoding, so length is always 1. */
183 if (!p) return len;
184 buf[0] = encoding;
185 }
186
187 /* Store this length at p */
188 memcpy(p,buf,len);
189 return len;
190}
191
192/* Decode the length encoded in 'ptr'. The 'encoding' variable will hold the
193 * entries encoding, the 'lensize' variable will hold the number of bytes
194 * required to encode the entries length, and the 'len' variable will hold the
195 * entries length. */
196#define ZIP_DECODE_LENGTH(ptr, encoding, lensize, len) do { \
197 ZIP_ENTRY_ENCODING((ptr), (encoding)); \
198 if ((encoding) < ZIP_STR_MASK) { \
199 if ((encoding) == ZIP_STR_06B) { \
200 (lensize) = 1; \
201 (len) = (ptr)[0] & 0x3f; \
202 } else if ((encoding) == ZIP_STR_14B) { \
203 (lensize) = 2; \
204 (len) = (((ptr)[0] & 0x3f) << 8) | (ptr)[1]; \
205 } else if (encoding == ZIP_STR_32B) { \
206 (lensize) = 5; \
207 (len) = ((ptr)[1] << 24) | \
208 ((ptr)[2] << 16) | \
209 ((ptr)[3] << 8) | \
210 ((ptr)[4]); \
211 } else { \
212 assert(NULL); \
213 } \
214 } else { \
215 (lensize) = 1; \
216 (len) = zipIntSize(encoding); \
217 } \
218} while(0);
219
220/* Encode the length of the previous entry and write it to "p". Return the
221 * number of bytes needed to encode this length if "p" is NULL. */
222static unsigned int zipPrevEncodeLength(unsigned char *p, unsigned int len) {
223 if (p == NULL) {
224 return (len < ZIP_BIGLEN) ? 1 : sizeof(len)+1;
225 } else {
226 if (len < ZIP_BIGLEN) {
227 p[0] = len;
228 return 1;
229 } else {
230 p[0] = ZIP_BIGLEN;
231 memcpy(p+1,&len,sizeof(len));
232 memrev32ifbe(p+1);
233 return 1+sizeof(len);
234 }
235 }
236}
237
238/* Encode the length of the previous entry and write it to "p". This only
239 * uses the larger encoding (required in __ziplistCascadeUpdate). */
240static void zipPrevEncodeLengthForceLarge(unsigned char *p, unsigned int len) {
241 if (p == NULL) return;
242 p[0] = ZIP_BIGLEN;
243 memcpy(p+1,&len,sizeof(len));
244 memrev32ifbe(p+1);
245}
246
247/* Decode the number of bytes required to store the length of the previous
248 * element, from the perspective of the entry pointed to by 'ptr'. */
249#define ZIP_DECODE_PREVLENSIZE(ptr, prevlensize) do { \
250 if ((ptr)[0] < ZIP_BIGLEN) { \
251 (prevlensize) = 1; \
252 } else { \
253 (prevlensize) = 5; \
254 } \
255} while(0);
256
257/* Decode the length of the previous element, from the perspective of the entry
258 * pointed to by 'ptr'. */
259#define ZIP_DECODE_PREVLEN(ptr, prevlensize, prevlen) do { \
260 ZIP_DECODE_PREVLENSIZE(ptr, prevlensize); \
261 if ((prevlensize) == 1) { \
262 (prevlen) = (ptr)[0]; \
263 } else if ((prevlensize) == 5) { \
264 assert(sizeof((prevlensize)) == 4); \
265 memcpy(&(prevlen), ((char*)(ptr)) + 1, 4); \
266 memrev32ifbe(&prevlen); \
267 } \
268} while(0);
269
270/* Return the difference in number of bytes needed to store the length of the
271 * previous element 'len', in the entry pointed to by 'p'. */
272static int zipPrevLenByteDiff(unsigned char *p, unsigned int len) {
273 unsigned int prevlensize;
274 ZIP_DECODE_PREVLENSIZE(p, prevlensize);
275 return zipPrevEncodeLength(NULL, len) - prevlensize;
276}
277
278/* Return the total number of bytes used by the entry pointed to by 'p'. */
279static unsigned int zipRawEntryLength(unsigned char *p) {
280 unsigned int prevlensize, encoding, lensize, len;
281 ZIP_DECODE_PREVLENSIZE(p, prevlensize);
282 ZIP_DECODE_LENGTH(p + prevlensize, encoding, lensize, len);
283 return prevlensize + lensize + len;
284}
285
286/* Check if string pointed to by 'entry' can be encoded as an integer.
