]>
Commit | Line | Data |
---|---|---|
1 | /* Hash Tables Implementation. | |
2 | * | |
3 | * This file implements in memory hash tables with insert/del/replace/find/ | |
4 | * get-random-element operations. Hash tables will auto resize if needed | |
5 | * tables of power of two in size are used, collisions are handled by | |
6 | * chaining. See the source code for more information... :) | |
7 | * | |
8 | * Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com> | |
9 | * All rights reserved. | |
10 | * | |
11 | * Redistribution and use in source and binary forms, with or without | |
12 | * modification, are permitted provided that the following conditions are met: | |
13 | * | |
14 | * * Redistributions of source code must retain the above copyright notice, | |
15 | * this list of conditions and the following disclaimer. | |
16 | * * Redistributions in binary form must reproduce the above copyright | |
17 | * notice, this list of conditions and the following disclaimer in the | |
18 | * documentation and/or other materials provided with the distribution. | |
19 | * * Neither the name of Redis nor the names of its contributors may be used | |
20 | * to endorse or promote products derived from this software without | |
21 | * specific prior written permission. | |
22 | * | |
23 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
24 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
25 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
26 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
27 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
28 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
29 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
30 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
31 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
32 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
33 | * POSSIBILITY OF SUCH DAMAGE. | |
34 | */ | |
35 | ||
36 | #include "fmacros.h" | |
37 | ||
38 | #include <stdio.h> | |
39 | #include <stdlib.h> | |
40 | #include <string.h> | |
41 | #include <stdarg.h> | |
42 | #include <assert.h> | |
43 | #include <limits.h> | |
44 | #include <sys/time.h> | |
45 | ||
46 | #include "dict.h" | |
47 | #include "zmalloc.h" | |
48 | ||
49 | /* Using dictEnableResize() / dictDisableResize() we make possible to | |
50 | * enable/disable resizing of the hash table as needed. This is very important | |
51 | * for Redis, as we use copy-on-write and don't want to move too much memory | |
52 | * around when there is a child performing saving operations. */ | |
53 | static int dict_can_resize = 1; | |
54 | ||
55 | /* ---------------------------- Utility funcitons --------------------------- */ | |
56 | ||
57 | static void _dictPanic(const char *fmt, ...) | |
58 | { | |
59 | va_list ap; | |
60 | ||
61 | va_start(ap, fmt); | |
62 | fprintf(stderr, "\nDICT LIBRARY PANIC: "); | |
63 | vfprintf(stderr, fmt, ap); | |
64 | fprintf(stderr, "\n\n"); | |
65 | va_end(ap); | |
66 | } | |
67 | ||
68 | /* ------------------------- Heap Management Wrappers------------------------ */ | |
69 | ||
70 | static void *_dictAlloc(size_t size) | |
71 | { | |
72 | void *p = zmalloc(size); | |
73 | if (p == NULL) | |
74 | _dictPanic("Out of memory"); | |
75 | return p; | |
76 | } | |
77 | ||
78 | static void _dictFree(void *ptr) { | |
79 | zfree(ptr); | |
80 | } | |
81 | ||
82 | /* -------------------------- private prototypes ---------------------------- */ | |
83 | ||
84 | static int _dictExpandIfNeeded(dict *ht); | |
85 | static unsigned long _dictNextPower(unsigned long size); | |
86 | static int _dictKeyIndex(dict *ht, const void *key); | |
