]>
Commit | Line | Data |
---|---|---|
1 | start_server { | |
2 | tags {"set"} | |
3 | overrides { | |
4 | "set-max-intset-entries" 512 | |
5 | } | |
6 | } { | |
7 | proc create_set {key entries} { | |
8 | r del $key | |
9 | foreach entry $entries { r sadd $key $entry } | |
10 | } | |
11 | ||
12 | test {SADD, SCARD, SISMEMBER, SMEMBERS basics - regular set} { | |
13 | create_set myset {foo} | |
14 | assert_encoding hashtable myset | |
15 | assert_equal 1 [r sadd myset bar] | |
16 | assert_equal 0 [r sadd myset bar] | |
17 | assert_equal 2 [r scard myset] | |
18 | assert_equal 1 [r sismember myset foo] | |
19 | assert_equal 1 [r sismember myset bar] | |
20 | assert_equal 0 [r sismember myset bla] | |
21 | assert_equal {bar foo} [lsort [r smembers myset]] | |
22 | } | |
23 | ||
24 | test {SADD, SCARD, SISMEMBER, SMEMBERS basics - intset} { | |
25 | create_set myset {17} | |
26 | assert_encoding intset myset | |
27 | assert_equal 1 [r sadd myset 16] | |
28 | assert_equal 0 [r sadd myset 16] | |
29 | assert_equal 2 [r scard myset] | |
30 | assert_equal 1 [r sismember myset 16] | |
31 | assert_equal 1 [r sismember myset 17] | |
32 | assert_equal 0 [r sismember myset 18] | |
33 | assert_equal {16 17} [lsort [r smembers myset]] | |
34 | } | |
35 | ||
36 | test {SADD against non set} { | |
37 | r lpush mylist foo | |
38 | assert_error WRONGTYPE* {r sadd mylist bar} | |
39 | } | |
40 | ||
41 | test "SADD a non-integer against an intset" { | |
42 | create_set myset {1 2 3} | |
43 | assert_encoding intset myset | |
44 | assert_equal 1 [r sadd myset a] | |
45 | assert_encoding hashtable myset | |
46 | } | |
47 | ||
48 | test "SADD an integer larger than 64 bits" { | |
49 | create_set myset {213244124402402314402033402} | |
50 | assert_encoding hashtable myset | |
51 | assert_equal 1 [r sismember myset 213244124402402314402033402] | |
52 | } | |
53 | ||
54 | test "SADD overflows the maximum allowed integers in an intset" { | |
55 | r del myset | |
56 | for {set i 0} {$i < 512} {incr i} { r sadd myset $i } | |
57 | assert_encoding intset myset | |
58 | assert_equal 1 [r sadd myset 512] | |
59 | assert_encoding hashtable myset | |
60 | } | |
61 | ||
62 | test {Variadic SADD} { | |
63 | r del myset | |
64 | assert_equal 3 [r sadd myset a b c] | |
65 | assert_equal 2 [r sadd myset A a b c B] | |
66 | assert_equal [lsort {A a b c B}] [lsort [r smembers myset]] | |
67 | } | |
68 | ||
69 | test "Set encoding after DEBUG RELOAD" { | |
70 | r del myintset myhashset mylargeintset | |
71 | for {set i 0} {$i < 100} {incr i} { r sadd myintset $i } | |
72 | for {set i 0} {$i < 1280} {incr i} { r sadd mylargeintset $i } | |
73 | for {set i 0} {$i < 256} {incr i} { r sadd myhashset [format "i%03d" $i] } | |
74 | assert_encoding intset myintset | |
75 | assert_encoding hashtable mylargeintset | |
76 | assert_encoding hashtable myhashset | |
77 | ||
78 | r debug reload | |
79 | assert_encoding intset myintset | |
80 | assert_encoding hashtable mylargeintset | |
81 | assert_encoding hashtable myhashset | |
82 | } | |
83 | ||
84 | test {SREM basics - regular set} { | |
85 | create_set myset {foo bar ciao} | |
86 | assert_encoding hashtable myset | |
87 | assert_equal 0 [r srem myset qux] | |
88 | assert_equal 1 [r srem myset foo] | |
89 | assert_equal {bar ciao} [lsort [r smembers myset]] | |
90 | } | |
91 | ||
92 | test {SREM basics - intset} { | |
93 | create_set myset {3 4 5} | |
94 | assert_encoding intset myset | |
95 | assert_equal 0 [r srem myset 6] | |
96 | assert_equal 1 [r srem myset 4] | |
97 | assert_equal {3 5} [lsort [r smembers myset]] | |
98 | } | |
99 | ||
100 | test {SREM with multiple arguments} { | |
101 | r del myset | |