287 * Stores the integer value in 'v' and its encoding in 'encoding'. */
288static int zipTryEncoding(unsigned char *entry, unsigned int entrylen, long long *v, unsigned char *encoding) {
289 long long value;
290
291 if (entrylen >= 32 || entrylen == 0) return 0;
292 if (string2ll((char*)entry,entrylen,&value)) {
293 /* Great, the string can be encoded. Check what's the smallest
294 * of our encoding types that can hold this value. */
295 if (value >= 0 && value <= 12) {
296 *encoding = ZIP_INT_IMM_MIN+value;
297 } else if (value >= INT8_MIN && value <= INT8_MAX) {
298 *encoding = ZIP_INT_8B;
299 } else if (value >= INT16_MIN && value <= INT16_MAX) {
300 *encoding = ZIP_INT_16B;
301 } else if (value >= INT24_MIN && value <= INT24_MAX) {
302 *encoding = ZIP_INT_24B;
303 } else if (value >= INT32_MIN && value <= INT32_MAX) {
304 *encoding = ZIP_INT_32B;
305 } else {
306 *encoding = ZIP_INT_64B;
307 }
308 *v = value;
309 return 1;
310 }
311 return 0;
312}
313
314/* Store integer 'value' at 'p', encoded as 'encoding' */
315static void zipSaveInteger(unsigned char *p, int64_t value, unsigned char encoding) {
316 int16_t i16;
317 int32_t i32;
318 int64_t i64;
319 if (encoding == ZIP_INT_8B) {
320 ((char*)p)[0] = (char)value;
321 } else if (encoding == ZIP_INT_16B) {
322 i16 = value;
323 memcpy(p,&i16,sizeof(i16));
324 memrev16ifbe(p);
325 } else if (encoding == ZIP_INT_24B) {
326 i32 = value<<8;
327 memrev32ifbe(&i32);
328 memcpy(p,((unsigned char*)&i32)+1,sizeof(i32)-sizeof(int8_t));
329 } else if (encoding == ZIP_INT_32B) {
330 i32 = value;
331 memcpy(p,&i32,sizeof(i32));
332 memrev32ifbe(p);
333 } else if (encoding == ZIP_INT_64B) {
334 i64 = value;
335 memcpy(p,&i64,sizeof(i64));
336 memrev64ifbe(p);
337 } else if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX) {
338 /* Nothing to do, the value is stored in the encoding itself. */
339 } else {
340 assert(NULL);
341 }
342}
343
344/* Read integer encoded as 'encoding' from 'p' */
345static int64_t zipLoadInteger(unsigned char *p, unsigned char encoding) {
346 int16_t i16;
347 int32_t i32;
348 int64_t i64, ret = 0;
349 if (encoding == ZIP_INT_8B) {
350 ret = ((char*)p)[0];
351 } else if (encoding == ZIP_INT_16B) {
352 memcpy(&i16,p,sizeof(i16));
353 memrev16ifbe(&i16);
354 ret = i16;
355 } else if (encoding == ZIP_INT_32B) {
356 memcpy(&i32,p,sizeof(i32));
357 memrev32ifbe(&i32);
358 ret = i32;
359 } else if (encoding == ZIP_INT_24B) {
360 i32 = 0;
361 memcpy(((unsigned char*)&i32)+1,p,sizeof(i32)-sizeof(int8_t));
362 memrev32ifbe(&i32);
363 ret = i32>>8;
364 } else if (encoding == ZIP_INT_64B) {
365 memcpy(&i64,p,sizeof(i64));
366 memrev64ifbe(&i64);
367 ret = i64;
368 } else if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX) {
369 ret = (encoding & ZIP_INT_IMM_MASK)-1;
370 } else {
371 assert(NULL);
372 }
373 return ret;
374}
375
376/* Return a struct with all information about an entry. */
377static zlentry zipEntry(unsigned char *p) {
378 zlentry e;
379
380 ZIP_DECODE_PREVLEN(p, e.prevrawlensize, e.prevrawlen);
381 ZIP_DECODE_LENGTH(p + e.prevrawlensize, e.encoding, e.lensize, e.len);
382 e.headersize = e.prevrawlensize + e.lensize;
383 e.p = p;
384 return e;
385}
386
387/* Create a new empty ziplist. */
388unsigned char *ziplistNew(void) {
389 unsigned int bytes = ZIPLIST_HEADER_SIZE+1;
390 unsigned char *zl = zmalloc(bytes);
391 ZIPLIST_BYTES(zl) = intrev32ifbe(bytes);
392 ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(ZIPLIST_HEADER_SIZE);
393 ZIPLIST_LENGTH(zl) = 0;
394 zl[bytes-1] = ZIP_END;
395 return zl;
396}
397
398/* Resize the ziplist. */
399static unsigned char *ziplistResize(unsigned char *zl, unsigned int len) {
400 zl = zrealloc(zl,len);
401 ZIPLIST_BYTES(zl) = intrev32ifbe(len);
402 zl[len-1] = ZIP_END;
403 return zl;
404}
405
406/* When an entry is inserted, we need to set the prevlen field of the next
407 * entry to equal the length of the inserted entry. It can occur that this
408 * length cannot be encoded in 1 byte and the next entry needs to be grow
409 * a bit larger to hold the 5-byte encoded prevlen. This can be done for free,
410 * because this only happens when an entry is already being inserted (which
411 * causes a realloc and memmove). However, encoding the prevlen may require
412 * that this entry is grown as well. This effect may cascade throughout
413 * the ziplist when there are consecutive entries with a size close to
414 * ZIP_BIGLEN, so we need to check that the prevlen can be encoded in every
415 * consecutive entry.
416 *
417 * Note that this effect can also happen in reverse, where the bytes required
418 * to encode the prevlen field can shrink. This effect is deliberately ignored,
419 * because it can cause a "flapping" effect where a chain prevlen fields is
420 * first grown and then shrunk again after consecutive inserts. Rather, the
421 * field is allowed to stay larger than necessary, because a large prevlen
422 * field implies the ziplist is holding large entries anyway.