87 | static int _dictInit(dict *ht, dictType *type, void *privDataPtr); | |
88 | ||
89 | /* -------------------------- hash functions -------------------------------- */ | |
90 | ||
91 | /* Thomas Wang's 32 bit Mix Function */ | |
92 | unsigned int dictIntHashFunction(unsigned int key) | |
93 | { | |
94 | key += ~(key << 15); | |
95 | key ^= (key >> 10); | |
96 | key += (key << 3); | |
97 | key ^= (key >> 6); | |
98 | key += ~(key << 11); | |
99 | key ^= (key >> 16); | |
100 | return key; | |
101 | } | |
102 | ||
103 | /* Identity hash function for integer keys */ | |
104 | unsigned int dictIdentityHashFunction(unsigned int key) | |
105 | { | |
106 | return key; | |
107 | } | |
108 | ||
109 | /* Generic hash function (a popular one from Bernstein). | |
110 | * I tested a few and this was the best. */ | |
111 | unsigned int dictGenHashFunction(const unsigned char *buf, int len) { | |
112 | unsigned int hash = 5381; | |
113 | ||
114 | while (len--) | |
115 | hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */ | |
116 | return hash; | |
117 | } | |
118 | ||
119 | /* ----------------------------- API implementation ------------------------- */ | |
120 | ||
121 | /* Reset an hashtable already initialized with ht_init(). | |
122 | * NOTE: This function should only called by ht_destroy(). */ | |
123 | static void _dictReset(dictht *ht) | |
124 | { | |
125 | ht->table = NULL; | |
126 | ht->size = 0; | |
127 | ht->sizemask = 0; | |
128 | ht->used = 0; | |
129 | } | |
130 | ||
131 | /* Create a new hash table */ | |
132 | dict *dictCreate(dictType *type, | |
133 | void *privDataPtr) | |
134 | { | |
135 | dict *d = _dictAlloc(sizeof(*d)); | |
136 | ||
137 | _dictInit(d,type,privDataPtr); | |
138 | return d; | |
139 | } | |
140 | ||
141 | /* Initialize the hash table */ | |
142 | int _dictInit(dict *d, dictType *type, | |
143 | void *privDataPtr) | |
144 | { | |
145 | _dictReset(&d->ht[0]); | |
146 | _dictReset(&d->ht[1]); | |
147 | d->type = type; | |
148 | d->privdata = privDataPtr; | |
149 | d->rehashidx = -1; | |
150 | d->iterators = 0; | |
151 | return DICT_OK; | |
152 | } | |
153 | ||
154 | /* Resize the table to the minimal size that contains all the elements, | |
155 | * but with the invariant of a USER/BUCKETS ration near to <= 1 */ | |
156 | int dictResize(dict *d) | |
157 | { | |
158 | int minimal; | |
159 | ||
160 | if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR; | |
161 | minimal = d->ht[0].used; | |
162 | if (minimal < DICT_HT_INITIAL_SIZE) | |
163 | minimal = DICT_HT_INITIAL_SIZE; | |
164 | return dictExpand(d, minimal); | |
165 | } | |
166 | ||
167 | /* Expand or create the hashtable */ | |
168 | int dictExpand(dict *d, unsigned long size) | |
169 | { | |
170 | dictht n; /* the new hashtable */ | |
171 | unsigned long realsize = _dictNextPower(size); | |
172 | ||
173 | /* the size is invalid if it is smaller than the number of | |
174 | * elements already inside the hashtable */ | |
175 | if (dictIsRehashing(d) || d->ht[0].used > size) | |
176 | return DICT_ERR; | |
177 | ||
178 | n.size = realsize; | |
179 | n.sizemask = realsize-1; | |
180 | n.table = _dictAlloc(realsize*sizeof(dictEntry*)); | |
181 | n.used = 0; | |
182 | ||
183 | /* Initialize all the pointers to NULL */ | |
184 | memset(n.table, 0, realsize*sizeof(dictEntry*)); | |
185 | ||
186 | /* Is this the first initialization? If so it's not really a rehashing | |
187 | * we just set the first hash table so that it can accept keys. */ | |
188 | if (d->ht[0].table == NULL) { | |
189 | d->ht[0] = n; | |
190 | return DICT_OK; | |
191 | } | |
192 | ||
193 | /* Prepare a second hash table for incremental rehashing */ | |
194 | d->ht[1] = n; | |
195 | d->rehashidx = 0; | |
