]> git.saurik.com Git - redis.git/blame - src/dscache.c
useless function removed
[redis.git] / src / dscache.c
CommitLineData
e2641e09 1#include "redis.h"
2
3#include <fcntl.h>
4#include <pthread.h>
5#include <math.h>
6#include <signal.h>
7
33388d43 8/* dscache.c - Disk store cache for disk store backend.
9 *
10 * When Redis is configured for using disk as backend instead of memory, the
11 * memory is used as a cache, so that recently accessed keys are taken in
12 * memory for fast read and write operations.
13 *
14 * Modified keys are marked to be flushed on disk, and will be flushed
15 * as long as the maxium configured flush time elapsed.
16 *
17 * This file implements the whole caching subsystem and contains further
18 * documentation. */
19
20/* TODO:
133cf28e 21 *
22 * WARNING: most of the following todo items and design issues are no
23 * longer relevant with the new design. Here as a checklist to see if
24 * some old ideas still apply.
33388d43 25 *
16d77878 26 * - What happens when an object is destroyed?
27 *
d158dc28 28 * If the object is destroyed since semantically it was deleted or
29 * replaced with something new, we don't care if there was a SAVE
30 * job pending for it. Anyway when the IO JOb will be created we'll get
31 * the pointer of the current value.
16d77878 32 *
d158dc28 33 * If the object is already a REDIS_IO_SAVEINPROG object, then it is
34 * impossible that we get a decrRefCount() that will reach refcount of zero
35 * since the object is both in the dataset and in the io job entry.
16d77878 36 *
37 * - What happens with MULTI/EXEC?
38 *
d158dc28 39 * Good question. Without some kind of versioning with a global counter
40 * it is not possible to have trasactions on disk, but they are still
41 * useful since from the point of view of memory and client bugs it is
42 * a protection anyway. Also it's useful for WATCH.
4ab98823 43 *
d158dc28 44 * Btw there is to check what happens when WATCH gets combined to keys
45 * that gets removed from the object cache. Should be save but better
46 * to check.
98a9abb6 47 *
d158dc28 48 * - Check if/why INCR will not update the LRU info for the object.
8e6bb671 49 *
50 * - Fix/Check the following race condition: a key gets a DEL so there is
51 * a write operation scheduled against this key. Later the same key will
52 * be the argument of a GET, but the write operation was still not
53 * completed (to delete the file). If the GET will be for some reason
54 * a blocking loading (via lookup) we can load the old value on memory.
55 *
56 * This problems can be fixed with negative caching. We can use it
57 * to optimize the system, but also when a key is deleted we mark
58 * it as non existing on disk as well (in a way that this cache
59 * entry can't be evicted, setting time to 0), then we avoid looking at
60 * the disk at all if the key can't be there. When an IO Job complete
61 * a deletion, we set the time of the negative caching to a non zero
62 * value so it will be evicted later.
63 *
64 * Are there other patterns like this where we load stale data?
d934e1e8 65 *
66 * Also, make sure that key preloading is ONLY done for keys that are
67 * not marked as cacheKeyDoesNotExist(), otherwise, again, we can load
68 * data from disk that should instead be deleted.
aa81e4d5 69 *
d158dc28 70 * - dsSet() should use rename(2) in order to avoid corruptions.
4942145d 71 *
72 * - Don't add a LOAD if there is already a LOADINPROGRESS, or is this
73 * impossible since anyway the io_keys stuff will work as lock?
d158dc28 74 *
75 * - Serialize special encoded things in a raw form.
fad97fbe 76 *
77 * - When putting IO read operations on top of the queue, do this only if
78 * the already-on-top operation is not a save or if it is a save that
79 * is scheduled for later execution. If there is a save that is ready to
80 * fire, let's insert the load operation just before the first save that
81 * is scheduled for later exection for instance.
82 *
83 * - Support MULTI/EXEC transactions via a journal file, that is played on
84 * startup to check if there is cleanup to do. This way we can implement
85 * transactions with our simple file based KV store.
33388d43 86 */
87
e2641e09 88/* Virtual Memory is composed mainly of two subsystems:
89 * - Blocking Virutal Memory
90 * - Threaded Virtual Memory I/O
91 * The two parts are not fully decoupled, but functions are split among two
92 * different sections of the source code (delimited by comments) in order to
93 * make more clear what functionality is about the blocking VM and what about
94 * the threaded (not blocking) VM.
95 *
96 * Redis VM design:
97 *
98 * Redis VM is a blocking VM (one that blocks reading swapped values from
99 * disk into memory when a value swapped out is needed in memory) that is made
100 * unblocking by trying to examine the command argument vector in order to
101 * load in background values that will likely be needed in order to exec
102 * the command. The command is executed only once all the relevant keys
103 * are loaded into memory.
104 *
105 * This basically is almost as simple of a blocking VM, but almost as parallel
106 * as a fully non-blocking VM.