102 | r sadd myset a b c d | |
103 | assert_equal 0 [r srem myset k k k] | |
104 | assert_equal 2 [r srem myset b d x y] | |
105 | lsort [r smembers myset] | |
106 | } {a c} | |
107 | ||
108 | test {SREM variadic version with more args needed to destroy the key} { | |
109 | r del myset | |
110 | r sadd myset 1 2 3 | |
111 | r srem myset 1 2 3 4 5 6 7 8 | |
112 | } {3} | |
113 | ||
114 | foreach {type} {hashtable intset} { | |
115 | for {set i 1} {$i <= 5} {incr i} { | |
116 | r del [format "set%d" $i] | |
117 | } | |
118 | for {set i 0} {$i < 200} {incr i} { | |
119 | r sadd set1 $i | |
120 | r sadd set2 [expr $i+195] | |
121 | } | |
122 | foreach i {199 195 1000 2000} { | |
123 | r sadd set3 $i | |
124 | } | |
125 | for {set i 5} {$i < 200} {incr i} { | |
126 | r sadd set4 $i | |
127 | } | |
128 | r sadd set5 0 | |
129 | ||
130 | # To make sure the sets are encoded as the type we are testing -- also | |
131 | # when the VM is enabled and the values may be swapped in and out | |
132 | # while the tests are running -- an extra element is added to every | |
133 | # set that determines its encoding. | |
134 | set large 200 | |
135 | if {$type eq "hashtable"} { | |
136 | set large foo | |
137 | } | |
138 | ||
139 | for {set i 1} {$i <= 5} {incr i} { | |
140 | r sadd [format "set%d" $i] $large | |
141 | } | |
142 | ||
143 | test "Generated sets must be encoded as $type" { | |
144 | for {set i 1} {$i <= 5} {incr i} { | |
145 | assert_encoding $type [format "set%d" $i] | |
146 | } | |
147 | } | |
148 | ||
149 | test "SINTER with two sets - $type" { | |
150 | assert_equal [list 195 196 197 198 199 $large] [lsort [r sinter set1 set2]] | |
151 | } | |
152 | ||
153 | test "SINTERSTORE with two sets - $type" { | |
154 | r sinterstore setres set1 set2 | |
155 | assert_encoding $type setres | |
156 | assert_equal [list 195 196 197 198 199 $large] [lsort [r smembers setres]] | |
157 | } | |
158 | ||
159 | test "SINTERSTORE with two sets, after a DEBUG RELOAD - $type" { | |
160 | r debug reload | |
161 | r sinterstore setres set1 set2 | |
162 | assert_encoding $type setres | |
163 | assert_equal [list 195 196 197 198 199 $large] [lsort [r smembers setres]] | |
164 | } | |
165 | ||
166 | test "SUNION with two sets - $type" { | |
167 | set expected [lsort -uniq "[r smembers set1] [r smembers set2]"] | |
168 | assert_equal $expected [lsort [r sunion set1 set2]] | |
169 | } | |
170 | ||
171 | test "SUNIONSTORE with two sets - $type" { | |
172 | r sunionstore setres set1 set2 | |
173 | assert_encoding $type setres | |
174 | set expected [lsort -uniq "[r smembers set1] [r smembers set2]"] | |
175 | assert_equal $expected [lsort [r smembers setres]] | |
176 | } | |
177 | ||
178 | test "SINTER against three sets - $type" { | |
179 | assert_equal [list 195 199 $large] [lsort [r sinter set1 set2 set3]] | |
180 | } | |
181 | ||
182 | test "SINTERSTORE with three sets - $type" { | |
183 | r sinterstore setres set1 set2 set3 | |
184 | assert_equal [list 195 199 $large] [lsort [r smembers setres]] | |
185 | } | |
186 | ||
187 | test "SUNION with non existing keys - $type" { | |
188 | set expected [lsort -uniq "[r smembers set1] [r smembers set2]"] | |
189 | assert_equal $expected [lsort [r sunion nokey1 set1 set2 nokey2]] | |
190 | } | |
191 | ||
192 | test "SDIFF with two sets - $type" { | |
193 | assert_equal {0 1 2 3 4} [lsort [r sdiff set1 set4]] | |
194 | } | |
195 | ||
196 | test "SDIFF with three sets - $type" { | |
197 | assert_equal {1 2 3 4} [lsort [r sdiff set1 set4 set5]] | |
198 | } | |
199 | ||
200 | test "SDIFFSTORE with three sets - $type" { | |
201 | r sdiffstore setres set1 set4 set5 | |
202 | # The type is determined by type of the first key to diff against. | |