196 | return DICT_OK; | |
197 | } | |
198 | ||
199 | /* Performs N steps of incremental rehashing. Returns 1 if there are still | |
200 | * keys to move from the old to the new hash table, otherwise 0 is returned. | |
201 | * Note that a rehashing step consists in moving a bucket (that may have more | |
202 | * thank one key as we use chaining) from the old to the new hash table. */ | |
203 | int dictRehash(dict *d, int n) { | |
204 | if (!dictIsRehashing(d)) return 0; | |
205 | ||
206 | while(n--) { | |
207 | dictEntry *de, *nextde; | |
208 | ||
209 | /* Check if we already rehashed the whole table... */ | |
210 | if (d->ht[0].used == 0) { | |
211 | _dictFree(d->ht[0].table); | |
212 | d->ht[0] = d->ht[1]; | |
213 | _dictReset(&d->ht[1]); | |
214 | d->rehashidx = -1; | |
215 | return 0; | |
216 | } | |
217 | ||
218 | /* Note that rehashidx can't overflow as we are sure there are more | |
219 | * elements because ht[0].used != 0 */ | |
220 | while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++; | |
221 | de = d->ht[0].table[d->rehashidx]; | |
222 | /* Move all the keys in this bucket from the old to the new hash HT */ | |
223 | while(de) { | |
224 | unsigned int h; | |
225 | ||
226 | nextde = de->next; | |
227 | /* Get the index in the new hash table */ | |
228 | h = dictHashKey(d, de->key) & d->ht[1].sizemask; | |
229 | de->next = d->ht[1].table[h]; | |
230 | d->ht[1].table[h] = de; | |
231 | d->ht[0].used--; | |
232 | d->ht[1].used++; | |
233 | de = nextde; | |
234 | } | |
235 | d->ht[0].table[d->rehashidx] = NULL; | |
236 | d->rehashidx++; | |
237 | } | |
238 | return 1; | |
239 | } | |
240 | ||
241 | long long timeInMilliseconds(void) { | |
242 | struct timeval tv; | |
243 | ||
244 | gettimeofday(&tv,NULL); | |
245 | return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000); | |
246 | } | |
247 | ||
248 | /* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */ | |
249 | int dictRehashMilliseconds(dict *d, int ms) { | |
250 | long long start = timeInMilliseconds(); | |
251 | int rehashes = 0; | |
252 | ||
253 | while(dictRehash(d,100)) { | |
254 | rehashes += 100; | |
255 | if (timeInMilliseconds()-start > ms) break; | |
256 | } | |
257 | return rehashes; | |
258 | } | |
259 | ||
260 | /* This function performs just a step of rehashing, and only if there are | |
261 | * not iterators bound to our hash table. When we have iterators in the middle | |
262 | * of a rehashing we can't mess with the two hash tables otherwise some element | |
263 | * can be missed or duplicated. | |
264 | * | |
265 | * This function is called by common lookup or update operations in the | |
266 | * dictionary so that the hash table automatically migrates from H1 to H2 | |
267 | * while it is actively used. */ | |
268 | static void _dictRehashStep(dict *d) { | |
269 | if (d->iterators == 0) dictRehash(d,1); | |
270 | } | |
271 | ||
272 | /* Add an element to the target hash table */ | |
273 | int dictAdd(dict *d, void *key, void *val) | |
274 | { | |
275 | int index; | |
276 | dictEntry *entry; | |
277 | dictht *ht; | |
278 | ||
279 | if (dictIsRehashing(d)) _dictRehashStep(d); | |
280 | ||
281 | /* Get the index of the new element, or -1 if | |
282 | * the element already exists. */ | |
283 | if ((index = _dictKeyIndex(d, key)) == -1) | |
284 | return DICT_ERR; | |
285 | ||
286 | /* Allocates the memory and stores key */ | |
287 | ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0]; | |
288 | entry = _dictAlloc(sizeof(*entry)); | |
289 | entry->next = ht->table[index]; | |
290 | ht->table[index] = entry; | |
291 | ht->used++; | |
292 | ||
293 | /* Set the hash entry fields. */ | |
294 | dictSetHashKey(d, entry, key); | |