107 */
108
f34a6cd8 109void spawnIOThread(void);
f771dc23 110int cacheScheduleIOPushJobs(int flags);
111int processActiveIOJobs(int max);
f34a6cd8 112
e2641e09 113/* =================== Virtual Memory - Blocking Side ====================== */
114
f2da3a62 115void dsInit(void) {
e2641e09 116 int pipefds[2];
117 size_t stacksize;
e2641e09 118
f2da3a62 119 zmalloc_enable_thread_safeness(); /* we need thread safe zmalloc() */
e2641e09 120
67b0b41c 121 redisLog(REDIS_NOTICE,"Opening Disk Store: %s", server.ds_path);
f2da3a62 122 /* Open Disk Store */
123 if (dsOpen() != REDIS_OK) {
124 redisLog(REDIS_WARNING,"Fatal error opening disk store. Exiting.");
e2641e09 125 exit(1);
f2da3a62 126 };
e2641e09 127
f2da3a62 128 /* Initialize threaded I/O for Object Cache */
e2641e09 129 server.io_newjobs = listCreate();
130 server.io_processing = listCreate();
131 server.io_processed = listCreate();
132 server.io_ready_clients = listCreate();
133 pthread_mutex_init(&server.io_mutex,NULL);
98a9abb6 134 pthread_cond_init(&server.io_condvar,NULL);
36c17a53 135 pthread_mutex_init(&server.bgsavethread_mutex,NULL);
e2641e09 136 server.io_active_threads = 0;
137 if (pipe(pipefds) == -1) {
f2da3a62 138 redisLog(REDIS_WARNING,"Unable to intialized DS: pipe(2): %s. Exiting."
e2641e09 139 ,strerror(errno));
140 exit(1);
141 }
142 server.io_ready_pipe_read = pipefds[0];
143 server.io_ready_pipe_write = pipefds[1];
144 redisAssert(anetNonBlock(NULL,server.io_ready_pipe_read) != ANET_ERR);
145 /* LZF requires a lot of stack */
146 pthread_attr_init(&server.io_threads_attr);
147 pthread_attr_getstacksize(&server.io_threads_attr, &stacksize);
556bdfba 148
149 /* Solaris may report a stacksize of 0, let's set it to 1 otherwise
150 * multiplying it by 2 in the while loop later will not really help ;) */
151 if (!stacksize) stacksize = 1;
152
e2641e09 153 while (stacksize < REDIS_THREAD_STACK_SIZE) stacksize *= 2;
154 pthread_attr_setstacksize(&server.io_threads_attr, stacksize);
155 /* Listen for events in the threaded I/O pipe */
156 if (aeCreateFileEvent(server.el, server.io_ready_pipe_read, AE_READABLE,
157 vmThreadedIOCompletedJob, NULL) == AE_ERR)
158 oom("creating file event");
e2641e09 159
f2da3a62 160 /* Spawn our I/O thread */
161 spawnIOThread();
e2641e09 162}
163
f2da3a62 164/* Compute how good candidate the specified object is for eviction.
165 * An higher number means a better candidate. */
e2641e09 166double computeObjectSwappability(robj *o) {
167 /* actual age can be >= minage, but not < minage. As we use wrapping
168 * 21 bit clocks with minutes resolution for the LRU. */
f081eaf1 169 return (double) estimateObjectIdleTime(o);
e2641e09 170}
171
f2da3a62 172/* Try to free one entry from the diskstore object cache */
173int cacheFreeOneEntry(void) {
e2641e09 174 int j, i;
175 struct dictEntry *best = NULL;
176 double best_swappability = 0;
177 redisDb *best_db = NULL;
178 robj *val;
179 sds key;
180
181 for (j = 0; j < server.dbnum; j++) {
182 redisDb *db = server.db+j;
183 /* Why maxtries is set to 100?
184 * Because this way (usually) we'll find 1 object even if just 1% - 2%
185 * are swappable objects */
186 int maxtries = 100;
187
69bfffb4 188 for (i = 0; i < 5 && dictSize(db->dict); i++) {
e2641e09 189 dictEntry *de;
190 double swappability;
3be00d7e 191 robj keyobj;
192 sds keystr;
e2641e09 193
194 if (maxtries) maxtries--;
195 de = dictGetRandomKey(db->dict);
3be00d7e 196 keystr = dictGetEntryKey(de);
e2641e09 197 val = dictGetEntryVal(de);
3be00d7e 198 initStaticStringObject(keyobj,keystr);
199
200 /* Don't remove objects that are currently target of a
201 * read or write operation. */
202 if (cacheScheduleIOGetFlags(db,&keyobj) != 0) {
e2641e09 203 if (maxtries) i--; /* don't count this try */
204 continue;
205 }
206 swappability = computeObjectSwappability(val);
207 if (!best || swappability > best_swappability) {
208 best = de;
209 best_swappability = swappability;
210 best_db = db;
211 }
212 }
213 }
f2da3a62 214 if (best == NULL) {
c5b6f461 215 /* Not able to free a single object? we should check if our
418d5eaf 216 * IO queues have stuff in queue, and try to consume the queue
217 * otherwise we'll use an infinite amount of memory if changes to
218 * the dataset are faster than I/O */
219 if (listLength(server.cache_io_queue) > 0) {
f771dc23 220 redisLog(REDIS_DEBUG,"--- Busy waiting IO to reclaim memory");
221 cacheScheduleIOPushJobs(REDIS_IO_ASAP);
222 processActiveIOJobs(1);
418d5eaf 223 return REDIS_OK;
224 }
225 /* Nothing to free at all... */
f2da3a62 226 return REDIS_ERR;
227 }
e2641e09 228 key = dictGetEntryKey(best);
229 val = dictGetEntryVal(best);
230
f2da3a62 231 redisLog(REDIS_DEBUG,"Key selected for cache eviction: %s swappability:%f",
e2641e09 232 key, best_swappability);
233
f2da3a62 234 /* Delete this key from memory */
235 {
236 robj *kobj = createStringObject(key,sdslen(key));
237 dbDelete(best_db,kobj);
238 decrRefCount(kobj);
e2641e09 239 }
5ef64098 240 return REDIS_OK;
e2641e09 241}
242
d934e1e8 243/* ==================== Disk store negative caching ========================
244 *
245 * When disk store is enabled, we need negative caching, that is, to remember
246 * keys that are for sure *not* on the disk key-value store.
