]>
Commit | Line | Data |
---|---|---|
1 | /* String -> String Map data structure optimized for size. | |
2 | * This file implements a data structure mapping strings to other strings | |
3 | * implementing an O(n) lookup data structure designed to be very memory | |
4 | * efficient. | |
5 | * | |
6 | * The Redis Hash type uses this data structure for hashes composed of a small | |
7 | * number of elements, to switch to an hash table once a given number of | |
8 | * elements is reached. | |
9 | * | |
10 | * Given that many times Redis Hashes are used to represent objects composed | |
11 | * of few fields, this is a very big win in terms of used memory. | |
12 | * | |
13 | * -------------------------------------------------------------------------- | |
14 | * | |
15 | * Copyright (c) 2009-2010, Salvatore Sanfilippo <antirez at gmail dot com> | |
16 | * All rights reserved. | |
17 | * | |
18 | * Redistribution and use in source and binary forms, with or without | |
19 | * modification, are permitted provided that the following conditions are met: | |
20 | * | |
21 | * * Redistributions of source code must retain the above copyright notice, | |
22 | * this list of conditions and the following disclaimer. | |
23 | * * Redistributions in binary form must reproduce the above copyright | |
24 | * notice, this list of conditions and the following disclaimer in the | |
25 | * documentation and/or other materials provided with the distribution. | |
26 | * * Neither the name of Redis nor the names of its contributors may be used | |
27 | * to endorse or promote products derived from this software without | |
28 | * specific prior written permission. | |
29 | * | |
30 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
31 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
32 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
33 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
34 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
35 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
36 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
37 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
38 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
39 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
40 | * POSSIBILITY OF SUCH DAMAGE. | |
41 | */ | |
42 | ||
43 | /* Memory layout of a zipmap, for the map "foo" => "bar", "hello" => "world": | |
44 | * | |
45 | * <zmlen><len>"foo"<len><free>"bar"<len>"hello"<len><free>"world" | |
46 | * | |
47 | * <zmlen> is 1 byte length that holds the current size of the zipmap. | |
48 | * When the zipmap length is greater than or equal to 254, this value | |
49 | * is not used and the zipmap needs to be traversed to find out the length. | |
50 | * | |
51 | * <len> is the length of the following string (key or value). | |
52 | * <len> lengths are encoded in a single value or in a 5 bytes value. | |
53 | * If the first byte value (as an unsigned 8 bit value) is between 0 and | |
54 | * 252, it's a single-byte length. If it is 253 then a four bytes unsigned | |
55 | * integer follows (in the host byte ordering). A value fo 255 is used to | |
56 | * signal the end of the hash. The special value 254 is used to mark | |
57 | * empty space that can be used to add new key/value pairs. | |
58 | * | |
59 | * <free> is the number of free unused bytes | |
60 | * after the string, resulting from modification of values associated to a | |
61 | * key (for instance if "foo" is set to "bar', and later "foo" will be se to | |
62 | * "hi", I'll have a free byte to use if the value will enlarge again later, | |
63 | * or even in order to add a key/value pair if it fits. | |
64 | * | |
65 | * <free> is always an unsigned 8 bit number, because if after an | |
66 | * update operation there are more than a few free bytes, the zipmap will be | |