295 | dictSetHashVal(d, entry, val); | |
296 | return DICT_OK; | |
297 | } | |
298 | ||
299 | /* Add an element, discarding the old if the key already exists. | |
300 | * Return 1 if the key was added from scratch, 0 if there was already an | |
301 | * element with such key and dictReplace() just performed a value update | |
302 | * operation. */ | |
303 | int dictReplace(dict *d, void *key, void *val) | |
304 | { | |
305 | dictEntry *entry, auxentry; | |
306 | ||
307 | /* Try to add the element. If the key | |
308 | * does not exists dictAdd will suceed. */ | |
309 | if (dictAdd(d, key, val) == DICT_OK) | |
310 | return 1; | |
311 | /* It already exists, get the entry */ | |
312 | entry = dictFind(d, key); | |
313 | /* Free the old value and set the new one */ | |
314 | /* Set the new value and free the old one. Note that it is important | |
315 | * to do that in this order, as the value may just be exactly the same | |
316 | * as the previous one. In this context, think to reference counting, | |
317 | * you want to increment (set), and then decrement (free), and not the | |
318 | * reverse. */ | |
319 | auxentry = *entry; | |
320 | dictSetHashVal(d, entry, val); | |
321 | dictFreeEntryVal(d, &auxentry); | |
322 | return 0; | |
323 | } | |
324 | ||
325 | /* Search and remove an element */ | |
326 | static int dictGenericDelete(dict *d, const void *key, int nofree) | |
327 | { | |
328 | unsigned int h, idx; | |
329 | dictEntry *he, *prevHe; | |
330 | int table; | |
331 | ||
332 | if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */ | |
333 | if (dictIsRehashing(d)) _dictRehashStep(d); | |
334 | h = dictHashKey(d, key); | |
335 | ||
336 | for (table = 0; table <= 1; table++) { | |
337 | idx = h & d->ht[table].sizemask; | |
338 | he = d->ht[table].table[idx]; | |
339 | prevHe = NULL; | |
340 | while(he) { | |
341 | if (dictCompareHashKeys(d, key, he->key)) { | |
342 | /* Unlink the element from the list */ | |
343 | if (prevHe) | |
344 | prevHe->next = he->next; | |
345 | else | |
346 | d->ht[table].table[idx] = he->next; | |
347 | if (!nofree) { | |
348 | dictFreeEntryKey(d, he); | |
349 | dictFreeEntryVal(d, he); | |
350 | } | |
351 | _dictFree(he); | |
352 | d->ht[table].used--; | |
353 | return DICT_OK; | |
354 | } | |
355 | prevHe = he; | |
356 | he = he->next; | |
357 | } | |
358 | if (!dictIsRehashing(d)) break; | |
359 | } | |
360 | return DICT_ERR; /* not found */ | |
361 | } | |
362 | ||
363 | int dictDelete(dict *ht, const void *key) { | |
364 | return dictGenericDelete(ht,key,0); | |
365 | } | |
366 | ||
367 | int dictDeleteNoFree(dict *ht, const void *key) { | |
368 | return dictGenericDelete(ht,key,1); | |
369 | } | |
370 | ||
371 | /* Destroy an entire dictionary */ | |
372 | int _dictClear(dict *d, dictht *ht) | |
373 | { | |
374 | unsigned long i; | |
375 | ||
376 | /* Free all the elements */ | |
377 | for (i = 0; i < ht->size && ht->used > 0; i++) { | |
378 | dictEntry *he, *nextHe; | |
379 | ||
380 | if ((he = ht->table[i]) == NULL) continue; | |
381 | while(he) { | |
382 | nextHe = he->next; | |
383 | dictFreeEntryKey(d, he); | |
384 | dictFreeEntryVal(d, he); | |
385 | _dictFree(he); | |
386 | ht->used--; | |
387 | he = nextHe; | |
388 | } | |
389 | } | |
390 | /* Free the table and the allocated cache structure */ | |
391 | _dictFree(ht->table); | |
392 | /* Re-initialize the table */ | |
393 | _dictReset(ht); | |
394 | return DICT_OK; /* never fails */ | |
395 | } | |
396 | ||
397 | /* Clear & Release the hash table */ | |
398 | void dictRelease(dict *d) | |
399 | { | |
400 | _dictClear(d,&d->ht[0]); | |
401 | _dictClear(d,&d->ht[1]); | |
402 | _dictFree(d); | |
403 | } | |