247 *
3be00d7e 248 * This is usefuls because without negative caching cache misses will cost us
249 * a disk lookup, even if the same non existing key is accessed again and again.
d934e1e8 250 *
3be00d7e 251 * With negative caching we remember that the key is not on disk, so if it's
252 * not in memory and we have a negative cache entry, we don't try a disk
253 * access at all.
254 */
d934e1e8 255
3be00d7e 256/* Returns true if the specified key may exists on disk, that is, we don't
257 * have an entry in our negative cache for this key */
d934e1e8 258int cacheKeyMayExist(redisDb *db, robj *key) {
259 return dictFind(db->io_negcache,key) == NULL;
260}
261
3be00d7e 262/* Set the specified key as an entry that may possibily exist on disk, that is,
263 * remove the negative cache entry for this key if any. */
d934e1e8 264void cacheSetKeyMayExist(redisDb *db, robj *key) {
265 dictDelete(db->io_negcache,key);
266}
267
3be00d7e 268/* Set the specified key as non existing on disk, that is, create a negative
269 * cache entry for this key. */
d934e1e8 270void cacheSetKeyDoesNotExist(redisDb *db, robj *key) {
d934e1e8 271 if (dictReplace(db->io_negcache,key,(void*)time(NULL))) {
272 incrRefCount(key);
273 }
274}
275
c15a3887 276/* Remove one entry from negative cache using approximated LRU. */
277int negativeCacheEvictOneEntry(void) {
278 struct dictEntry *de;
279 robj *best = NULL;
280 redisDb *best_db = NULL;
281 time_t time, best_time = 0;
282 int j;
283
284 for (j = 0; j < server.dbnum; j++) {
285 redisDb *db = server.db+j;
286 int i;
287
288 if (dictSize(db->io_negcache) == 0) continue;
289 for (i = 0; i < 3; i++) {
290 de = dictGetRandomKey(db->io_negcache);
291 time = (time_t) dictGetEntryVal(de);
292
293 if (best == NULL || time < best_time) {
294 best = dictGetEntryKey(de);
295 best_db = db;
296 best_time = time;
297 }
298 }
299 }
300 if (best) {
301 dictDelete(best_db->io_negcache,best);
302 return REDIS_OK;
303 } else {
304 return REDIS_ERR;
305 }
306}
307
d934e1e8 308/* ================== Disk store cache - Threaded I/O ====================== */
e2641e09 309
310void freeIOJob(iojob *j) {
e2641e09 311 decrRefCount(j->key);
5ef64098 312 /* j->val can be NULL if the job is about deleting the key from disk. */
313 if (j->val) decrRefCount(j->val);
e2641e09 314 zfree(j);
315}
316
317/* Every time a thread finished a Job, it writes a byte into the write side
318 * of an unix pipe in order to "awake" the main thread, and this function
419e1cca 319 * is called.
320 *
d9fac6c0 321 * If privdata == NULL the function will try to put more jobs in the queue
322 * of IO jobs to process as more room is made. privdata is equal to NULL
323 * when the function is called from the event loop, so we want to push
324 * more IO jobs in the queue. Instead when the function is called by
325 * other functions that want to create a write-barrier to avoid race
326 * conditions we don't push new jobs in the queue. */
e2641e09 327void vmThreadedIOCompletedJob(aeEventLoop *el, int fd, void *privdata,
328 int mask)
329{
330 char buf[1];
f34a6cd8 331 int retval, processed = 0, toprocess = -1;
e2641e09 332 REDIS_NOTUSED(el);
333 REDIS_NOTUSED(mask);
e2641e09 334
335 /* For every byte we read in the read side of the pipe, there is one
336 * I/O job completed to process. */
337 while((retval = read(fd,buf,1)) == 1) {
338 iojob *j;
339 listNode *ln;
e2641e09 340
341 redisLog(REDIS_DEBUG,"Processing I/O completed job");
342
343 /* Get the processed element (the oldest one) */
344 lockThreadedIO();
345 redisAssert(listLength(server.io_processed) != 0);
346 if (toprocess == -1) {
347 toprocess = (listLength(server.io_processed)*REDIS_MAX_COMPLETED_JOBS_PROCESSED)/100;
348 if (toprocess <= 0) toprocess = 1;
349 }
350 ln = listFirst(server.io_processed);
351 j = ln->value;
352 listDelNode(server.io_processed,ln);
353 unlockThreadedIO();
f34a6cd8 354
e2641e09 355 /* Post process it in the main thread, as there are things we
356 * can do just here to avoid race conditions and/or invasive locks */
5ef64098 357 redisLog(REDIS_DEBUG,"COMPLETED Job type %s, key: %s",
358 (j->type == REDIS_IOJOB_LOAD) ? "load" : "save",
359 (unsigned char*)j->key->ptr);
e2641e09 360 if (j->type == REDIS_IOJOB_LOAD) {
5ef64098 361 /* Create the key-value pair in the in-memory database */
4ab98823 362 if (j->val != NULL) {
3be00d7e 363 /* Note: it's possible that the key is already in memory
364 * due to a blocking load operation. */
365 if (dbAdd(j->db,j->key,j->val) == REDIS_OK) {
ad01a255 366 incrRefCount(j->val);
367 if (j->expire != -1) setExpire(j->db,j->key,j->expire);
368 }
5d46e370 369 } else {
370 /* Key not found on disk. If it is also not in memory
371 * as a cached object, nor there is a job writing it
372 * in background, we are sure the key does not exist
373 * currently.
