]>
Commit | Line | Data |
---|---|---|
1 | /* Hash Tables Implementation. | |
2 | * | |
3 | * This file implements in memory hash tables with insert/del/replace/find/ | |
4 | * get-random-element operations. Hash tables will auto resize if needed | |
5 | * tables of power of two in size are used, collisions are handled by | |
6 | * chaining. See the source code for more information... :) | |
7 | * | |
8 | * Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com> | |
9 | * All rights reserved. | |
10 | * | |
11 | * Redistribution and use in source and binary forms, with or without | |
12 | * modification, are permitted provided that the following conditions are met: | |
13 | * | |
14 | * * Redistributions of source code must retain the above copyright notice, | |
15 | * this list of conditions and the following disclaimer. | |
16 | * * Redistributions in binary form must reproduce the above copyright | |
17 | * notice, this list of conditions and the following disclaimer in the | |
18 | * documentation and/or other materials provided with the distribution. | |
19 | * * Neither the name of Redis nor the names of its contributors may be used | |
20 | * to endorse or promote products derived from this software without | |
21 | * specific prior written permission. | |
22 | * | |
23 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
24 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
25 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
26 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
27 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
28 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
29 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
30 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
31 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
32 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
33 | * POSSIBILITY OF SUCH DAMAGE. | |
34 | */ | |
35 | ||
36 | #include "fmacros.h" | |
37 | ||
38 | #include <stdio.h> | |
39 | #include <stdlib.h> | |
40 | #include <string.h> | |
41 | #include <stdarg.h> | |
42 | #include <assert.h> | |
43 | #include <limits.h> | |
44 | ||
45 | #include "dict.h" | |
46 | #include "zmalloc.h" | |
47 | ||
48 | /* Using dictEnableResize() / dictDisableResize() we make possible to | |
49 | * enable/disable resizing of the hash table as needed. This is very important | |
50 | * for Redis, as we use copy-on-write and don't want to move too much memory | |
51 | * around when there is a child performing saving operations. */ | |
52 | static int dict_can_resize = 1; | |
53 | ||
54 | /* ---------------------------- Utility funcitons --------------------------- */ | |
55 | ||
56 | static void _dictPanic(const char *fmt, ...) | |
57 | { | |
58 | va_list ap; | |
59 | ||
60 | va_start(ap, fmt); | |
61 | fprintf(stderr, "\nDICT LIBRARY PANIC: "); | |
62 | vfprintf(stderr, fmt, ap); | |
63 | fprintf(stderr, "\n\n"); | |
64 | va_end(ap); | |
65 | } | |
66 | ||
67 | /* ------------------------- Heap Management Wrappers------------------------ */ | |
68 | ||
69 | static void *_dictAlloc(size_t size) | |
70 | { | |
71 | void *p = zmalloc(size); | |
72 | if (p == NULL) | |
73 | _dictPanic("Out of memory"); | |
74 | return p; | |
75 | } | |
76 | ||
77 | static void _dictFree(void *ptr) { | |
78 | zfree(ptr); | |
79 | } | |
80 | ||
81 | /* -------------------------- private prototypes ---------------------------- */ | |
82 | ||
83 | static int _dictExpandIfNeeded(dict *ht); | |