423 *
424 * The pointer "p" points to the first entry that does NOT need to be
425 * updated, i.e. consecutive fields MAY need an update. */
426static unsigned char *__ziplistCascadeUpdate(unsigned char *zl, unsigned char *p) {
427 size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), rawlen, rawlensize;
428 size_t offset, noffset, extra;
429 unsigned char *np;
430 zlentry cur, next;
431
432 while (p[0] != ZIP_END) {
433 cur = zipEntry(p);
434 rawlen = cur.headersize + cur.len;
435 rawlensize = zipPrevEncodeLength(NULL,rawlen);
436
437 /* Abort if there is no next entry. */
438 if (p[rawlen] == ZIP_END) break;
439 next = zipEntry(p+rawlen);
440
441 /* Abort when "prevlen" has not changed. */
442 if (next.prevrawlen == rawlen) break;
443
444 if (next.prevrawlensize < rawlensize) {
445 /* The "prevlen" field of "next" needs more bytes to hold
446 * the raw length of "cur". */
447 offset = p-zl;
448 extra = rawlensize-next.prevrawlensize;
449 zl = ziplistResize(zl,curlen+extra);
450 p = zl+offset;
451
452 /* Current pointer and offset for next element. */
453 np = p+rawlen;
454 noffset = np-zl;
455
456 /* Update tail offset when next element is not the tail element. */
457 if ((zl+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))) != np) {
458 ZIPLIST_TAIL_OFFSET(zl) =
459 intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+extra);
460 }
461
462 /* Move the tail to the back. */
463 memmove(np+rawlensize,
464 np+next.prevrawlensize,
465 curlen-noffset-next.prevrawlensize-1);
466 zipPrevEncodeLength(np,rawlen);
467
468 /* Advance the cursor */
469 p += rawlen;
470 curlen += extra;
471 } else {
472 if (next.prevrawlensize > rawlensize) {
473 /* This would result in shrinking, which we want to avoid.
474 * So, set "rawlen" in the available bytes. */
475 zipPrevEncodeLengthForceLarge(p+rawlen,rawlen);
476 } else {
477 zipPrevEncodeLength(p+rawlen,rawlen);
478 }
479
480 /* Stop here, as the raw length of "next" has not changed. */
481 break;
482 }
483 }
484 return zl;
485}
486
487/* Delete "num" entries, starting at "p". Returns pointer to the ziplist. */
488static unsigned char *__ziplistDelete(unsigned char *zl, unsigned char *p, unsigned int num) {
489 unsigned int i, totlen, deleted = 0;
490 size_t offset;
491 int nextdiff = 0;
492 zlentry first, tail;
493
494 first = zipEntry(p);
495 for (i = 0; p[0] != ZIP_END && i < num; i++) {
496 p += zipRawEntryLength(p);
497 deleted++;
498 }
499
500 totlen = p-first.p;
501 if (totlen > 0) {
502 if (p[0] != ZIP_END) {
503 /* Tricky: storing the prevlen in this entry might reduce or
504 * increase the number of bytes needed, compared to the current
505 * prevlen. Note that we can always store this length because
506 * it was previously stored by an entry that is being deleted. */
507 nextdiff = zipPrevLenByteDiff(p,first.prevrawlen);
508 zipPrevEncodeLength(p-nextdiff,first.prevrawlen);
509
510 /* Update offset for tail */
511 ZIPLIST_TAIL_OFFSET(zl) =
512 intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))-totlen);
513
514 /* When the tail contains more than one entry, we need to take
515 * "nextdiff" in account as well. Otherwise, a change in the
516 * size of prevlen doesn't have an effect on the *tail* offset. */
517 tail = zipEntry(p);
518 if (p[tail.headersize+tail.len] != ZIP_END) {
519 ZIPLIST_TAIL_OFFSET(zl) =
520 intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
521 }
522
523 /* Move tail to the front of the ziplist */
524 memmove(first.p,p-nextdiff,
525 intrev32ifbe(ZIPLIST_BYTES(zl))-(p-zl)-1+nextdiff);
526 } else {
527 /* The entire tail was deleted. No need to move memory. */
528 ZIPLIST_TAIL_OFFSET(zl) =
529 intrev32ifbe((first.p-zl)-first.prevrawlen);
530 }
531
532 /* Resize and update length */
533 offset = first.p-zl;
534 zl = ziplistResize(zl, intrev32ifbe(ZIPLIST_BYTES(zl))-totlen+nextdiff);
535 ZIPLIST_INCR_LENGTH(zl,-deleted);
536 p = zl+offset;
537
538 /* When nextdiff != 0, the raw length of the next entry has changed, so
539 * we need to cascade the update throughout the ziplist */
540 if (nextdiff != 0)
541 zl = __ziplistCascadeUpdate(zl,p);
542 }
543 return zl;
544}
545
546/* Insert item at "p". */
547static unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
548 size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), reqlen, prevlen = 0;
549 size_t offset;
550 int nextdiff = 0;
551 unsigned char encoding = 0;
552 long long value = 123456789; /* initialized to avoid warning. Using a value
553 that is easy to see if for some reason
554 we use it uninitialized. */
555 zlentry entry, tail;
556
557 /* Find out prevlen for the entry that is inserted. */
558 if (p[0] != ZIP_END) {
559 entry = zipEntry(p);
560 prevlen = entry.prevrawlen;
561 } else {
562 unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl);
563 if (ptail[0] != ZIP_END) {
564 prevlen = zipRawEntryLength(ptail);
565 }
566 }
567
568 /* See if the entry can be encoded */
569 if (zipTryEncoding(s,slen,&value,&encoding)) {
570 /* 'encoding' is set to the appropriate integer encoding */
571 reqlen = zipIntSize(encoding);
572 } else {
573 /* 'encoding' is untouched, however zipEncodeLength will use the
574 * string length to figure out how to encode it. */
575 reqlen = slen;
576 }
577 /* We need space for both the length of the previous entry and
578 * the length of the payload. */
579 reqlen += zipPrevEncodeLength(NULL,prevlen);
580 reqlen += zipEncodeLength(NULL,encoding,slen);
581
582 /* When the insert position is not equal to the tail, we need to