67 | * reallocated to make sure it is as small as possible. | |
68 | * | |
69 | * The most compact representation of the above two elements hash is actually: | |
70 | * | |
71 | * "\x02\x03foo\x03\x00bar\x05hello\x05\x00world\xff" | |
72 | * | |
73 | * Note that because keys and values are prefixed length "objects", | |
74 | * the lookup will take O(N) where N is the number of elements | |
75 | * in the zipmap and *not* the number of bytes needed to represent the zipmap. | |
76 | * This lowers the constant times considerably. | |
77 | */ | |
78 | ||
79 | #include <stdio.h> | |
80 | #include <string.h> | |
81 | #include <assert.h> | |
82 | #include "zmalloc.h" | |
83 | ||
84 | #define ZIPMAP_BIGLEN 254 | |
85 | #define ZIPMAP_END 255 | |
86 | ||
87 | /* The following defines the max value for the <free> field described in the | |
88 | * comments above, that is, the max number of trailing bytes in a value. */ | |
89 | #define ZIPMAP_VALUE_MAX_FREE 4 | |
90 | ||
91 | /* The following macro returns the number of bytes needed to encode the length | |
92 | * for the integer value _l, that is, 1 byte for lengths < ZIPMAP_BIGLEN and | |
93 | * 5 bytes for all the other lengths. */ | |
94 | #define ZIPMAP_LEN_BYTES(_l) (((_l) < ZIPMAP_BIGLEN) ? 1 : sizeof(unsigned int)+1) | |
95 | ||
96 | /* Create a new empty zipmap. */ | |
97 | unsigned char *zipmapNew(void) { | |
98 | unsigned char *zm = zmalloc(2); | |
99 | ||
100 | zm[0] = 0; /* Length */ | |
101 | zm[1] = ZIPMAP_END; | |
102 | return zm; | |
103 | } | |
104 | ||
105 | /* Decode the encoded length pointed by 'p' */ | |
106 | static unsigned int zipmapDecodeLength(unsigned char *p) { | |
107 | unsigned int len = *p; | |
108 | ||
109 | if (len < ZIPMAP_BIGLEN) return len; | |
110 | memcpy(&len,p+1,sizeof(unsigned int)); | |
111 | return len; | |
112 | } | |
113 | ||
114 | /* Encode the length 'l' writing it in 'p'. If p is NULL it just returns | |
115 | * the amount of bytes required to encode such a length. */ | |
116 | static unsigned int zipmapEncodeLength(unsigned char *p, unsigned int len) { | |
117 | if (p == NULL) { | |
118 | return ZIPMAP_LEN_BYTES(len); | |
119 | } else { | |
120 | if (len < ZIPMAP_BIGLEN) { | |
121 | p[0] = len; | |
122 | return 1; | |
123 | } else { | |
124 | p[0] = ZIPMAP_BIGLEN; | |
125 | memcpy(p+1,&len,sizeof(len)); | |
126 | return 1+sizeof(len); | |
127 | } | |
128 | } | |
129 | } | |
130 | ||
131 | /* Search for a matching key, returning a pointer to the entry inside the | |
132 | * zipmap. Returns NULL if the key is not found. | |
133 | * | |
134 | * If NULL is returned, and totlen is not NULL, it is set to the entire | |
135 | * size of the zimap, so that the calling function will be able to | |
136 | * reallocate the original zipmap to make room for more entries. */ | |
137 | static unsigned char *zipmapLookupRaw(unsigned char *zm, unsigned char *key, unsigned int klen, unsigned int *totlen) { | |
138 | unsigned char *p = zm+1, *k = NULL; | |
139 | unsigned int l,llen; | |
140 | ||
141 | while(*p != ZIPMAP_END) { | |
142 | unsigned char free; | |
143 | ||
144 | /* Match or skip the key */ | |
145 | l = zipmapDecodeLength(p); | |
146 | llen = zipmapEncodeLength(NULL,l); | |
147 | if (key != NULL && k == NULL && l == klen && !memcmp(p+llen,key,l)) { | |
148 | /* Only return when the user doesn't care | |
149 | * for the total length of the zipmap. */ | |
150 | if (totlen != NULL) { | |
151 | k = p; | |
152 | } else { | |
153 | return p; | |
154 | } | |
155 | } | |
156 | p += llen+l; | |
157 | /* Skip the value as well */ | |
158 | l = zipmapDecodeLength(p); | |
159 | p += zipmapEncodeLength(NULL,l); | |
160 | free = p[0]; | |
161 | p += l+1+free; /* +1 to skip the free byte */ | |
162 | } | |
163 | if (totlen != NULL) *totlen = (unsigned int)(p-zm)+1; | |
164 | return k; | |
165 | } | |