374 *
375 * So we set a negative cache entry avoiding that the
376 * resumed client will block load what does not exist... */
bafa88c8 377 if (dictFind(j->db->dict,j->key->ptr) == NULL &&
5d46e370 378 (cacheScheduleIOGetFlags(j->db,j->key) &
379 (REDIS_IO_SAVE|REDIS_IO_SAVEINPROG)) == 0)
380 {
381 cacheSetKeyDoesNotExist(j->db,j->key);
382 }
4ab98823 383 }
3be00d7e 384 cacheScheduleIODelFlag(j->db,j->key,REDIS_IO_LOADINPROG);
5ef64098 385 handleClientsBlockedOnSwappedKey(j->db,j->key);
e2641e09 386 freeIOJob(j);
5f6e1183 387 } else if (j->type == REDIS_IOJOB_SAVE) {
3be00d7e 388 cacheScheduleIODelFlag(j->db,j->key,REDIS_IO_SAVEINPROG);
e2641e09 389 freeIOJob(j);
e2641e09 390 }
391 processed++;
d9fac6c0 392 if (privdata == NULL) cacheScheduleIOPushJobs(0);
e2641e09 393 if (processed == toprocess) return;
394 }
395 if (retval < 0 && errno != EAGAIN) {
396 redisLog(REDIS_WARNING,
397 "WARNING: read(2) error in vmThreadedIOCompletedJob() %s",
398 strerror(errno));
399 }
400}
401
402void lockThreadedIO(void) {
403 pthread_mutex_lock(&server.io_mutex);
404}
405
406void unlockThreadedIO(void) {
407 pthread_mutex_unlock(&server.io_mutex);
408}
409
e2641e09 410void *IOThreadEntryPoint(void *arg) {
411 iojob *j;
412 listNode *ln;
413 REDIS_NOTUSED(arg);
419e1cca 414 long long start;
e2641e09 415
416 pthread_detach(pthread_self());
98a9abb6 417 lockThreadedIO();
e2641e09 418 while(1) {
419 /* Get a new job to process */
e2641e09 420 if (listLength(server.io_newjobs) == 0) {
a440ecf0 421 /* Wait for more work to do */
05600eb8 422 redisLog(REDIS_DEBUG,"[T] wait for signal");
a440ecf0 423 pthread_cond_wait(&server.io_condvar,&server.io_mutex);
05600eb8 424 redisLog(REDIS_DEBUG,"[T] signal received");
1609a1c4 425 continue;
e2641e09 426 }
419e1cca 427 start = ustime();
05600eb8 428 redisLog(REDIS_DEBUG,"[T] %ld IO jobs to process",
c4b64a13 429 listLength(server.io_newjobs));
e2641e09 430 ln = listFirst(server.io_newjobs);
431 j = ln->value;
432 listDelNode(server.io_newjobs,ln);
433 /* Add the job in the processing queue */
e2641e09 434 listAddNodeTail(server.io_processing,j);
435 ln = listLast(server.io_processing); /* We use ln later to remove it */
436 unlockThreadedIO();
98a9abb6 437
05600eb8 438 redisLog(REDIS_DEBUG,"[T] %ld: new job type %s: %p about key '%s'",
5ef64098 439 (long) pthread_self(),
440 (j->type == REDIS_IOJOB_LOAD) ? "load" : "save",
441 (void*)j, (char*)j->key->ptr);
e2641e09 442
443 /* Process the Job */
444 if (j->type == REDIS_IOJOB_LOAD) {
4ab98823 445 time_t expire;
446
447 j->val = dsGet(j->db,j->key,&expire);
448 if (j->val) j->expire = expire;
5ef64098 449 } else if (j->type == REDIS_IOJOB_SAVE) {
31222292 450 if (j->val) {
05600eb8 451 dsSet(j->db,j->key,j->val,j->expire);
31222292 452 } else {
5ef64098 453 dsDel(j->db,j->key);
31222292 454 }
e2641e09 455 }
456
457 /* Done: insert the job into the processed queue */
05600eb8 458 redisLog(REDIS_DEBUG,"[T] %ld completed the job: %p (key %s)",
e2641e09 459 (long) pthread_self(), (void*)j, (char*)j->key->ptr);
98a9abb6 460
05600eb8 461 redisLog(REDIS_DEBUG,"[T] lock IO");
e2641e09 462 lockThreadedIO();
05600eb8 463 redisLog(REDIS_DEBUG,"[T] IO locked");
e2641e09 464 listDelNode(server.io_processing,ln);
465 listAddNodeTail(server.io_processed,j);
e2641e09 466
467 /* Signal the main thread there is new stuff to process */
468 redisAssert(write(server.io_ready_pipe_write,"x",1) == 1);
8b108ed3 469 redisLog(REDIS_DEBUG,"TIME (%c): %lld\n", j->type == REDIS_IOJOB_LOAD ? 'L' : 'S', ustime()-start);
e2641e09 470 }
98a9abb6 471 /* never reached, but that's the full pattern... */
472 unlockThreadedIO();
473 return NULL;
e2641e09 474}
475
476void spawnIOThread(void) {
477 pthread_t thread;
478 sigset_t mask, omask;
479 int err;
480
481 sigemptyset(&mask);
482 sigaddset(&mask,SIGCHLD);
483 sigaddset(&mask,SIGHUP);
484 sigaddset(&mask,SIGPIPE);
485 pthread_sigmask(SIG_SETMASK, &mask, &omask);
486 while ((err = pthread_create(&thread,&server.io_threads_attr,IOThreadEntryPoint,NULL)) != 0) {
487 redisLog(REDIS_WARNING,"Unable to spawn an I/O thread: %s",
488 strerror(err));
489 usleep(1000000);
490 }
491 pthread_sigmask(SIG_SETMASK, &omask, NULL);
492 server.io_active_threads++;
493}
494
f771dc23 495/* Wait that up to 'max' pending IO Jobs are processed by the I/O thread.