583 * make sure that the next entry can hold this entry's length in
584 * its prevlen field. */
585 nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0;
586
587 /* Store offset because a realloc may change the address of zl. */
588 offset = p-zl;
589 zl = ziplistResize(zl,curlen+reqlen+nextdiff);
590 p = zl+offset;
591
592 /* Apply memory move when necessary and update tail offset. */
593 if (p[0] != ZIP_END) {
594 /* Subtract one because of the ZIP_END bytes */
595 memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff);
596
597 /* Encode this entry's raw length in the next entry. */
598 zipPrevEncodeLength(p+reqlen,reqlen);
599
600 /* Update offset for tail */
601 ZIPLIST_TAIL_OFFSET(zl) =
602 intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+reqlen);
603
604 /* When the tail contains more than one entry, we need to take
605 * "nextdiff" in account as well. Otherwise, a change in the
606 * size of prevlen doesn't have an effect on the *tail* offset. */
607 tail = zipEntry(p+reqlen);
608 if (p[reqlen+tail.headersize+tail.len] != ZIP_END) {
609 ZIPLIST_TAIL_OFFSET(zl) =
610 intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
611 }
612 } else {
613 /* This element will be the new tail. */
614 ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(p-zl);
615 }
616
617 /* When nextdiff != 0, the raw length of the next entry has changed, so
618 * we need to cascade the update throughout the ziplist */
619 if (nextdiff != 0) {
620 offset = p-zl;
621 zl = __ziplistCascadeUpdate(zl,p+reqlen);
622 p = zl+offset;
623 }
624
625 /* Write the entry */
626 p += zipPrevEncodeLength(p,prevlen);
627 p += zipEncodeLength(p,encoding,slen);
628 if (ZIP_IS_STR(encoding)) {
629 memcpy(p,s,slen);
630 } else {
631 zipSaveInteger(p,value,encoding);
632 }
633 ZIPLIST_INCR_LENGTH(zl,1);
634 return zl;
635}
636
637unsigned char *ziplistPush(unsigned char *zl, unsigned char *s, unsigned int slen, int where) {
638 unsigned char *p;
639 p = (where == ZIPLIST_HEAD) ? ZIPLIST_ENTRY_HEAD(zl) : ZIPLIST_ENTRY_END(zl);
640 return __ziplistInsert(zl,p,s,slen);
641}
642
643/* Returns an offset to use for iterating with ziplistNext. When the given
644 * index is negative, the list is traversed back to front. When the list
645 * doesn't contain an element at the provided index, NULL is returned. */
646unsigned char *ziplistIndex(unsigned char *zl, int index) {
647 unsigned char *p;
648 zlentry entry;
649 if (index < 0) {
650 index = (-index)-1;
651 p = ZIPLIST_ENTRY_TAIL(zl);
652 if (p[0] != ZIP_END) {
653 entry = zipEntry(p);
654 while (entry.prevrawlen > 0 && index--) {
655 p -= entry.prevrawlen;
656 entry = zipEntry(p);
657 }
658 }
659 } else {
660 p = ZIPLIST_ENTRY_HEAD(zl);
661 while (p[0] != ZIP_END && index--) {
662 p += zipRawEntryLength(p);
663 }
664 }
665 return (p[0] == ZIP_END || index > 0) ? NULL : p;
666}
667
668/* Return pointer to next entry in ziplist.
669 *
670 * zl is the pointer to the ziplist
671 * p is the pointer to the current element
672 *
673 * The element after 'p' is returned, otherwise NULL if we are at the end. */
674unsigned char *ziplistNext(unsigned char *zl, unsigned char *p) {
675 ((void) zl);
676
677 /* "p" could be equal to ZIP_END, caused by ziplistDelete,
678 * and we should return NULL. Otherwise, we should return NULL
679 * when the *next* element is ZIP_END (there is no next entry). */
680 if (p[0] == ZIP_END) {
681 return NULL;
682 }
683
684 p += zipRawEntryLength(p);
685 if (p[0] == ZIP_END) {
686 return NULL;
687 }
688
689 return p;
690}
691
692/* Return pointer to previous entry in ziplist. */
693unsigned char *ziplistPrev(unsigned char *zl, unsigned char *p) {
694 zlentry entry;
695
696 /* Iterating backwards from ZIP_END should return the tail. When "p" is
697 * equal to the first element of the list, we're already at the head,
698 * and should return NULL. */
699 if (p[0] == ZIP_END) {
700 p = ZIPLIST_ENTRY_TAIL(zl);
701 return (p[0] == ZIP_END) ? NULL : p;
702 } else if (p == ZIPLIST_ENTRY_HEAD(zl)) {
703 return NULL;
704 } else {
705 entry = zipEntry(p);
706 assert(entry.prevrawlen > 0);
707 return p-entry.prevrawlen;
708 }
709}
710
711/* Get entry pointer to by 'p' and store in either 'e' or 'v' depending
712 * on the encoding of the entry. 'e' is always set to NULL to be able
713 * to find out whether the string pointer or the integer value was set.
714 * Return 0 if 'p' points to the end of the zipmap, 1 otherwise. */
715unsigned int ziplistGet(unsigned char *p, unsigned char **sstr, unsigned int *slen, long long *sval) {
716 zlentry entry;
717 if (p == NULL || p[0] == ZIP_END) return 0;
718 if (sstr) *sstr = NULL;
719
720 entry = zipEntry(p);
721 if (ZIP_IS_STR(entry.encoding)) {
722 if (sstr) {
723 *slen = entry.len;
724 *sstr = p+entry.headersize;
725 }
726 } else {
727 if (sval) {
728 *sval = zipLoadInteger(p+entry.headersize,entry.encoding);
729 }
730 }
731 return 1;
732}
733
734/* Insert an entry at "p". */
735unsigned char *ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
736 return __ziplistInsert(zl,p,s,slen);
737}
738
739/* Delete a single entry from the ziplist, pointed to by *p.
740 * Also update *p in place, to be able to iterate over the
741 * ziplist, while deleting entries. */
742unsigned char *ziplistDelete(unsigned char *zl, unsigned char **p) {
743 size_t offset = *p-zl;
744 zl = __ziplistDelete(zl,*p,1);
745
746 /* Store pointer to current element in p, because ziplistDelete will
747 * do a realloc which might result in a different "zl"-pointer.