166 | ||
167 | static unsigned long zipmapRequiredLength(unsigned int klen, unsigned int vlen) { | |
168 | unsigned int l; | |
169 | ||
170 | l = klen+vlen+3; | |
171 | if (klen >= ZIPMAP_BIGLEN) l += 4; | |
172 | if (vlen >= ZIPMAP_BIGLEN) l += 4; | |
173 | return l; | |
174 | } | |
175 | ||
176 | /* Return the total amount used by a key (encoded length + payload) */ | |
177 | static unsigned int zipmapRawKeyLength(unsigned char *p) { | |
178 | unsigned int l = zipmapDecodeLength(p); | |
179 | return zipmapEncodeLength(NULL,l) + l; | |
180 | } | |
181 | ||
182 | /* Return the total amount used by a value | |
183 | * (encoded length + single byte free count + payload) */ | |
184 | static unsigned int zipmapRawValueLength(unsigned char *p) { | |
185 | unsigned int l = zipmapDecodeLength(p); | |
186 | unsigned int used; | |
187 | ||
188 | used = zipmapEncodeLength(NULL,l); | |
189 | used += p[used] + 1 + l; | |
190 | return used; | |
191 | } | |
192 | ||
193 | /* If 'p' points to a key, this function returns the total amount of | |
194 | * bytes used to store this entry (entry = key + associated value + trailing | |
195 | * free space if any). */ | |
196 | static unsigned int zipmapRawEntryLength(unsigned char *p) { | |
197 | unsigned int l = zipmapRawKeyLength(p); | |
198 | return l + zipmapRawValueLength(p+l); | |
199 | } | |
200 | ||
201 | static inline unsigned char *zipmapResize(unsigned char *zm, unsigned int len) { | |
202 | zm = zrealloc(zm, len); | |
203 | zm[len-1] = ZIPMAP_END; | |
204 | return zm; | |
205 | } | |
206 | ||
207 | /* Set key to value, creating the key if it does not already exist. | |
208 | * If 'update' is not NULL, *update is set to 1 if the key was | |
209 | * already preset, otherwise to 0. */ | |
210 | unsigned char *zipmapSet(unsigned char *zm, unsigned char *key, unsigned int klen, unsigned char *val, unsigned int vlen, int *update) { | |
211 | unsigned int zmlen, offset; | |
212 | unsigned int freelen, reqlen = zipmapRequiredLength(klen,vlen); | |
213 | unsigned int empty, vempty; | |
214 | unsigned char *p; | |
215 | ||
216 | freelen = reqlen; | |
217 | if (update) *update = 0; | |
218 | p = zipmapLookupRaw(zm,key,klen,&zmlen); | |
219 | if (p == NULL) { | |
220 | /* Key not found: enlarge */ | |
221 | zm = zipmapResize(zm, zmlen+reqlen); | |
222 | p = zm+zmlen-1; | |
223 | zmlen = zmlen+reqlen; | |
224 | ||
225 | /* Increase zipmap length (this is an insert) */ | |
226 | if (zm[0] < ZIPMAP_BIGLEN) zm[0]++; | |
227 | } else { | |
228 | /* Key found. Is there enough space for the new value? */ | |
229 | /* Compute the total length: */ | |
230 | if (update) *update = 1; | |
231 | freelen = zipmapRawEntryLength(p); | |
232 | if (freelen < reqlen) { | |
233 | /* Store the offset of this key within the current zipmap, so | |
234 | * it can be resized. Then, move the tail backwards so this | |
235 | * pair fits at the current position. */ | |
236 | offset = p-zm; | |
237 | zm = zipmapResize(zm, zmlen-freelen+reqlen); | |
238 | p = zm+offset; | |
239 | ||
240 | /* The +1 in the number of bytes to be moved is caused by the | |
241 | * end-of-zipmap byte. Note: the *original* zmlen is used. */ | |
242 | memmove(p+reqlen, p+freelen, zmlen-(offset+freelen+1)); | |
243 | zmlen = zmlen-freelen+reqlen; | |
244 | freelen = reqlen; | |
245 | } | |
246 | } | |
247 | ||
248 | /* We now have a suitable block where the key/value entry can | |
249 | * be written. If there is too much free space, move the tail | |
250 | * of the zipmap a few bytes to the front and shrink the zipmap, | |
251 | * as we want zipmaps to be very space efficient. */ | |
252 | empty = freelen-reqlen; | |
253 | if (empty >= ZIPMAP_VALUE_MAX_FREE) { | |
254 | /* First, move the tail <empty> bytes to the front, then resize | |
255 | * the zipmap to be <empty> bytes smaller. */ | |