496 * From our point of view an IO job processed means that the count of
497 * server.io_processed must increase by one.
498 *
499 * If max is -1, all the pending IO jobs will be processed.
500 *
501 * Returns the number of IO jobs processed.
502 *
503 * NOTE: while this may appear like a busy loop, we are actually blocked
504 * by IO since we continuously acquire/release the IO lock. */
505int processActiveIOJobs(int max) {
506 int processed = 0;
507
508 while(max == -1 || max > 0) {
e2641e09 509 int io_processed_len;
510
05600eb8 511 redisLog(REDIS_DEBUG,"[P] lock IO");
e2641e09 512 lockThreadedIO();
05600eb8 513 redisLog(REDIS_DEBUG,"Waiting IO jobs processing: new:%d proessing:%d processed:%d",listLength(server.io_newjobs),listLength(server.io_processing),listLength(server.io_processed));
514
e2641e09 515 if (listLength(server.io_newjobs) == 0 &&
8d51fb6a 516 listLength(server.io_processing) == 0)
e2641e09 517 {
f771dc23 518 /* There is nothing more to process */
05600eb8 519 redisLog(REDIS_DEBUG,"[P] Nothing to process, unlock IO, return");
e2641e09 520 unlockThreadedIO();
f771dc23 521 break;
e2641e09 522 }
f771dc23 523
05600eb8 524#if 1
a440ecf0 525 /* If there are new jobs we need to signal the thread to
249ad25f 526 * process the next one. FIXME: drop this if useless. */
05600eb8 527 redisLog(REDIS_DEBUG,"[P] waitEmptyIOJobsQueue: new %d, processing %d, processed %d",
a440ecf0 528 listLength(server.io_newjobs),
05600eb8 529 listLength(server.io_processing),
530 listLength(server.io_processed));
5d46e370 531
a440ecf0 532 if (listLength(server.io_newjobs)) {
05600eb8 533 redisLog(REDIS_DEBUG,"[P] There are new jobs, signal");
a440ecf0 534 pthread_cond_signal(&server.io_condvar);
535 }
f771dc23 536#endif
537
538 /* Check if we can process some finished job */
e2641e09 539 io_processed_len = listLength(server.io_processed);
05600eb8 540 redisLog(REDIS_DEBUG,"[P] Unblock IO");
e2641e09 541 unlockThreadedIO();
05600eb8 542 redisLog(REDIS_DEBUG,"[P] Wait");
543 usleep(10000);
e2641e09 544 if (io_processed_len) {
c1ae36ae 545 vmThreadedIOCompletedJob(NULL,server.io_ready_pipe_read,
546 (void*)0xdeadbeef,0);
f771dc23 547 processed++;
548 if (max != -1) max--;
e2641e09 549 }
550 }
f771dc23 551 return processed;
e2641e09 552}
553
f771dc23 554void waitEmptyIOJobsQueue(void) {
555 processActiveIOJobs(-1);
556}
557
558/* Process up to 'max' IO Jobs already completed by threads but still waiting
559 * processing from the main thread.
560 *
561 * If max == -1 all the pending jobs are processed.
562 *
563 * The number of processed jobs is returned. */
564int processPendingIOJobs(int max) {
565 int processed = 0;
566
567 while(max == -1 || max > 0) {
8d51fb6a 568 int io_processed_len;
569
570 lockThreadedIO();
571 io_processed_len = listLength(server.io_processed);
572 unlockThreadedIO();
f771dc23 573 if (io_processed_len == 0) break;
8d51fb6a 574 vmThreadedIOCompletedJob(NULL,server.io_ready_pipe_read,
575 (void*)0xdeadbeef,0);
f771dc23 576 if (max != -1) max--;
577 processed++;
8d51fb6a 578 }
f771dc23 579 return processed;
580}
581
582void processAllPendingIOJobs(void) {
583 processPendingIOJobs(-1);
8d51fb6a 584}
585
e2641e09 586/* This function must be called while with threaded IO locked */
587void queueIOJob(iojob *j) {
588 redisLog(REDIS_DEBUG,"Queued IO Job %p type %d about key '%s'\n",
589 (void*)j, j->type, (char*)j->key->ptr);
590 listAddNodeTail(server.io_newjobs,j);
591 if (server.io_active_threads < server.vm_max_threads)
592 spawnIOThread();
593}
594
249ad25f 595/* Consume all the IO scheduled operations, and all the thread IO jobs
596 * so that eventually the state of diskstore is a point-in-time snapshot.