748 * When the delete direction is back to front, we might delete the last
749 * entry and end up with "p" pointing to ZIP_END, so check this. */
750 *p = zl+offset;
751 return zl;
752}
753
754/* Delete a range of entries from the ziplist. */
755unsigned char *ziplistDeleteRange(unsigned char *zl, unsigned int index, unsigned int num) {
756 unsigned char *p = ziplistIndex(zl,index);
757 return (p == NULL) ? zl : __ziplistDelete(zl,p,num);
758}
759
760/* Compare entry pointer to by 'p' with 'entry'. Return 1 if equal. */
761unsigned int ziplistCompare(unsigned char *p, unsigned char *sstr, unsigned int slen) {
762 zlentry entry;
763 unsigned char sencoding;
764 long long zval, sval;
765 if (p[0] == ZIP_END) return 0;
766
767 entry = zipEntry(p);
768 if (ZIP_IS_STR(entry.encoding)) {
769 /* Raw compare */
770 if (entry.len == slen) {
771 return memcmp(p+entry.headersize,sstr,slen) == 0;
772 } else {
773 return 0;
774 }
775 } else {
776 /* Try to compare encoded values */
777 if (zipTryEncoding(sstr,slen,&sval,&sencoding)) {
778 if (entry.encoding == sencoding) {
779 zval = zipLoadInteger(p+entry.headersize,entry.encoding);
780 return zval == sval;
781 }
782 }
783 }
784 return 0;
785}
786
787/* Find pointer to the entry equal to the specified entry. Skip 'skip' entries
788 * between every comparison. Returns NULL when the field could not be found. */
789unsigned char *ziplistFind(unsigned char *p, unsigned char *vstr, unsigned int vlen, unsigned int skip) {
790 int skipcnt = 0;
791 unsigned char vencoding = 0;
792 long long vll = 0;
793
794 while (p[0] != ZIP_END) {
795 unsigned int prevlensize, encoding, lensize, len;
796 unsigned char *q;
797
798 ZIP_DECODE_PREVLENSIZE(p, prevlensize);
799 ZIP_DECODE_LENGTH(p + prevlensize, encoding, lensize, len);
800 q = p + prevlensize + lensize;
801
802 if (skipcnt == 0) {
803 /* Compare current entry with specified entry */
804 if (ZIP_IS_STR(encoding)) {
805 if (len == vlen && memcmp(q, vstr, vlen) == 0) {
806 return p;
807 }
808 } else {
809 /* Find out if the specified entry can be encoded */
810 if (vencoding == 0) {
811 /* UINT_MAX when the entry CANNOT be encoded */
812 if (!zipTryEncoding(vstr, vlen, &vll, &vencoding)) {
813 vencoding = UCHAR_MAX;
814 }
815
816 /* Must be non-zero by now */
817 assert(vencoding);
818 }
819
820 /* Compare current entry with specified entry */
821 if (encoding == vencoding) {
822 long long ll = zipLoadInteger(q, encoding);
823 if (ll == vll) {
824 return p;
825 }
826 }
827 }
828
829 /* Reset skip count */
830 skipcnt = skip;
831 } else {
832 /* Skip entry */
833 skipcnt--;
834 }
835
836 /* Move to next entry */
837 p = q + len;
838 }
839
840 return NULL;
841}
842
843/* Return length of ziplist. */
844unsigned int ziplistLen(unsigned char *zl) {
845 unsigned int len = 0;
846 if (intrev16ifbe(ZIPLIST_LENGTH(zl)) < UINT16_MAX) {
847 len = intrev16ifbe(ZIPLIST_LENGTH(zl));
848 } else {
849 unsigned char *p = zl+ZIPLIST_HEADER_SIZE;
850 while (*p != ZIP_END) {
851 p += zipRawEntryLength(p);
852 len++;
853 }
854
855 /* Re-store length if small enough */
856 if (len < UINT16_MAX) ZIPLIST_LENGTH(zl) = intrev16ifbe(len);
857 }
858 return len;
859}
860
861/* Return ziplist blob size in bytes. */
862size_t ziplistBlobLen(unsigned char *zl) {
863 return intrev32ifbe(ZIPLIST_BYTES(zl));
864}
865
866void ziplistRepr(unsigned char *zl) {
867 unsigned char *p;
868 int index = 0;
869 zlentry entry;
870
871 printf(
872 "{total bytes %d} "
873 "{length %u}\n"
874 "{tail offset %u}\n",
875 intrev32ifbe(ZIPLIST_BYTES(zl)),
876 intrev16ifbe(ZIPLIST_LENGTH(zl)),
877 intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl)));
878 p = ZIPLIST_ENTRY_HEAD(zl);
879 while(*p != ZIP_END) {
880 entry = zipEntry(p);
881 printf(
882 "{"
883 "addr 0x%08lx, "
884 "index %2d, "
885 "offset %5ld, "
886 "rl: %5u, "
887 "hs %2u, "
888 "pl: %5u, "
889 "pls: %2u, "
890 "payload %5u"
891 "} ",
892 (long unsigned)p,
893 index,
894 (unsigned long) (p-zl),
895 entry.headersize+entry.len,
896 entry.headersize,
897 entry.prevrawlen,
898 entry.prevrawlensize,
899 entry.len);
900 p += entry.headersize;
901 if (ZIP_IS_STR(entry.encoding)) {
902 if (entry.len > 40) {
903 if (fwrite(p,40,1,stdout) == 0) perror("fwrite");
904 printf("...");
905 } else {
906 if (entry.len &&
907 fwrite(p,entry.len,1,stdout) == 0) perror("fwrite");
908 }
909 } else {
910 printf("%lld", (long long) zipLoadInteger(p,entry.encoding));