404 | ||
405 | dictEntry *dictFind(dict *d, const void *key) | |
406 | { | |
407 | dictEntry *he; | |
408 | unsigned int h, idx, table; | |
409 | ||
410 | if (d->ht[0].size == 0) return NULL; /* We don't have a table at all */ | |
411 | if (dictIsRehashing(d)) _dictRehashStep(d); | |
412 | h = dictHashKey(d, key); | |
413 | for (table = 0; table <= 1; table++) { | |
414 | idx = h & d->ht[table].sizemask; | |
415 | he = d->ht[table].table[idx]; | |
416 | while(he) { | |
417 | if (dictCompareHashKeys(d, key, he->key)) | |
418 | return he; | |
419 | he = he->next; | |
420 | } | |
421 | if (!dictIsRehashing(d)) return NULL; | |
422 | } | |
423 | return NULL; | |
424 | } | |
425 | ||
426 | void *dictFetchValue(dict *d, const void *key) { | |
427 | dictEntry *he; | |
428 | ||
429 | he = dictFind(d,key); | |
430 | return he ? dictGetEntryVal(he) : NULL; | |
431 | } | |
432 | ||
433 | dictIterator *dictGetIterator(dict *d) | |
434 | { | |
435 | dictIterator *iter = _dictAlloc(sizeof(*iter)); | |
436 | ||
437 | iter->d = d; | |
438 | iter->table = 0; | |
439 | iter->index = -1; | |
440 | iter->entry = NULL; | |
441 | iter->nextEntry = NULL; | |
442 | return iter; | |
443 | } | |
444 | ||
445 | dictEntry *dictNext(dictIterator *iter) | |
446 | { | |
447 | while (1) { | |
448 | if (iter->entry == NULL) { | |
449 | dictht *ht = &iter->d->ht[iter->table]; | |
450 | if (iter->index == -1 && iter->table == 0) iter->d->iterators++; | |
451 | iter->index++; | |
452 | if (iter->index >= (signed) ht->size) { | |
453 | if (dictIsRehashing(iter->d) && iter->table == 0) { | |
454 | iter->table++; | |
455 | iter->index = 0; | |
456 | ht = &iter->d->ht[1]; | |
457 | } else { | |
458 | break; | |
459 | } | |
460 | } | |
461 | iter->entry = ht->table[iter->index]; | |
462 | } else { | |
463 | iter->entry = iter->nextEntry; | |
464 | } | |
465 | if (iter->entry) { | |
466 | /* We need to save the 'next' here, the iterator user | |
467 | * may delete the entry we are returning. */ | |
468 | iter->nextEntry = iter->entry->next; | |
469 | return iter->entry; | |
470 | } | |
471 | } | |
472 | return NULL; | |
473 | } | |
474 | ||
475 | void dictReleaseIterator(dictIterator *iter) | |
476 | { | |
477 | if (!(iter->index == -1 && iter->table == 0)) iter->d->iterators--; | |
478 | _dictFree(iter); | |
479 | } | |
480 | ||
481 | /* Return a random entry from the hash table. Useful to | |
482 | * implement randomized algorithms */ | |
483 | dictEntry *dictGetRandomKey(dict *d) | |
484 | { | |
485 | dictEntry *he, *orighe; | |
486 | unsigned int h; | |
487 | int listlen, listele; | |
488 | ||
489 | if (dictSize(d) == 0) return NULL; | |
490 | if (dictIsRehashing(d)) _dictRehashStep(d); | |
491 | if (dictIsRehashing(d)) { | |
492 | do { | |
493 | h = random() % (d->ht[0].size+d->ht[1].size); | |
494 | he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] : | |
495 | d->ht[0].table[h]; | |
496 | } while(he == NULL); | |
497 | } else { | |
498 | do { | |
499 | h = random() & d->ht[0].sizemask; | |
500 | he = d->ht[0].table[h]; | |
501 | } while(he == NULL); | |
502 | } | |
503 | ||
504 | /* Now we found a non empty bucket, but it is a linked | |
505 | * list and we need to get a random element from the list. | |
506 | * The only sane way to do so is counting the elements and | |
507 | * select a random index. */ | |
508 | listlen = 0; | |
509 | orighe = he; | |
510 | while(he) { | |
511 | he = he->next; | |
512 | listlen++; | |
513 | } | |
514 | listele = random() % listlen; | |
515 | he = orighe; | |
516 | while(listele--) he = he->next; | |
517 | return he; | |
518 | } | |
519 | ||
520 | /* ------------------------- private functions ------------------------------ */ | |