597 *
598 * This is useful when we need to BGSAVE with diskstore enabled. */
599void cacheForcePointInTime(void) {
600 redisLog(REDIS_NOTICE,"Diskstore: synching on disk to reach point-in-time state.");
601 while (listLength(server.cache_io_queue) != 0) {
602 cacheScheduleIOPushJobs(REDIS_IO_ASAP);
603 processActiveIOJobs(1);
604 }
605 waitEmptyIOJobsQueue();
606 processAllPendingIOJobs();
607}
608
05600eb8 609void cacheCreateIOJob(int type, redisDb *db, robj *key, robj *val, time_t expire) {
e2641e09 610 iojob *j;
611
612 j = zmalloc(sizeof(*j));
5ef64098 613 j->type = type;
e2641e09 614 j->db = db;
615 j->key = key;
616 incrRefCount(key);
5ef64098 617 j->val = val;
1609a1c4 618 if (val) incrRefCount(val);
05600eb8 619 j->expire = expire;
e2641e09 620
621 lockThreadedIO();
622 queueIOJob(j);
98a9abb6 623 pthread_cond_signal(&server.io_condvar);
e2641e09 624 unlockThreadedIO();
e2641e09 625}
626
3be00d7e 627/* ============= Disk store cache - Scheduling of IO operations =============
628 *
629 * We use a queue and an hash table to hold the state of IO operations
630 * so that's fast to lookup if there is already an IO operation in queue
631 * for a given key.
632 *
633 * There are two types of IO operations for a given key:
634 * REDIS_IO_LOAD and REDIS_IO_SAVE.
635 *
636 * The function cacheScheduleIO() function pushes the specified IO operation
637 * in the queue, but avoid adding the same key for the same operation
638 * multiple times, thanks to the associated hash table.
639 *
640 * We take a set of flags per every key, so when the scheduled IO operation
641 * gets moved from the scheduled queue to the actual IO Jobs queue that
642 * is processed by the IO thread, we flag it as IO_LOADINPROG or
643 * IO_SAVEINPROG.
644 *
645 * So for every given key we always know if there is some IO operation
646 * scheduled, or in progress, for this key.
647 *
648 * NOTE: all this is very important in order to guarantee correctness of
649 * the Disk Store Cache. Jobs are always queued here. Load jobs are
650 * queued at the head for faster execution only in the case there is not
651 * already a write operation of some kind for this job.
652 *
653 * So we have ordering, but can do exceptions when there are no already
654 * operations for a given key. Also when we need to block load a given
655 * key, for an immediate lookup operation, we can check if the key can
656 * be accessed synchronously without race conditions (no IN PROGRESS
657 * operations for this key), otherwise we blocking wait for completion. */
658
659#define REDIS_IO_LOAD 1
660#define REDIS_IO_SAVE 2
661#define REDIS_IO_LOADINPROG 4
662#define REDIS_IO_SAVEINPROG 8
663
664void cacheScheduleIOAddFlag(redisDb *db, robj *key, long flag) {
665 struct dictEntry *de = dictFind(db->io_queued,key);
666
667 if (!de) {
668 dictAdd(db->io_queued,key,(void*)flag);
669 incrRefCount(key);
670 return;
671 } else {
672 long flags = (long) dictGetEntryVal(de);
e37efb0d 673
674 if (flags & flag) {
675 redisLog(REDIS_WARNING,"Adding the same flag again: was: %ld, addede: %ld",flags,flag);
676 redisAssert(!(flags & flag));
677 }
3be00d7e 678 flags |= flag;
679 dictGetEntryVal(de) = (void*) flags;
f63f0928 680 }
3be00d7e 681}
682
683void cacheScheduleIODelFlag(redisDb *db, robj *key, long flag) {
684 struct dictEntry *de = dictFind(db->io_queued,key);
685 long flags;
686
687 redisAssert(de != NULL);
688 flags = (long) dictGetEntryVal(de);
689 redisAssert(flags & flag);
690 flags &= ~flag;
691 if (flags == 0) {
692 dictDelete(db->io_queued,key);
693 } else {
694 dictGetEntryVal(de) = (void*) flags;
695 }
696}
f63f0928 697
3be00d7e 698int cacheScheduleIOGetFlags(redisDb *db, robj *key) {
699 struct dictEntry *de = dictFind(db->io_queued,key);
700
701 return (de == NULL) ? 0 : ((long) dictGetEntryVal(de));
702}
703
704void cacheScheduleIO(redisDb *db, robj *key, int type) {
705 ioop *op;
706 long flags;
707
708 if ((flags = cacheScheduleIOGetFlags(db,key)) & type) return;
709
710 redisLog(REDIS_DEBUG,"Scheduling key %s for %s",
711 key->ptr, type == REDIS_IO_LOAD ? "loading" : "saving");
712 cacheScheduleIOAddFlag(db,key,type);
713 op = zmalloc(sizeof(*op));
714 op->type = type;
715 op->db = db;
716 op->key = key;
f63f0928 717 incrRefCount(key);
3be00d7e 718 op->ctime = time(NULL);
719
720 /* Give priority to load operations if there are no save already
721 * in queue for the same key. */
722 if (type == REDIS_IO_LOAD && !(flags & REDIS_IO_SAVE)) {
723 listAddNodeHead(server.cache_io_queue, op);
f771dc23 724 cacheScheduleIOPushJobs(REDIS_IO_ONLYLOADS);
3be00d7e 725 } else {
726 /* FIXME: probably when this happens we want to at least move
727 * the write job about this queue on top, and set the creation time
728 * to a value that will force processing ASAP. */
729 listAddNodeTail(server.cache_io_queue, op);
730 }
f63f0928 731}
732
9b24d8ad 733/* Push scheduled IO operations into IO Jobs that the IO thread can process.
f771dc23 734 *
735 * If flags include REDIS_IO_ONLYLOADS only load jobs are processed:this is
736 * useful since it's safe to push LOAD IO jobs from any place of the code, while
9b24d8ad 737 * SAVE io jobs should never be pushed while we are processing a command
738 * (not protected by lookupKey() that will block on keys in IO_SAVEINPROG
f771dc23 739 * state.
740 *
741 * The REDIS_IO_ASAP flag tells the function to don't wait for the IO job
742 * scheduled completion time, but just do the operation ASAP. This is useful
743 * when we need to reclaim memory from the IO queue.