84 | static unsigned long _dictNextPower(unsigned long size); | |
85 | static int _dictKeyIndex(dict *ht, const void *key); | |
86 | static int _dictInit(dict *ht, dictType *type, void *privDataPtr); | |
87 | ||
88 | /* -------------------------- hash functions -------------------------------- */ | |
89 | ||
90 | /* Thomas Wang's 32 bit Mix Function */ | |
91 | unsigned int dictIntHashFunction(unsigned int key) | |
92 | { | |
93 | key += ~(key << 15); | |
94 | key ^= (key >> 10); | |
95 | key += (key << 3); | |
96 | key ^= (key >> 6); | |
97 | key += ~(key << 11); | |
98 | key ^= (key >> 16); | |
99 | return key; | |
100 | } | |
101 | ||
102 | /* Identity hash function for integer keys */ | |
103 | unsigned int dictIdentityHashFunction(unsigned int key) | |
104 | { | |
105 | return key; | |
106 | } | |
107 | ||
108 | /* Generic hash function (a popular one from Bernstein). | |
109 | * I tested a few and this was the best. */ | |
110 | unsigned int dictGenHashFunction(const unsigned char *buf, int len) { | |
111 | unsigned int hash = 5381; | |
112 | ||
113 | while (len--) | |
114 | hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */ | |
115 | return hash; | |
116 | } | |
117 | ||
118 | /* ----------------------------- API implementation ------------------------- */ | |
119 | ||
120 | /* Reset an hashtable already initialized with ht_init(). | |
121 | * NOTE: This function should only called by ht_destroy(). */ | |
122 | static void _dictReset(dict *ht) | |
123 | { | |
124 | ht->table = NULL; | |
125 | ht->size = 0; | |
126 | ht->sizemask = 0; | |
127 | ht->used = 0; | |
128 | } | |
129 | ||
130 | /* Create a new hash table */ | |
131 | dict *dictCreate(dictType *type, | |
132 | void *privDataPtr) | |
133 | { | |
134 | dict *ht = _dictAlloc(sizeof(*ht)); | |
135 | ||
136 | _dictInit(ht,type,privDataPtr); | |
137 | return ht; | |
138 | } | |
139 | ||
140 | /* Initialize the hash table */ | |
141 | int _dictInit(dict *ht, dictType *type, | |
142 | void *privDataPtr) | |
143 | { | |
144 | _dictReset(ht); | |
145 | ht->type = type; | |
146 | ht->privdata = privDataPtr; | |
147 | return DICT_OK; | |
148 | } | |
149 | ||
150 | /* Resize the table to the minimal size that contains all the elements, | |
151 | * but with the invariant of a USER/BUCKETS ration near to <= 1 */ | |
152 | int dictResize(dict *ht) | |
153 | { | |
154 | int minimal = ht->used; | |
155 | ||
156 | if (!dict_can_resize) return DICT_ERR; | |
157 | if (minimal < DICT_HT_INITIAL_SIZE) | |
158 | minimal = DICT_HT_INITIAL_SIZE; | |
159 | return dictExpand(ht, minimal); | |
160 | } | |
161 | ||
162 | /* Expand or create the hashtable */ | |
163 | int dictExpand(dict *ht, unsigned long size) | |
164 | { | |
165 | dict n; /* the new hashtable */ | |
166 | unsigned long realsize = _dictNextPower(size), i; | |
167 | ||
168 | /* the size is invalid if it is smaller than the number of | |
169 | * elements already inside the hashtable */ | |
170 | if (ht->used > size) | |
171 | return DICT_ERR; | |
172 | ||
173 | _dictInit(&n, ht->type, ht->privdata); | |
174 | n.size = realsize; | |
175 | n.sizemask = realsize-1; | |
176 | n.table = _dictAlloc(realsize*sizeof(dictEntry*)); | |
177 | ||
178 | /* Initialize all the pointers to NULL */ | |
179 | memset(n.table, 0, realsize*sizeof(dictEntry*)); | |
180 | ||
181 | /* Copy all the elements from the old to the new table: | |
182 | * note that if the old hash table is empty ht->size is zero, | |