911 }
912 printf("\n");
913 p += entry.len;
914 index++;
915 }
916 printf("{end}\n\n");
917}
918
919#ifdef ZIPLIST_TEST_MAIN
920#include <sys/time.h>
921#include "adlist.h"
922#include "sds.h"
923
924#define debug(f, ...) { if (DEBUG) printf(f, __VA_ARGS__); }
925
926unsigned char *createList() {
927 unsigned char *zl = ziplistNew();
928 zl = ziplistPush(zl, (unsigned char*)"foo", 3, ZIPLIST_TAIL);
929 zl = ziplistPush(zl, (unsigned char*)"quux", 4, ZIPLIST_TAIL);
930 zl = ziplistPush(zl, (unsigned char*)"hello", 5, ZIPLIST_HEAD);
931 zl = ziplistPush(zl, (unsigned char*)"1024", 4, ZIPLIST_TAIL);
932 return zl;
933}
934
935unsigned char *createIntList() {
936 unsigned char *zl = ziplistNew();
937 char buf[32];
938
939 sprintf(buf, "100");
940 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
941 sprintf(buf, "128000");
942 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
943 sprintf(buf, "-100");
944 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD);
945 sprintf(buf, "4294967296");
946 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD);
947 sprintf(buf, "non integer");
948 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
949 sprintf(buf, "much much longer non integer");
950 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
951 return zl;
952}
953
954long long usec(void) {
955 struct timeval tv;
956 gettimeofday(&tv,NULL);
957 return (((long long)tv.tv_sec)*1000000)+tv.tv_usec;
958}
959
960void stress(int pos, int num, int maxsize, int dnum) {
961 int i,j,k;
962 unsigned char *zl;
963 char posstr[2][5] = { "HEAD", "TAIL" };
964 long long start;
965 for (i = 0; i < maxsize; i+=dnum) {
966 zl = ziplistNew();
967 for (j = 0; j < i; j++) {
968 zl = ziplistPush(zl,(unsigned char*)"quux",4,ZIPLIST_TAIL);
969 }
970
971 /* Do num times a push+pop from pos */
972 start = usec();
973 for (k = 0; k < num; k++) {
974 zl = ziplistPush(zl,(unsigned char*)"quux",4,pos);
975 zl = ziplistDeleteRange(zl,0,1);
976 }
977 printf("List size: %8d, bytes: %8d, %dx push+pop (%s): %6lld usec\n",
978 i,intrev32ifbe(ZIPLIST_BYTES(zl)),num,posstr[pos],usec()-start);
979 zfree(zl);
980 }
981}
982
983void pop(unsigned char *zl, int where) {
984 unsigned char *p, *vstr;
985 unsigned int vlen;
986 long long vlong;
987
988 p = ziplistIndex(zl,where == ZIPLIST_HEAD ? 0 : -1);
989 if (ziplistGet(p,&vstr,&vlen,&vlong)) {
990 if (where == ZIPLIST_HEAD)
991 printf("Pop head: ");
992 else
993 printf("Pop tail: ");
994
995 if (vstr)
996 if (vlen && fwrite(vstr,vlen,1,stdout) == 0) perror("fwrite");
997 else
998 printf("%lld", vlong);
999
1000 printf("\n");
1001 ziplistDeleteRange(zl,-1,1);
1002 } else {
1003 printf("ERROR: Could not pop\n");
1004 exit(1);
1005 }
1006}
1007
1008int randstring(char *target, unsigned int min, unsigned int max) {
1009 int p, len = min+rand()%(max-min+1);
1010 int minval, maxval;
1011 switch(rand() % 3) {
1012 case 0:
1013 minval = 0;
1014 maxval = 255;
1015 break;
1016 case 1:
1017 minval = 48;
1018 maxval = 122;
1019 break;
1020 case 2:
1021 minval = 48;
1022 maxval = 52;
1023 break;
1024 default:
1025 assert(NULL);
1026 }
1027
1028 while(p < len)
1029 target[p++] = minval+rand()%(maxval-minval+1);
1030 return len;
1031}
1032
1033int main(int argc, char **argv) {
1034 unsigned char *zl, *p;
1035 unsigned char *entry;
1036 unsigned int elen;
1037 long long value;
1038
1039 /* If an argument is given, use it as the random seed. */
1040 if (argc == 2)
1041 srand(atoi(argv[1]));
1042
1043 zl = createIntList();
1044 ziplistRepr(zl);
1045
1046 zl = createList();
1047 ziplistRepr(zl);
1048
1049 pop(zl,ZIPLIST_TAIL);
1050 ziplistRepr(zl);
1051
1052 pop(zl,ZIPLIST_HEAD);
1053 ziplistRepr(zl);
1054
1055 pop(zl,ZIPLIST_TAIL);
1056 ziplistRepr(zl);
1057
1058 pop(zl,ZIPLIST_TAIL);
1059 ziplistRepr(zl);
1060
1061 printf("Get element at index 3:\n");
1062 {
1063 zl = createList();
1064 p = ziplistIndex(zl, 3);
1065 if (!ziplistGet(p, &entry, &elen, &value)) {
1066 printf("ERROR: Could not access index 3\n");
1067 return 1;
1068 }
1069 if (entry) {
1070 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1071 printf("\n");
1072 } else {
1073 printf("%lld\n", value);
1074 }
1075 printf("\n");
1076 }
1077
1078 printf("Get element at index 4 (out of range):\n");
1079 {
1080 zl = createList();
1081 p = ziplistIndex(zl, 4);
1082 if (p == NULL) {
1083 printf("No entry\n");
1084 } else {
1085 printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", p-zl);