203 | # See the implementation for more information. | |
204 | assert_encoding $type setres | |
205 | assert_equal {1 2 3 4} [lsort [r smembers setres]] | |
206 | } | |
207 | } | |
208 | ||
209 | test "SDIFF with first set empty" { | |
210 | r del set1 set2 set3 | |
211 | r sadd set2 1 2 3 4 | |
212 | r sadd set3 a b c d | |
213 | r sdiff set1 set2 set3 | |
214 | } {} | |
215 | ||
216 | test "SDIFF fuzzing" { | |
217 | for {set j 0} {$j < 100} {incr j} { | |
218 | unset -nocomplain s | |
219 | array set s {} | |
220 | set args {} | |
221 | set num_sets [expr {[randomInt 10]+1}] | |
222 | for {set i 0} {$i < $num_sets} {incr i} { | |
223 | set num_elements [randomInt 100] | |
224 | r del set_$i | |
225 | lappend args set_$i | |
226 | while {$num_elements} { | |
227 | set ele [randomValue] | |
228 | r sadd set_$i $ele | |
229 | if {$i == 0} { | |
230 | set s($ele) x | |
231 | } else { | |
232 | unset -nocomplain s($ele) | |
233 | } | |
234 | incr num_elements -1 | |
235 | } | |
236 | } | |
237 | set result [lsort [r sdiff {*}$args]] | |
238 | assert_equal $result [lsort [array names s]] | |
239 | } | |
240 | } | |
241 | ||
242 | test "SINTER against non-set should throw error" { | |
243 | r set key1 x | |
244 | assert_error "WRONGTYPE*" {r sinter key1 noset} | |
245 | } | |
246 | ||
247 | test "SUNION against non-set should throw error" { | |
248 | r set key1 x | |
249 | assert_error "WRONGTYPE*" {r sunion key1 noset} | |
250 | } | |
251 | ||
252 | test "SINTER should handle non existing key as empty" { | |
253 | r del set1 set2 set3 | |
254 | r sadd set1 a b c | |
255 | r sadd set2 b c d | |
256 | r sinter set1 set2 set3 | |
257 | } {} | |
258 | ||
259 | test "SINTER with same integer elements but different encoding" { | |
260 | r del set1 set2 | |
261 | r sadd set1 1 2 3 | |
262 | r sadd set2 1 2 3 a | |
263 | r srem set2 a | |
264 | assert_encoding intset set1 | |
265 | assert_encoding hashtable set2 | |
266 | lsort [r sinter set1 set2] | |
267 | } {1 2 3} | |
268 | ||
269 | test "SINTERSTORE against non existing keys should delete dstkey" { | |
270 | r set setres xxx | |
271 | assert_equal 0 [r sinterstore setres foo111 bar222] | |
272 | assert_equal 0 [r exists setres] | |
273 | } | |
274 | ||
275 | test "SUNIONSTORE against non existing keys should delete dstkey" { | |
276 | r set setres xxx | |
277 | assert_equal 0 [r sunionstore setres foo111 bar222] | |
278 | assert_equal 0 [r exists setres] | |
279 | } | |
280 | ||
281 | foreach {type contents} {hashtable {a b c} intset {1 2 3}} { | |
282 | test "SPOP basics - $type" { | |
283 | create_set myset $contents | |
284 | assert_encoding $type myset | |
285 | assert_equal $contents [lsort [list [r spop myset] [r spop myset] [r spop myset]]] | |
286 | assert_equal 0 [r scard myset] | |
287 | } | |
288 | ||
289 | test "SRANDMEMBER - $type" { | |
290 | create_set myset $contents | |
291 | unset -nocomplain myset | |
292 | array set myset {} | |
293 | for {set i 0} {$i < 100} {incr i} { | |
294 | set myset([r srandmember myset]) 1 | |
295 | } | |
296 | assert_equal $contents [lsort [array names myset]] | |
297 | } | |
298 | } | |
299 | ||
300 | test "SRANDMEMBER with <count> against non existing key" { | |
301 | r srandmember nonexisting_key 100 | |
302 | } {} | |
303 | ||
304 | foreach {type contents} { | |
305 | hashtable { | |
306 | 1 5 10 50 125 50000 33959417 4775547 65434162 | |
307 | 12098459 427716 483706 2726473884 72615637475 | |
308 | MARY PATRICIA LINDA BARBARA ELIZABETH JENNIFER MARIA | |
309 | SUSAN MARGARET DOROTHY LISA NANCY KAREN BETTY HELEN | |
310 | SANDRA DONNA CAROL RUTH SHARON MICHELLE LAURA SARAH | |