183 | * so dictExpand just creates an hash table. */ | |
184 | n.used = ht->used; | |
185 | for (i = 0; i < ht->size && ht->used > 0; i++) { | |
186 | dictEntry *he, *nextHe; | |
187 | ||
188 | if (ht->table[i] == NULL) continue; | |
189 | ||
190 | /* For each hash entry on this slot... */ | |
191 | he = ht->table[i]; | |
192 | while(he) { | |
193 | unsigned int h; | |
194 | ||
195 | nextHe = he->next; | |
196 | /* Get the new element index */ | |
197 | h = dictHashKey(ht, he->key) & n.sizemask; | |
198 | he->next = n.table[h]; | |
199 | n.table[h] = he; | |
200 | ht->used--; | |
201 | /* Pass to the next element */ | |
202 | he = nextHe; | |
203 | } | |
204 | } | |
205 | assert(ht->used == 0); | |
206 | _dictFree(ht->table); | |
207 | ||
208 | /* Remap the new hashtable in the old */ | |
209 | *ht = n; | |
210 | return DICT_OK; | |
211 | } | |
212 | ||
213 | /* Add an element to the target hash table */ | |
214 | int dictAdd(dict *ht, void *key, void *val) | |
215 | { | |
216 | int index; | |
217 | dictEntry *entry; | |
218 | ||
219 | /* Get the index of the new element, or -1 if | |
220 | * the element already exists. */ | |
221 | if ((index = _dictKeyIndex(ht, key)) == -1) | |
222 | return DICT_ERR; | |
223 | ||
224 | /* Allocates the memory and stores key */ | |
225 | entry = _dictAlloc(sizeof(*entry)); | |
226 | entry->next = ht->table[index]; | |
227 | ht->table[index] = entry; | |
228 | ||
229 | /* Set the hash entry fields. */ | |
230 | dictSetHashKey(ht, entry, key); | |
231 | dictSetHashVal(ht, entry, val); | |
232 | ht->used++; | |
233 | return DICT_OK; | |
234 | } | |
235 | ||
236 | /* Add an element, discarding the old if the key already exists. | |
237 | * Return 1 if the key was added from scratch, 0 if there was already an | |
238 | * element with such key and dictReplace() just performed a value update | |
239 | * operation. */ | |
240 | int dictReplace(dict *ht, void *key, void *val) | |
241 | { | |
242 | dictEntry *entry, auxentry; | |
243 | ||
244 | /* Try to add the element. If the key | |
245 | * does not exists dictAdd will suceed. */ | |
246 | if (dictAdd(ht, key, val) == DICT_OK) | |
247 | return 1; | |
248 | /* It already exists, get the entry */ | |
249 | entry = dictFind(ht, key); | |
250 | /* Free the old value and set the new one */ | |
251 | /* Set the new value and free the old one. Note that it is important | |
252 | * to do that in this order, as the value may just be exactly the same | |
253 | * as the previous one. In this context, think to reference counting, | |
254 | * you want to increment (set), and then decrement (free), and not the | |
255 | * reverse. */ | |
256 | auxentry = *entry; | |
257 | dictSetHashVal(ht, entry, val); | |
258 | dictFreeEntryVal(ht, &auxentry); | |
259 | return 0; | |
260 | } | |
261 | ||
262 | /* Search and remove an element */ | |
263 | static int dictGenericDelete(dict *ht, const void *key, int nofree) | |
264 | { | |
265 | unsigned int h; | |
266 | dictEntry *he, *prevHe; | |
267 | ||
268 | if (ht->size == 0) | |
269 | return DICT_ERR; | |
270 | h = dictHashKey(ht, key) & ht->sizemask; | |
271 | he = ht->table[h]; | |
272 | ||
273 | prevHe = NULL; | |
274 | while(he) { | |
275 | if (dictCompareHashKeys(ht, key, he->key)) { | |
276 | /* Unlink the element from the list */ | |
277 | if (prevHe) | |
278 | prevHe->next = he->next; | |
279 | else | |
280 | ht->table[h] = he->next; | |
281 | if (!nofree) { | |
282 | dictFreeEntryKey(ht, he); | |
283 | dictFreeEntryVal(ht, he); | |