1086 return 1;
1087 }
1088 printf("\n");
1089 }
1090
1091 printf("Get element at index -1 (last element):\n");
1092 {
1093 zl = createList();
1094 p = ziplistIndex(zl, -1);
1095 if (!ziplistGet(p, &entry, &elen, &value)) {
1096 printf("ERROR: Could not access index -1\n");
1097 return 1;
1098 }
1099 if (entry) {
1100 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1101 printf("\n");
1102 } else {
1103 printf("%lld\n", value);
1104 }
1105 printf("\n");
1106 }
1107
1108 printf("Get element at index -4 (first element):\n");
1109 {
1110 zl = createList();
1111 p = ziplistIndex(zl, -4);
1112 if (!ziplistGet(p, &entry, &elen, &value)) {
1113 printf("ERROR: Could not access index -4\n");
1114 return 1;
1115 }
1116 if (entry) {
1117 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1118 printf("\n");
1119 } else {
1120 printf("%lld\n", value);
1121 }
1122 printf("\n");
1123 }
1124
1125 printf("Get element at index -5 (reverse out of range):\n");
1126 {
1127 zl = createList();
1128 p = ziplistIndex(zl, -5);
1129 if (p == NULL) {
1130 printf("No entry\n");
1131 } else {
1132 printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", p-zl);
1133 return 1;
1134 }
1135 printf("\n");
1136 }
1137
1138 printf("Iterate list from 0 to end:\n");
1139 {
1140 zl = createList();
1141 p = ziplistIndex(zl, 0);
1142 while (ziplistGet(p, &entry, &elen, &value)) {
1143 printf("Entry: ");
1144 if (entry) {
1145 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1146 } else {
1147 printf("%lld", value);
1148 }
1149 p = ziplistNext(zl,p);
1150 printf("\n");
1151 }
1152 printf("\n");
1153 }
1154
1155 printf("Iterate list from 1 to end:\n");
1156 {
1157 zl = createList();
1158 p = ziplistIndex(zl, 1);
1159 while (ziplistGet(p, &entry, &elen, &value)) {
1160 printf("Entry: ");
1161 if (entry) {
1162 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1163 } else {
1164 printf("%lld", value);
1165 }
1166 p = ziplistNext(zl,p);
1167 printf("\n");
1168 }
1169 printf("\n");
1170 }
1171
1172 printf("Iterate list from 2 to end:\n");
1173 {
1174 zl = createList();
1175 p = ziplistIndex(zl, 2);
1176 while (ziplistGet(p, &entry, &elen, &value)) {
1177 printf("Entry: ");
1178 if (entry) {
1179 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1180 } else {
1181 printf("%lld", value);
1182 }
1183 p = ziplistNext(zl,p);
1184 printf("\n");
1185 }
1186 printf("\n");
1187 }
1188
1189 printf("Iterate starting out of range:\n");
1190 {
1191 zl = createList();
1192 p = ziplistIndex(zl, 4);
1193 if (!ziplistGet(p, &entry, &elen, &value)) {
1194 printf("No entry\n");
1195 } else {
1196 printf("ERROR\n");
1197 }
1198 printf("\n");
1199 }
1200
1201 printf("Iterate from back to front:\n");
1202 {
1203 zl = createList();
1204 p = ziplistIndex(zl, -1);
1205 while (ziplistGet(p, &entry, &elen, &value)) {
1206 printf("Entry: ");
1207 if (entry) {
1208 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1209 } else {
1210 printf("%lld", value);
1211 }
1212 p = ziplistPrev(zl,p);
1213 printf("\n");
1214 }
1215 printf("\n");
1216 }
1217
1218 printf("Iterate from back to front, deleting all items:\n");
1219 {
1220 zl = createList();
1221 p = ziplistIndex(zl, -1);
1222 while (ziplistGet(p, &entry, &elen, &value)) {
1223 printf("Entry: ");
1224 if (entry) {
1225 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1226 } else {
1227 printf("%lld", value);
1228 }
1229 zl = ziplistDelete(zl,&p);
1230 p = ziplistPrev(zl,p);
1231 printf("\n");
1232 }
1233 printf("\n");
1234 }
1235
1236 printf("Delete inclusive range 0,0:\n");
1237 {
1238 zl = createList();
1239 zl = ziplistDeleteRange(zl, 0, 1);
1240 ziplistRepr(zl);
1241 }
1242
1243 printf("Delete inclusive range 0,1:\n");
1244 {
1245 zl = createList();
1246 zl = ziplistDeleteRange(zl, 0, 2);
1247 ziplistRepr(zl);
1248 }
1249
1250 printf("Delete inclusive range 1,2:\n");
1251 {
1252 zl = createList();
1253 zl = ziplistDeleteRange(zl, 1, 2);
1254 ziplistRepr(zl);
1255 }
1256
1257 printf("Delete with start index out of range:\n");
1258 {
1259 zl = createList();
1260 zl = ziplistDeleteRange(zl, 5, 1);
1261 ziplistRepr(zl);
1262 }
1263
1264 printf("Delete with num overflow:\n");
1265 {
1266 zl = createList();
1267 zl = ziplistDeleteRange(zl, 1, 5);
1268 ziplistRepr(zl);
1269 }
1270
1271 printf("Delete foo while iterating:\n");
1272 {
1273 zl = createList();
1274 p = ziplistIndex(zl,0);
1275 while (ziplistGet(p,&entry,&elen,&value)) {