311 | KIMBERLY DEBORAH JESSICA SHIRLEY CYNTHIA ANGELA MELISSA | |
312 | BRENDA AMY ANNA REBECCA VIRGINIA KATHLEEN | |
313 | } | |
314 | intset { | |
315 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | |
316 | 20 21 22 23 24 25 26 27 28 29 | |
317 | 30 31 32 33 34 35 36 37 38 39 | |
318 | 40 41 42 43 44 45 46 47 48 49 | |
319 | } | |
320 | } { | |
321 | test "SRANDMEMBER with <count> - $type" { | |
322 | create_set myset $contents | |
323 | unset -nocomplain myset | |
324 | array set myset {} | |
325 | foreach ele [r smembers myset] { | |
326 | set myset($ele) 1 | |
327 | } | |
328 | assert_equal [lsort $contents] [lsort [array names myset]] | |
329 | ||
330 | # Make sure that a count of 0 is handled correctly. | |
331 | assert_equal [r srandmember myset 0] {} | |
332 | ||
333 | # We'll stress different parts of the code, see the implementation | |
334 | # of SRANDMEMBER for more information, but basically there are | |
335 | # four different code paths. | |
336 | # | |
337 | # PATH 1: Use negative count. | |
338 | # | |
339 | # 1) Check that it returns repeated elements. | |
340 | set res [r srandmember myset -100] | |
341 | assert_equal [llength $res] 100 | |
342 | ||
343 | # 2) Check that all the elements actually belong to the | |
344 | # original set. | |
345 | foreach ele $res { | |
346 | assert {[info exists myset($ele)]} | |
347 | } | |
348 | ||
349 | # 3) Check that eventually all the elements are returned. | |
350 | unset -nocomplain auxset | |
351 | set iterations 1000 | |
352 | while {$iterations != 0} { | |
353 | incr iterations -1 | |
354 | set res [r srandmember myset -10] | |
355 | foreach ele $res { | |
356 | set auxset($ele) 1 | |
357 | } | |
358 | if {[lsort [array names myset]] eq | |
359 | [lsort [array names auxset]]} { | |
360 | break; | |
361 | } | |
362 | } | |
363 | assert {$iterations != 0} | |
364 | ||
365 | # PATH 2: positive count (unique behavior) with requested size | |
366 | # equal or greater than set size. | |
367 | foreach size {50 100} { | |
368 | set res [r srandmember myset $size] | |
369 | assert_equal [llength $res] 50 | |
370 | assert_equal [lsort $res] [lsort [array names myset]] | |
371 | } | |
372 | ||
373 | # PATH 3: Ask almost as elements as there are in the set. | |
374 | # In this case the implementation will duplicate the original | |
375 | # set and will remove random elements up to the requested size. | |
376 | # | |
377 | # PATH 4: Ask a number of elements definitely smaller than | |
378 | # the set size. | |
379 | # | |
380 | # We can test both the code paths just changing the size but | |
381 | # using the same code. | |
382 | ||
383 | foreach size {45 5} { | |
384 | set res [r srandmember myset $size] | |
385 | assert_equal [llength $res] $size | |
386 | ||
387 | # 1) Check that all the elements actually belong to the | |
388 | # original set. | |
389 | foreach ele $res { | |
390 | assert {[info exists myset($ele)]} | |
391 | } | |
392 | ||
393 | # 2) Check that eventually all the elements are returned. | |
394 | unset -nocomplain auxset | |
395 | set iterations 1000 | |
396 | while {$iterations != 0} { | |
397 | incr iterations -1 | |
398 | set res [r srandmember myset -10] | |
399 | foreach ele $res { | |
400 | set auxset($ele) 1 | |
401 | } | |
402 | if {[lsort [array names myset]] eq | |
403 | [lsort [array names auxset]]} { | |
404 | break; | |
405 | } | |
406 | } | |
407 | assert {$iterations != 0} | |
408 | } | |
409 | } | |
410 | } | |
411 | ||
412 | proc setup_move {} { | |
413 | r del myset3 myset4 | |
414 | create_set myset1 {1 a b} | |
415 | create_set myset2 {2 3 4} | |
416 | assert_encoding hashtable myset1 | |
417 | assert_encoding intset myset2 | |