284 | } | |
285 | _dictFree(he); | |
286 | ht->used--; | |
287 | return DICT_OK; | |
288 | } | |
289 | prevHe = he; | |
290 | he = he->next; | |
291 | } | |
292 | return DICT_ERR; /* not found */ | |
293 | } | |
294 | ||
295 | int dictDelete(dict *ht, const void *key) { | |
296 | return dictGenericDelete(ht,key,0); | |
297 | } | |
298 | ||
299 | int dictDeleteNoFree(dict *ht, const void *key) { | |
300 | return dictGenericDelete(ht,key,1); | |
301 | } | |
302 | ||
303 | /* Destroy an entire hash table */ | |
304 | int _dictClear(dict *ht) | |
305 | { | |
306 | unsigned long i; | |
307 | ||
308 | /* Free all the elements */ | |
309 | for (i = 0; i < ht->size && ht->used > 0; i++) { | |
310 | dictEntry *he, *nextHe; | |
311 | ||
312 | if ((he = ht->table[i]) == NULL) continue; | |
313 | while(he) { | |
314 | nextHe = he->next; | |
315 | dictFreeEntryKey(ht, he); | |
316 | dictFreeEntryVal(ht, he); | |
317 | _dictFree(he); | |
318 | ht->used--; | |
319 | he = nextHe; | |
320 | } | |
321 | } | |
322 | /* Free the table and the allocated cache structure */ | |
323 | _dictFree(ht->table); | |
324 | /* Re-initialize the table */ | |
325 | _dictReset(ht); | |
326 | return DICT_OK; /* never fails */ | |
327 | } | |
328 | ||
329 | /* Clear & Release the hash table */ | |
330 | void dictRelease(dict *ht) | |
331 | { | |
332 | _dictClear(ht); | |
333 | _dictFree(ht); | |
334 | } | |
335 | ||
336 | dictEntry *dictFind(dict *ht, const void *key) | |
337 | { | |
338 | dictEntry *he; | |
339 | unsigned int h; | |
340 | ||
341 | if (ht->size == 0) return NULL; | |
342 | h = dictHashKey(ht, key) & ht->sizemask; | |
343 | he = ht->table[h]; | |
344 | while(he) { | |
345 | if (dictCompareHashKeys(ht, key, he->key)) | |
346 | return he; | |
347 | he = he->next; | |
348 | } | |
349 | return NULL; | |
350 | } | |
351 | ||
352 | dictIterator *dictGetIterator(dict *ht) | |
353 | { | |
354 | dictIterator *iter = _dictAlloc(sizeof(*iter)); | |
355 | ||
356 | iter->ht = ht; | |
357 | iter->index = -1; | |
358 | iter->entry = NULL; | |
359 | iter->nextEntry = NULL; | |
360 | return iter; | |
361 | } | |
362 | ||
363 | dictEntry *dictNext(dictIterator *iter) | |
364 | { | |
365 | while (1) { | |
366 | if (iter->entry == NULL) { | |
367 | iter->index++; | |
368 | if (iter->index >= | |
369 | (signed)iter->ht->size) break; | |
370 | iter->entry = iter->ht->table[iter->index]; | |
371 | } else { | |
372 | iter->entry = iter->nextEntry; | |
373 | } | |
374 | if (iter->entry) { | |
375 | /* We need to save the 'next' here, the iterator user | |
376 | * may delete the entry we are returning. */ | |
377 | iter->nextEntry = iter->entry->next; | |
378 | return iter->entry; | |
379 | } | |
380 | } | |
381 | return NULL; | |
382 | } | |
383 | ||
384 | void dictReleaseIterator(dictIterator *iter) | |
385 | { | |
386 | _dictFree(iter); | |
387 | } | |
388 | ||
389 | /* Return a random entry from the hash table. Useful to | |
390 | * implement randomized algorithms */ | |
391 | dictEntry *dictGetRandomKey(dict *ht) | |
392 | { | |
393 | dictEntry *he; | |
394 | unsigned int h; | |
395 | int listlen, listele; | |
396 | ||
397 | if (ht->used == 0) return NULL; | |
398 | do { | |
399 | h = random() & ht->sizemask; | |
400 | he = ht->table[h]; | |
401 | } while(he == NULL); | |
402 | ||
403 | /* Now we found a non empty bucket, but it is a linked | |
404 | * list and we need to get a random element from the list. | |
405 | * The only sane way to do so is to count the element and | |