521 | ||
522 | /* Expand the hash table if needed */ | |
523 | static int _dictExpandIfNeeded(dict *d) | |
524 | { | |
525 | /* If the hash table is empty expand it to the intial size, | |
526 | * if the table is "full" dobule its size. */ | |
527 | if (dictIsRehashing(d)) return DICT_OK; | |
528 | if (d->ht[0].size == 0) | |
529 | return dictExpand(d, DICT_HT_INITIAL_SIZE); | |
530 | if (d->ht[0].used >= d->ht[0].size && dict_can_resize) | |
531 | return dictExpand(d, ((d->ht[0].size > d->ht[0].used) ? | |
532 | d->ht[0].size : d->ht[0].used)*2); | |
533 | return DICT_OK; | |
534 | } | |
535 | ||
536 | /* Our hash table capability is a power of two */ | |
537 | static unsigned long _dictNextPower(unsigned long size) | |
538 | { | |
539 | unsigned long i = DICT_HT_INITIAL_SIZE; | |
540 | ||
541 | if (size >= LONG_MAX) return LONG_MAX; | |
542 | while(1) { | |
543 | if (i >= size) | |
544 | return i; | |
545 | i *= 2; | |
546 | } | |
547 | } | |
548 | ||
549 | /* Returns the index of a free slot that can be populated with | |
550 | * an hash entry for the given 'key'. | |
551 | * If the key already exists, -1 is returned. | |
552 | * | |
553 | * Note that if we are in the process of rehashing the hash table, the | |
554 | * index is always returned in the context of the second (new) hash table. */ | |
555 | static int _dictKeyIndex(dict *d, const void *key) | |
556 | { | |
557 | unsigned int h, idx, table; | |
558 | dictEntry *he; | |
559 | ||
560 | /* Expand the hashtable if needed */ | |
561 | if (_dictExpandIfNeeded(d) == DICT_ERR) | |
562 | return -1; | |
563 | /* Compute the key hash value */ | |
564 | h = dictHashKey(d, key); | |
565 | for (table = 0; table <= 1; table++) { | |
566 | idx = h & d->ht[table].sizemask; | |
567 | /* Search if this slot does not already contain the given key */ | |
568 | he = d->ht[table].table[idx]; | |
569 | while(he) { | |
570 | if (dictCompareHashKeys(d, key, he->key)) | |
571 | return -1; | |
572 | he = he->next; | |
573 | } | |
574 | if (!dictIsRehashing(d)) break; | |
575 | } | |
576 | return idx; | |
577 | } | |
578 | ||
579 | void dictEmpty(dict *d) { | |
580 | _dictClear(d,&d->ht[0]); | |
581 | _dictClear(d,&d->ht[1]); | |
582 | d->rehashidx = -1; | |
583 | d->iterators = 0; | |
584 | } | |
585 | ||
586 | #define DICT_STATS_VECTLEN 50 | |
587 | static void _dictPrintStatsHt(dictht *ht) { | |
588 | unsigned long i, slots = 0, chainlen, maxchainlen = 0; | |
589 | unsigned long totchainlen = 0; | |
590 | unsigned long clvector[DICT_STATS_VECTLEN]; | |
591 | ||
592 | if (ht->used == 0) { | |
593 | printf("No stats available for empty dictionaries\n"); | |
594 | return; | |
595 | } | |
596 | ||
597 | for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0; | |
598 | for (i = 0; i < ht->size; i++) { | |
599 | dictEntry *he; | |
600 | ||
601 | if (ht->table[i] == NULL) { | |
602 | clvector[0]++; | |
603 | continue; | |
604 | } | |
605 | slots++; | |
606 | /* For each hash entry on this slot... */ | |
607 | chainlen = 0; | |
608 | he = ht->table[i]; | |
609 | while(he) { | |
610 | chainlen++; | |
611 | he = he->next; | |
612 | } | |
613 | clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++; | |
614 | if (chainlen > maxchainlen) maxchainlen = chainlen; | |
615 | totchainlen += chainlen; | |
616 | } | |
617 | printf("Hash table stats:\n"); | |
618 | printf(" table size: %ld\n", ht->size); | |
619 | printf(" number of elements: %ld\n", ht->used); | |
620 | printf(" different slots: %ld\n", slots); | |
621 | printf(" max chain length: %ld\n", maxchainlen); | |
622 | printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots); | |