418 | } | |
419 | ||
420 | test "SMOVE basics - from regular set to intset" { | |
421 | # move a non-integer element to an intset should convert encoding | |
422 | setup_move | |
423 | assert_equal 1 [r smove myset1 myset2 a] | |
424 | assert_equal {1 b} [lsort [r smembers myset1]] | |
425 | assert_equal {2 3 4 a} [lsort [r smembers myset2]] | |
426 | assert_encoding hashtable myset2 | |
427 | ||
428 | # move an integer element should not convert the encoding | |
429 | setup_move | |
430 | assert_equal 1 [r smove myset1 myset2 1] | |
431 | assert_equal {a b} [lsort [r smembers myset1]] | |
432 | assert_equal {1 2 3 4} [lsort [r smembers myset2]] | |
433 | assert_encoding intset myset2 | |
434 | } | |
435 | ||
436 | test "SMOVE basics - from intset to regular set" { | |
437 | setup_move | |
438 | assert_equal 1 [r smove myset2 myset1 2] | |
439 | assert_equal {1 2 a b} [lsort [r smembers myset1]] | |
440 | assert_equal {3 4} [lsort [r smembers myset2]] | |
441 | } | |
442 | ||
443 | test "SMOVE non existing key" { | |
444 | setup_move | |
445 | assert_equal 0 [r smove myset1 myset2 foo] | |
446 | assert_equal {1 a b} [lsort [r smembers myset1]] | |
447 | assert_equal {2 3 4} [lsort [r smembers myset2]] | |
448 | } | |
449 | ||
450 | test "SMOVE non existing src set" { | |
451 | setup_move | |
452 | assert_equal 0 [r smove noset myset2 foo] | |
453 | assert_equal {2 3 4} [lsort [r smembers myset2]] | |
454 | } | |
455 | ||
456 | test "SMOVE from regular set to non existing destination set" { | |
457 | setup_move | |
458 | assert_equal 1 [r smove myset1 myset3 a] | |
459 | assert_equal {1 b} [lsort [r smembers myset1]] | |
460 | assert_equal {a} [lsort [r smembers myset3]] | |
461 | assert_encoding hashtable myset3 | |
462 | } | |
463 | ||
464 | test "SMOVE from intset to non existing destination set" { | |
465 | setup_move | |
466 | assert_equal 1 [r smove myset2 myset3 2] | |
467 | assert_equal {3 4} [lsort [r smembers myset2]] | |
468 | assert_equal {2} [lsort [r smembers myset3]] | |
469 | assert_encoding intset myset3 | |
470 | } | |
471 | ||
472 | test "SMOVE wrong src key type" { | |
473 | r set x 10 | |
474 | assert_error "WRONGTYPE*" {r smove x myset2 foo} | |
475 | } | |
476 | ||
477 | test "SMOVE wrong dst key type" { | |
478 | r set x 10 | |
479 | assert_error "WRONGTYPE*" {r smove myset2 x foo} | |
480 | } | |
481 | ||
482 | test "SMOVE with identical source and destination" { | |
483 | r del set | |
484 | r sadd set a b c | |
485 | r smove set set b | |
486 | lsort [r smembers set] | |
487 | } {a b c} | |
488 | ||
489 | tags {slow} { | |
490 | test {intsets implementation stress testing} { | |
491 | for {set j 0} {$j < 20} {incr j} { | |
492 | unset -nocomplain s | |
493 | array set s {} | |
494 | r del s | |
495 | set len [randomInt 1024] | |
496 | for {set i 0} {$i < $len} {incr i} { | |
497 | randpath { | |
498 | set data [randomInt 65536] | |
499 | } { | |
500 | set data [randomInt 4294967296] | |
501 | } { | |
502 | set data [randomInt 18446744073709551616] | |
503 | } | |
504 | set s($data) {} | |
505 | r sadd s $data | |
506 | } | |
507 | assert_equal [lsort [r smembers s]] [lsort [array names s]] | |
508 | set len [array size s] | |
509 | for {set i 0} {$i < $len} {incr i} { | |
510 | set e [r spop s] | |
511 | if {![info exists s($e)]} { | |
512 | puts "Can't find '$e' on local array" | |
513 | puts "Local array: [lsort [r smembers s]]" | |
514 | puts "Remote array: [lsort [array names s]]" | |
515 | error "exception" | |
516 | } | |
517 | array unset s $e | |
518 | } | |
519 | assert_equal [r scard s] 0 | |
520 | assert_equal [array size s] 0 | |
521 | } | |
522 | } | |
523 | } | |
524 | } |