406 | * select a random index. */ | |
407 | listlen = 0; | |
408 | while(he) { | |
409 | he = he->next; | |
410 | listlen++; | |
411 | } | |
412 | listele = random() % listlen; | |
413 | he = ht->table[h]; | |
414 | while(listele--) he = he->next; | |
415 | return he; | |
416 | } | |
417 | ||
418 | /* ------------------------- private functions ------------------------------ */ | |
419 | ||
420 | /* Expand the hash table if needed */ | |
421 | static int _dictExpandIfNeeded(dict *ht) | |
422 | { | |
423 | /* If the hash table is empty expand it to the intial size, | |
424 | * if the table is "full" dobule its size. */ | |
425 | if (ht->size == 0) | |
426 | return dictExpand(ht, DICT_HT_INITIAL_SIZE); | |
427 | if (ht->used >= ht->size && dict_can_resize) | |
428 | return dictExpand(ht, ((ht->size > ht->used) ? ht->size : ht->used)*2); | |
429 | return DICT_OK; | |
430 | } | |
431 | ||
432 | /* Our hash table capability is a power of two */ | |
433 | static unsigned long _dictNextPower(unsigned long size) | |
434 | { | |
435 | unsigned long i = DICT_HT_INITIAL_SIZE; | |
436 | ||
437 | if (size >= LONG_MAX) return LONG_MAX; | |
438 | while(1) { | |
439 | if (i >= size) | |
440 | return i; | |
441 | i *= 2; | |
442 | } | |
443 | } | |
444 | ||
445 | /* Returns the index of a free slot that can be populated with | |
446 | * an hash entry for the given 'key'. | |
447 | * If the key already exists, -1 is returned. */ | |
448 | static int _dictKeyIndex(dict *ht, const void *key) | |
449 | { | |
450 | unsigned int h; | |
451 | dictEntry *he; | |
452 | ||
453 | /* Expand the hashtable if needed */ | |
454 | if (_dictExpandIfNeeded(ht) == DICT_ERR) | |
455 | return -1; | |
456 | /* Compute the key hash value */ | |
457 | h = dictHashKey(ht, key) & ht->sizemask; | |
458 | /* Search if this slot does not already contain the given key */ | |
459 | he = ht->table[h]; | |
460 | while(he) { | |
461 | if (dictCompareHashKeys(ht, key, he->key)) | |
462 | return -1; | |
463 | he = he->next; | |
464 | } | |
465 | return h; | |
466 | } | |
467 | ||
468 | void dictEmpty(dict *ht) { | |
469 | _dictClear(ht); | |
470 | } | |
471 | ||
472 | #define DICT_STATS_VECTLEN 50 | |
473 | void dictPrintStats(dict *ht) { | |
474 | unsigned long i, slots = 0, chainlen, maxchainlen = 0; | |
475 | unsigned long totchainlen = 0; | |
476 | unsigned long clvector[DICT_STATS_VECTLEN]; | |
477 | ||
478 | if (ht->used == 0) { | |
479 | printf("No stats available for empty dictionaries\n"); | |
480 | return; | |
481 | } | |
482 | ||
483 | for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0; | |
484 | for (i = 0; i < ht->size; i++) { | |
485 | dictEntry *he; | |
486 | ||
487 | if (ht->table[i] == NULL) { | |
488 | clvector[0]++; | |
489 | continue; | |
490 | } | |
491 | slots++; | |
492 | /* For each hash entry on this slot... */ | |
493 | chainlen = 0; | |
494 | he = ht->table[i]; | |
495 | while(he) { | |
496 | chainlen++; | |
497 | he = he->next; | |
498 | } | |
499 | clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++; | |
500 | if (chainlen > maxchainlen) maxchainlen = chainlen; | |
501 | totchainlen += chainlen; | |
502 | } | |
503 | printf("Hash table stats:\n"); | |
504 | printf(" table size: %ld\n", ht->size); | |
505 | printf(" number of elements: %ld\n", ht->used); | |
506 | printf(" different slots: %ld\n", slots); | |
507 | printf(" max chain length: %ld\n", maxchainlen); | |
508 | printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots); | |