744 */
419e1cca 745#define MAX_IO_JOBS_QUEUE 10
f771dc23 746int cacheScheduleIOPushJobs(int flags) {
f63f0928 747 time_t now = time(NULL);
748 listNode *ln;
418d5eaf 749 int jobs, topush = 0, pushed = 0;
c4b64a13 750
f03fe802 751 /* Don't push new jobs if there is a threaded BGSAVE in progress. */
752 if (server.bgsavethread != (pthread_t) -1) return 0;
753
9b24d8ad 754 /* Sync stuff on disk, but only if we have less
755 * than MAX_IO_JOBS_QUEUE IO jobs. */
c4b64a13 756 lockThreadedIO();
757 jobs = listLength(server.io_newjobs);
758 unlockThreadedIO();
759
9b24d8ad 760 topush = MAX_IO_JOBS_QUEUE-jobs;
c4b64a13 761 if (topush < 0) topush = 0;
e37efb0d 762 if (topush > (signed)listLength(server.cache_io_queue))
763 topush = listLength(server.cache_io_queue);
f63f0928 764
3be00d7e 765 while((ln = listFirst(server.cache_io_queue)) != NULL) {
766 ioop *op = ln->value;
f771dc23 767 struct dictEntry *de;
768 robj *val;
f63f0928 769
c4b64a13 770 if (!topush) break;
771 topush--;
772
f771dc23 773 if (op->type != REDIS_IO_LOAD && flags & REDIS_IO_ONLYLOADS) break;
774
f1df1739 775 /* Don't execute SAVE before the scheduled time for completion */
776 if (op->type == REDIS_IO_SAVE && !(flags & REDIS_IO_ASAP) &&
f771dc23 777 (now - op->ctime) < server.cache_flush_delay) break;
778
779 /* Don't add a SAVE job in the IO thread queue if there is already
780 * a save in progress for the same key. */
781 if (op->type == REDIS_IO_SAVE &&
782 cacheScheduleIOGetFlags(op->db,op->key) & REDIS_IO_SAVEINPROG)
3be00d7e 783 {
f771dc23 784 /* Move the operation at the end of the list if there
785 * are other operations, so we can try to process the next one.
786 * Otherwise break, nothing to do here. */
787 if (listLength(server.cache_io_queue) > 1) {
788 listDelNode(server.cache_io_queue,ln);
789 listAddNodeTail(server.cache_io_queue,op);
790 continue;
791 } else {
792 break;
e37efb0d 793 }
f771dc23 794 }
e37efb0d 795
f771dc23 796 redisLog(REDIS_DEBUG,"Creating IO %s Job for key %s",
797 op->type == REDIS_IO_LOAD ? "load" : "save", op->key->ptr);
3be00d7e 798
f771dc23 799 if (op->type == REDIS_IO_LOAD) {
05600eb8 800 cacheCreateIOJob(REDIS_IOJOB_LOAD,op->db,op->key,NULL,0);
f771dc23 801 } else {
05600eb8 802 time_t expire = -1;
803
f771dc23 804 /* Lookup the key, in order to put the current value in the IO
805 * Job. Otherwise if the key does not exists we schedule a disk
806 * store delete operation, setting the value to NULL. */
807 de = dictFind(op->db->dict,op->key->ptr);
808 if (de) {
809 val = dictGetEntryVal(de);
05600eb8 810 expire = getExpire(op->db,op->key);
f63f0928 811 } else {
f771dc23 812 /* Setting the value to NULL tells the IO thread to delete
813 * the key on disk. */
814 val = NULL;
f63f0928 815 }
05600eb8 816 cacheCreateIOJob(REDIS_IOJOB_SAVE,op->db,op->key,val,expire);
f63f0928 817 }
f771dc23 818 /* Mark the operation as in progress. */
819 cacheScheduleIODelFlag(op->db,op->key,op->type);
820 cacheScheduleIOAddFlag(op->db,op->key,
821 (op->type == REDIS_IO_LOAD) ? REDIS_IO_LOADINPROG :
822 REDIS_IO_SAVEINPROG);
823 /* Finally remove the operation from the queue.
824 * But we'll have trace of it in the hash table. */
825 listDelNode(server.cache_io_queue,ln);
826 decrRefCount(op->key);
827 zfree(op);
828 pushed++;
f63f0928 829 }
418d5eaf 830 return pushed;
9b24d8ad 831}
832
833void cacheCron(void) {
834 /* Push jobs */
835 cacheScheduleIOPushJobs(0);
f63f0928 836
837 /* Reclaim memory from the object cache */
838 while (server.ds_enabled && zmalloc_used_memory() >
839 server.cache_max_memory)
840 {
c15a3887 841 int done = 0;
842
843 if (cacheFreeOneEntry() == REDIS_OK) done++;
844 if (negativeCacheEvictOneEntry() == REDIS_OK) done++;
845 if (done == 0) break; /* nothing more to free */
f63f0928 846 }
847}
848
3be00d7e 849/* ========== Disk store cache - Blocking clients on missing keys =========== */
e2641e09 850
851/* This function makes the clinet 'c' waiting for the key 'key' to be loaded.
3be00d7e 852 * If the key is already in memory we don't need to block.
f63f0928 853 *
5ef64098 854 * FIXME: we should try if it's actually better to suspend the client
855 * accessing an object that is being saved, and awake it only when
856 * the saving was completed.