256 | offset = p-zm; | |
257 | memmove(p+reqlen, p+freelen, zmlen-(offset+freelen+1)); | |
258 | zmlen -= empty; | |
259 | zm = zipmapResize(zm, zmlen); | |
260 | p = zm+offset; | |
261 | vempty = 0; | |
262 | } else { | |
263 | vempty = empty; | |
264 | } | |
265 | ||
266 | /* Just write the key + value and we are done. */ | |
267 | /* Key: */ | |
268 | p += zipmapEncodeLength(p,klen); | |
269 | memcpy(p,key,klen); | |
270 | p += klen; | |
271 | /* Value: */ | |
272 | p += zipmapEncodeLength(p,vlen); | |
273 | *p++ = vempty; | |
274 | memcpy(p,val,vlen); | |
275 | return zm; | |
276 | } | |
277 | ||
278 | /* Remove the specified key. If 'deleted' is not NULL the pointed integer is | |
279 | * set to 0 if the key was not found, to 1 if it was found and deleted. */ | |
280 | unsigned char *zipmapDel(unsigned char *zm, unsigned char *key, unsigned int klen, int *deleted) { | |
281 | unsigned int zmlen, freelen; | |
282 | unsigned char *p = zipmapLookupRaw(zm,key,klen,&zmlen); | |
283 | if (p) { | |
284 | freelen = zipmapRawEntryLength(p); | |
285 | memmove(p, p+freelen, zmlen-((p-zm)+freelen+1)); | |
286 | zm = zipmapResize(zm, zmlen-freelen); | |
287 | ||
288 | /* Decrease zipmap length */ | |
289 | if (zm[0] < ZIPMAP_BIGLEN) zm[0]--; | |
290 | ||
291 | if (deleted) *deleted = 1; | |
292 | } else { | |
293 | if (deleted) *deleted = 0; | |
294 | } | |
295 | return zm; | |
296 | } | |
297 | ||
298 | /* Call it before to iterate trought elements via zipmapNext() */ | |
299 | unsigned char *zipmapRewind(unsigned char *zm) { | |
300 | return zm+1; | |
301 | } | |
302 | ||
303 | /* This function is used to iterate through all the zipmap elements. | |
304 | * In the first call the first argument is the pointer to the zipmap + 1. | |
305 | * In the next calls what zipmapNext returns is used as first argument. | |
306 | * Example: | |
307 | * | |
308 | * unsigned char *i = zipmapRewind(my_zipmap); | |
309 | * while((i = zipmapNext(i,&key,&klen,&value,&vlen)) != NULL) { | |
310 | * printf("%d bytes key at $p\n", klen, key); | |
311 | * printf("%d bytes value at $p\n", vlen, value); | |
312 | * } | |
313 | */ | |
314 | unsigned char *zipmapNext(unsigned char *zm, unsigned char **key, unsigned int *klen, unsigned char **value, unsigned int *vlen) { | |
315 | if (zm[0] == ZIPMAP_END) return NULL; | |
316 | if (key) { | |
317 | *key = zm; | |
318 | *klen = zipmapDecodeLength(zm); | |
319 | *key += ZIPMAP_LEN_BYTES(*klen); | |
320 | } | |
321 | zm += zipmapRawKeyLength(zm); | |
322 | if (value) { | |
323 | *value = zm+1; | |
324 | *vlen = zipmapDecodeLength(zm); | |
325 | *value += ZIPMAP_LEN_BYTES(*vlen); | |
326 | } | |
327 | zm += zipmapRawValueLength(zm); | |
328 | return zm; | |
329 | } | |
330 | ||
331 | /* Search a key and retrieve the pointer and len of the associated value. | |
332 | * If the key is found the function returns 1, otherwise 0. */ | |
333 | int zipmapGet(unsigned char *zm, unsigned char *key, unsigned int klen, unsigned char **value, unsigned int *vlen) { | |
334 | unsigned char *p; | |
335 | ||
336 | if ((p = zipmapLookupRaw(zm,key,klen,NULL)) == NULL) return 0; | |
337 | p += zipmapRawKeyLength(p); | |
338 | *vlen = zipmapDecodeLength(p); | |
339 | *value = p + ZIPMAP_LEN_BYTES(*vlen) + 1; | |
340 | return 1; | |
341 | } | |
342 | ||
343 | /* Return 1 if the key exists, otherwise 0 is returned. */ | |
344 | int zipmapExists(unsigned char *zm, unsigned char *key, unsigned int klen) { | |
345 | return zipmapLookupRaw(zm,key,klen,NULL) != NULL; | |
346 | } | |
347 | ||
348 | /* Return the number of entries inside a zipmap */ | |
349 | unsigned int zipmapLen(unsigned char *zm) { | |
350 | unsigned int len = 0; | |
351 | if (zm[0] < ZIPMAP_BIGLEN) { | |
352 | len = zm[0]; | |
353 | } else { | |
354 | unsigned char *p = zipmapRewind(zm); | |