623 | printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots); | |
624 | printf(" Chain length distribution:\n"); | |
625 | for (i = 0; i < DICT_STATS_VECTLEN-1; i++) { | |
626 | if (clvector[i] == 0) continue; | |
627 | printf(" %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100); | |
628 | } | |
629 | } | |
630 | ||
631 | void dictPrintStats(dict *d) { | |
632 | _dictPrintStatsHt(&d->ht[0]); | |
633 | if (dictIsRehashing(d)) { | |
634 | printf("-- Rehashing into ht[1]:\n"); | |
635 | _dictPrintStatsHt(&d->ht[1]); | |
636 | } | |
637 | } | |
638 | ||
639 | void dictEnableResize(void) { | |
640 | dict_can_resize = 1; | |
641 | } | |
642 | ||
643 | void dictDisableResize(void) { | |
644 | dict_can_resize = 0; | |
645 | } | |
646 | ||
647 | /* ----------------------- StringCopy Hash Table Type ------------------------*/ | |
648 | ||
649 | static unsigned int _dictStringCopyHTHashFunction(const void *key) | |
650 | { | |
651 | return dictGenHashFunction(key, strlen(key)); | |
652 | } | |
653 | ||
654 | static void *_dictStringCopyHTKeyDup(void *privdata, const void *key) | |
655 | { | |
656 | int len = strlen(key); | |
657 | char *copy = _dictAlloc(len+1); | |
658 | DICT_NOTUSED(privdata); | |
659 | ||
660 | memcpy(copy, key, len); | |
661 | copy[len] = '\0'; | |
662 | return copy; | |
663 | } | |
664 | ||
665 | static void *_dictStringKeyValCopyHTValDup(void *privdata, const void *val) | |
666 | { | |
667 | int len = strlen(val); | |
668 | char *copy = _dictAlloc(len+1); | |
669 | DICT_NOTUSED(privdata); | |
670 | ||
671 | memcpy(copy, val, len); | |
672 | copy[len] = '\0'; | |
673 | return copy; | |
674 | } | |
675 | ||
676 | static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1, | |
677 | const void *key2) | |
678 | { | |
679 | DICT_NOTUSED(privdata); | |
680 | ||
681 | return strcmp(key1, key2) == 0; | |
682 | } | |
683 | ||
684 | static void _dictStringCopyHTKeyDestructor(void *privdata, void *key) | |
685 | { | |
686 | DICT_NOTUSED(privdata); | |
687 | ||
688 | _dictFree((void*)key); /* ATTENTION: const cast */ | |
689 | } | |
690 | ||
691 | static void _dictStringKeyValCopyHTValDestructor(void *privdata, void *val) | |
692 | { | |
693 | DICT_NOTUSED(privdata); | |
694 | ||
695 | _dictFree((void*)val); /* ATTENTION: const cast */ | |
696 | } | |
697 | ||
698 | dictType dictTypeHeapStringCopyKey = { | |
699 | _dictStringCopyHTHashFunction, /* hash function */ | |
700 | _dictStringCopyHTKeyDup, /* key dup */ | |
701 | NULL, /* val dup */ | |
702 | _dictStringCopyHTKeyCompare, /* key compare */ | |
703 | _dictStringCopyHTKeyDestructor, /* key destructor */ | |
704 | NULL /* val destructor */ | |
705 | }; | |
706 | ||
707 | /* This is like StringCopy but does not auto-duplicate the key. | |
708 | * It's used for intepreter's shared strings. */ | |
709 | dictType dictTypeHeapStrings = { | |
710 | _dictStringCopyHTHashFunction, /* hash function */ | |
711 | NULL, /* key dup */ | |
712 | NULL, /* val dup */ | |
713 | _dictStringCopyHTKeyCompare, /* key compare */ | |
714 | _dictStringCopyHTKeyDestructor, /* key destructor */ | |
715 | NULL /* val destructor */ | |
716 | }; | |
717 | ||
718 | /* This is like StringCopy but also automatically handle dynamic | |
719 | * allocated C strings as values. */ | |
720 | dictType dictTypeHeapStringCopyKeyValue = { | |
721 | _dictStringCopyHTHashFunction, /* hash function */ | |
722 | _dictStringCopyHTKeyDup, /* key dup */ | |
723 | _dictStringKeyValCopyHTValDup, /* val dup */ | |
724 | _dictStringCopyHTKeyCompare, /* key compare */ | |
725 | _dictStringCopyHTKeyDestructor, /* key destructor */ | |
726 | _dictStringKeyValCopyHTValDestructor, /* val destructor */ | |
727 | }; |