509 | printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots); | |
510 | printf(" Chain length distribution:\n"); | |
511 | for (i = 0; i < DICT_STATS_VECTLEN-1; i++) { | |
512 | if (clvector[i] == 0) continue; | |
513 | printf(" %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100); | |
514 | } | |
515 | } | |
516 | ||
517 | void dictEnableResize(void) { | |
518 | dict_can_resize = 1; | |
519 | } | |
520 | ||
521 | void dictDisableResize(void) { | |
522 | dict_can_resize = 0; | |
523 | } | |
524 | ||
525 | /* ----------------------- StringCopy Hash Table Type ------------------------*/ | |
526 | ||
527 | static unsigned int _dictStringCopyHTHashFunction(const void *key) | |
528 | { | |
529 | return dictGenHashFunction(key, strlen(key)); | |
530 | } | |
531 | ||
532 | static void *_dictStringCopyHTKeyDup(void *privdata, const void *key) | |
533 | { | |
534 | int len = strlen(key); | |
535 | char *copy = _dictAlloc(len+1); | |
536 | DICT_NOTUSED(privdata); | |
537 | ||
538 | memcpy(copy, key, len); | |
539 | copy[len] = '\0'; | |
540 | return copy; | |
541 | } | |
542 | ||
543 | static void *_dictStringKeyValCopyHTValDup(void *privdata, const void *val) | |
544 | { | |
545 | int len = strlen(val); | |
546 | char *copy = _dictAlloc(len+1); | |
547 | DICT_NOTUSED(privdata); | |
548 | ||
549 | memcpy(copy, val, len); | |
550 | copy[len] = '\0'; | |
551 | return copy; | |
552 | } | |
553 | ||
554 | static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1, | |
555 | const void *key2) | |
556 | { | |
557 | DICT_NOTUSED(privdata); | |
558 | ||
559 | return strcmp(key1, key2) == 0; | |
560 | } | |
561 | ||
562 | static void _dictStringCopyHTKeyDestructor(void *privdata, void *key) | |
563 | { | |
564 | DICT_NOTUSED(privdata); | |
565 | ||
566 | _dictFree((void*)key); /* ATTENTION: const cast */ | |
567 | } | |
568 | ||
569 | static void _dictStringKeyValCopyHTValDestructor(void *privdata, void *val) | |
570 | { | |
571 | DICT_NOTUSED(privdata); | |
572 | ||
573 | _dictFree((void*)val); /* ATTENTION: const cast */ | |
574 | } | |
575 | ||
576 | dictType dictTypeHeapStringCopyKey = { | |
577 | _dictStringCopyHTHashFunction, /* hash function */ | |
578 | _dictStringCopyHTKeyDup, /* key dup */ | |
579 | NULL, /* val dup */ | |
580 | _dictStringCopyHTKeyCompare, /* key compare */ | |
581 | _dictStringCopyHTKeyDestructor, /* key destructor */ | |
582 | NULL /* val destructor */ | |
583 | }; | |
584 | ||
585 | /* This is like StringCopy but does not auto-duplicate the key. | |
586 | * It's used for intepreter's shared strings. */ | |
587 | dictType dictTypeHeapStrings = { | |
588 | _dictStringCopyHTHashFunction, /* hash function */ | |
589 | NULL, /* key dup */ | |
590 | NULL, /* val dup */ | |
591 | _dictStringCopyHTKeyCompare, /* key compare */ | |
592 | _dictStringCopyHTKeyDestructor, /* key destructor */ | |
593 | NULL /* val destructor */ | |
594 | }; | |
595 | ||
596 | /* This is like StringCopy but also automatically handle dynamic | |
597 | * allocated C strings as values. */ | |
598 | dictType dictTypeHeapStringCopyKeyValue = { | |
599 | _dictStringCopyHTHashFunction, /* hash function */ | |
600 | _dictStringCopyHTKeyDup, /* key dup */ | |
601 | _dictStringKeyValCopyHTValDup, /* val dup */ | |
602 | _dictStringCopyHTKeyCompare, /* key compare */ | |
603 | _dictStringCopyHTKeyDestructor, /* key destructor */ | |
604 | _dictStringKeyValCopyHTValDestructor, /* val destructor */ | |
605 | }; |