1276 if (entry && strncmp("foo",(char*)entry,elen) == 0) {
1277 printf("Delete foo\n");
1278 zl = ziplistDelete(zl,&p);
1279 } else {
1280 printf("Entry: ");
1281 if (entry) {
1282 if (elen && fwrite(entry,elen,1,stdout) == 0)
1283 perror("fwrite");
1284 } else {
1285 printf("%lld",value);
1286 }
1287 p = ziplistNext(zl,p);
1288 printf("\n");
1289 }
1290 }
1291 printf("\n");
1292 ziplistRepr(zl);
1293 }
1294
1295 printf("Regression test for >255 byte strings:\n");
1296 {
1297 char v1[257],v2[257];
1298 memset(v1,'x',256);
1299 memset(v2,'y',256);
1300 zl = ziplistNew();
1301 zl = ziplistPush(zl,(unsigned char*)v1,strlen(v1),ZIPLIST_TAIL);
1302 zl = ziplistPush(zl,(unsigned char*)v2,strlen(v2),ZIPLIST_TAIL);
1303
1304 /* Pop values again and compare their value. */
1305 p = ziplistIndex(zl,0);
1306 assert(ziplistGet(p,&entry,&elen,&value));
1307 assert(strncmp(v1,(char*)entry,elen) == 0);
1308 p = ziplistIndex(zl,1);
1309 assert(ziplistGet(p,&entry,&elen,&value));
1310 assert(strncmp(v2,(char*)entry,elen) == 0);
1311 printf("SUCCESS\n\n");
1312 }
1313
1314 printf("Create long list and check indices:\n");
1315 {
1316 zl = ziplistNew();
1317 char buf[32];
1318 int i,len;
1319 for (i = 0; i < 1000; i++) {
1320 len = sprintf(buf,"%d",i);
1321 zl = ziplistPush(zl,(unsigned char*)buf,len,ZIPLIST_TAIL);
1322 }
1323 for (i = 0; i < 1000; i++) {
1324 p = ziplistIndex(zl,i);
1325 assert(ziplistGet(p,NULL,NULL,&value));
1326 assert(i == value);
1327
1328 p = ziplistIndex(zl,-i-1);
1329 assert(ziplistGet(p,NULL,NULL,&value));
1330 assert(999-i == value);
1331 }
1332 printf("SUCCESS\n\n");
1333 }
1334
1335 printf("Compare strings with ziplist entries:\n");
1336 {
1337 zl = createList();
1338 p = ziplistIndex(zl,0);
1339 if (!ziplistCompare(p,(unsigned char*)"hello",5)) {
1340 printf("ERROR: not \"hello\"\n");
1341 return 1;
1342 }
1343 if (ziplistCompare(p,(unsigned char*)"hella",5)) {
1344 printf("ERROR: \"hella\"\n");
1345 return 1;
1346 }
1347
1348 p = ziplistIndex(zl,3);
1349 if (!ziplistCompare(p,(unsigned char*)"1024",4)) {
1350 printf("ERROR: not \"1024\"\n");
1351 return 1;
1352 }
1353 if (ziplistCompare(p,(unsigned char*)"1025",4)) {
1354 printf("ERROR: \"1025\"\n");
1355 return 1;
1356 }
1357 printf("SUCCESS\n\n");
1358 }
1359
1360 printf("Stress with random payloads of different encoding:\n");
1361 {
1362 int i,j,len,where;
1363 unsigned char *p;
1364 char buf[1024];
1365 int buflen;
1366 list *ref;
1367 listNode *refnode;
1368
1369 /* Hold temp vars from ziplist */
1370 unsigned char *sstr;
1371 unsigned int slen;
1372 long long sval;
1373
1374 for (i = 0; i < 20000; i++) {
1375 zl = ziplistNew();
1376 ref = listCreate();
1377 listSetFreeMethod(ref,sdsfree);
1378 len = rand() % 256;
1379
1380 /* Create lists */
1381 for (j = 0; j < len; j++) {
1382 where = (rand() & 1) ? ZIPLIST_HEAD : ZIPLIST_TAIL;
1383 if (rand() % 2) {
1384 buflen = randstring(buf,1,sizeof(buf)-1);
1385 } else {
1386 switch(rand() % 3) {
1387 case 0:
1388 buflen = sprintf(buf,"%lld",(0LL + rand()) >> 20);
1389 break;
1390 case 1:
1391 buflen = sprintf(buf,"%lld",(0LL + rand()));
1392 break;
1393 case 2:
1394 buflen = sprintf(buf,"%lld",(0LL + rand()) << 20);
1395 break;
1396 default:
1397 assert(NULL);
1398 }
1399 }
1400
1401 /* Add to ziplist */
1402 zl = ziplistPush(zl, (unsigned char*)buf, buflen, where);
1403
1404 /* Add to reference list */
1405 if (where == ZIPLIST_HEAD) {
1406 listAddNodeHead(ref,sdsnewlen(buf, buflen));
1407 } else if (where == ZIPLIST_TAIL) {
1408 listAddNodeTail(ref,sdsnewlen(buf, buflen));
1409 } else {
1410 assert(NULL);
1411 }
1412 }
1413
1414 assert(listLength(ref) == ziplistLen(zl));
1415 for (j = 0; j < len; j++) {
1416 /* Naive way to get elements, but similar to the stresser
1417 * executed from the Tcl test suite. */
1418 p = ziplistIndex(zl,j);
1419 refnode = listIndex(ref,j);
1420
1421 assert(ziplistGet(p,&sstr,&slen,&sval));
1422 if (sstr == NULL) {
1423 buflen = sprintf(buf,"%lld",sval);
1424 } else {
1425 buflen = slen;
1426 memcpy(buf,sstr,buflen);
1427 buf[buflen] = '\0';
1428 }
1429 assert(memcmp(buf,listNodeValue(refnode),buflen) == 0);
1430 }
1431 zfree(zl);
1432 listRelease(ref);
1433 }
1434 printf("SUCCESS\n\n");
1435 }
1436
1437 printf("Stress with variable ziplist size:\n");
1438 {
1439 stress(ZIPLIST_HEAD,100000,16384,256);
1440 stress(ZIPLIST_TAIL,100000,16384,256);
1441 }
1442
1443 return 0;
1444}
1445
1446#endif