355 | while((p = zipmapNext(p,NULL,NULL,NULL,NULL)) != NULL) len++; | |
356 | ||
357 | /* Re-store length if small enough */ | |
358 | if (len < ZIPMAP_BIGLEN) zm[0] = len; | |
359 | } | |
360 | return len; | |
361 | } | |
362 | ||
363 | /* Return the raw size in bytes of a zipmap, so that we can serialize | |
364 | * the zipmap on disk (or everywhere is needed) just writing the returned | |
365 | * amount of bytes of the C array starting at the zipmap pointer. */ | |
366 | size_t zipmapBlobLen(unsigned char *zm) { | |
367 | unsigned int totlen; | |
368 | zipmapLookupRaw(zm,NULL,0,&totlen); | |
369 | return totlen; | |
370 | } | |
371 | ||
372 | #ifdef ZIPMAP_TEST_MAIN | |
373 | void zipmapRepr(unsigned char *p) { | |
374 | unsigned int l; | |
375 | ||
376 | printf("{status %u}",*p++); | |
377 | while(1) { | |
378 | if (p[0] == ZIPMAP_END) { | |
379 | printf("{end}"); | |
380 | break; | |
381 | } else { | |
382 | unsigned char e; | |
383 | ||
384 | l = zipmapDecodeLength(p); | |
385 | printf("{key %u}",l); | |
386 | p += zipmapEncodeLength(NULL,l); | |
387 | if (l != 0 && fwrite(p,l,1,stdout) == 0) perror("fwrite"); | |
388 | p += l; | |
389 | ||
390 | l = zipmapDecodeLength(p); | |
391 | printf("{value %u}",l); | |
392 | p += zipmapEncodeLength(NULL,l); | |
393 | e = *p++; | |
394 | if (l != 0 && fwrite(p,l,1,stdout) == 0) perror("fwrite"); | |
395 | p += l+e; | |
396 | if (e) { | |
397 | printf("["); | |
398 | while(e--) printf("."); | |
399 | printf("]"); | |
400 | } | |
401 | } | |
402 | } | |
403 | printf("\n"); | |
404 | } | |
405 | ||
406 | int main(void) { | |
407 | unsigned char *zm; | |
408 | ||
409 | zm = zipmapNew(); | |
410 | ||
411 | zm = zipmapSet(zm,(unsigned char*) "name",4, (unsigned char*) "foo",3,NULL); | |
412 | zm = zipmapSet(zm,(unsigned char*) "surname",7, (unsigned char*) "foo",3,NULL); | |
413 | zm = zipmapSet(zm,(unsigned char*) "age",3, (unsigned char*) "foo",3,NULL); | |
414 | zipmapRepr(zm); | |
415 | ||
416 | zm = zipmapSet(zm,(unsigned char*) "hello",5, (unsigned char*) "world!",6,NULL); | |
417 | zm = zipmapSet(zm,(unsigned char*) "foo",3, (unsigned char*) "bar",3,NULL); | |
418 | zm = zipmapSet(zm,(unsigned char*) "foo",3, (unsigned char*) "!",1,NULL); | |
419 | zipmapRepr(zm); | |
420 | zm = zipmapSet(zm,(unsigned char*) "foo",3, (unsigned char*) "12345",5,NULL); | |
421 | zipmapRepr(zm); | |
422 | zm = zipmapSet(zm,(unsigned char*) "new",3, (unsigned char*) "xx",2,NULL); | |
423 | zm = zipmapSet(zm,(unsigned char*) "noval",5, (unsigned char*) "",0,NULL); | |
424 | zipmapRepr(zm); | |
425 | zm = zipmapDel(zm,(unsigned char*) "new",3,NULL); | |
426 | zipmapRepr(zm); | |
427 | ||
428 | printf("\nLook up large key:\n"); | |
429 | { | |
430 | unsigned char buf[512]; | |
431 | unsigned char *value; | |
432 | unsigned int vlen, i; | |
433 | for (i = 0; i < 512; i++) buf[i] = 'a'; | |
434 | ||
435 | zm = zipmapSet(zm,buf,512,(unsigned char*) "long",4,NULL); | |
436 | if (zipmapGet(zm,buf,512,&value,&vlen)) { | |
437 | printf(" <long key> is associated to the %d bytes value: %.*s\n", | |
438 | vlen, vlen, value); | |
439 | } | |
440 | } | |
441 | ||
442 | printf("\nPerform a direct lookup:\n"); | |
443 | { | |
444 | unsigned char *value; | |
445 | unsigned int vlen; | |
446 | ||
447 | if (zipmapGet(zm,(unsigned char*) "foo",3,&value,&vlen)) { | |
448 | printf(" foo is associated to the %d bytes value: %.*s\n", | |
449 | vlen, vlen, value); | |
450 | } | |
451 | } | |
452 | printf("\nIterate trought elements:\n"); | |
453 | { | |
454 | unsigned char *i = zipmapRewind(zm); | |
455 | unsigned char *key, *value; | |
456 | unsigned int klen, vlen; | |
457 | ||
458 | while((i = zipmapNext(i,&key,&klen,&value,&vlen)) != NULL) { | |
459 | printf(" %d:%.*s => %d:%.*s\n", klen, klen, key, vlen, vlen, value); | |
460 | } | |
461 | } | |
462 | return 0; | |
463 | } | |
464 | #endif |