857 *
858 * Otherwise if the key is not in memory, we block the client and start
859 * an IO Job to load it:
860 *
861 * the key is added to the io_keys list in the client structure, and also
e2641e09 862 * in the hash table mapping swapped keys to waiting clients, that is,
863 * server.io_waited_keys. */
864int waitForSwappedKey(redisClient *c, robj *key) {
865 struct dictEntry *de;
e2641e09 866 list *l;
867
5ef64098 868 /* Return ASAP if the key is in memory */
e2641e09 869 de = dictFind(c->db->dict,key->ptr);
5ef64098 870 if (de != NULL) return 0;
e2641e09 871
d934e1e8 872 /* Don't wait for keys we are sure are not on disk either */
873 if (!cacheKeyMayExist(c->db,key)) return 0;
874
e2641e09 875 /* Add the key to the list of keys this client is waiting for.
876 * This maps clients to keys they are waiting for. */
877 listAddNodeTail(c->io_keys,key);
878 incrRefCount(key);
879
880 /* Add the client to the swapped keys => clients waiting map. */
881 de = dictFind(c->db->io_keys,key);
882 if (de == NULL) {
883 int retval;
884
885 /* For every key we take a list of clients blocked for it */
886 l = listCreate();
887 retval = dictAdd(c->db->io_keys,key,l);
888 incrRefCount(key);
889 redisAssert(retval == DICT_OK);
890 } else {
891 l = dictGetEntryVal(de);
892 }
893 listAddNodeTail(l,c);
894
895 /* Are we already loading the key from disk? If not create a job */
5ef64098 896 if (de == NULL)
3be00d7e 897 cacheScheduleIO(c->db,key,REDIS_IO_LOAD);
e2641e09 898 return 1;
899}
900
901/* Preload keys for any command with first, last and step values for
902 * the command keys prototype, as defined in the command table. */
903void waitForMultipleSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
904 int j, last;
905 if (cmd->vm_firstkey == 0) return;
906 last = cmd->vm_lastkey;
907 if (last < 0) last = argc+last;
908 for (j = cmd->vm_firstkey; j <= last; j += cmd->vm_keystep) {
909 redisAssert(j < argc);
910 waitForSwappedKey(c,argv[j]);
911 }
912}
913
914/* Preload keys needed for the ZUNIONSTORE and ZINTERSTORE commands.
915 * Note that the number of keys to preload is user-defined, so we need to
916 * apply a sanity check against argc. */
917void zunionInterBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
918 int i, num;
919 REDIS_NOTUSED(cmd);
920
921 num = atoi(argv[2]->ptr);
922 if (num > (argc-3)) return;
923 for (i = 0; i < num; i++) {
924 waitForSwappedKey(c,argv[3+i]);
925 }
926}
927
928/* Preload keys needed to execute the entire MULTI/EXEC block.
929 *
930 * This function is called by blockClientOnSwappedKeys when EXEC is issued,
931 * and will block the client when any command requires a swapped out value. */
932void execBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
933 int i, margc;
934 struct redisCommand *mcmd;
935 robj **margv;
936 REDIS_NOTUSED(cmd);
937 REDIS_NOTUSED(argc);
938 REDIS_NOTUSED(argv);
939
940 if (!(c->flags & REDIS_MULTI)) return;
941 for (i = 0; i < c->mstate.count; i++) {
942 mcmd = c->mstate.commands[i].cmd;
943 margc = c->mstate.commands[i].argc;
944 margv = c->mstate.commands[i].argv;
945
946 if (mcmd->vm_preload_proc != NULL) {
947 mcmd->vm_preload_proc(c,mcmd,margc,margv);
948 } else {
949 waitForMultipleSwappedKeys(c,mcmd,margc,margv);
950 }
951 }
952}
953
954/* Is this client attempting to run a command against swapped keys?
955 * If so, block it ASAP, load the keys in background, then resume it.
956 *
957 * The important idea about this function is that it can fail! If keys will
958 * still be swapped when the client is resumed, this key lookups will
959 * just block loading keys from disk. In practical terms this should only
960 * happen with SORT BY command or if there is a bug in this function.
961 *
962 * Return 1 if the client is marked as blocked, 0 if the client can
963 * continue as the keys it is going to access appear to be in memory. */
964int blockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd) {
965 if (cmd->vm_preload_proc != NULL) {
966 cmd->vm_preload_proc(c,cmd,c->argc,c->argv);
967 } else {
968 waitForMultipleSwappedKeys(c,cmd,c->argc,c->argv);
969 }
970
971 /* If the client was blocked for at least one key, mark it as blocked. */
972 if (listLength(c->io_keys)) {
973 c->flags |= REDIS_IO_WAIT;
974 aeDeleteFileEvent(server.el,c->fd,AE_READABLE);
5ef64098 975 server.cache_blocked_clients++;
e2641e09 976 return 1;
977 } else {
978 return 0;
979 }
980}
981
982/* Remove the 'key' from the list of blocked keys for a given client.
983 *
984 * The function returns 1 when there are no longer blocking keys after
985 * the current one was removed (and the client can be unblocked). */
986int dontWaitForSwappedKey(redisClient *c, robj *key) {
987 list *l;
988 listNode *ln;
989 listIter li;
990 struct dictEntry *de;
991
c8a10631
PN
992 /* The key object might be destroyed when deleted from the c->io_keys
993 * list (and the "key" argument is physically the same object as the
994 * object inside the list), so we need to protect it. */
995 incrRefCount(key);
996
e2641e09 997 /* Remove the key from the list of keys this client is waiting for. */
998 listRewind(c->io_keys,&li);
999 while ((ln = listNext(&li)) != NULL) {
1000 if (equalStringObjects(ln->value,key)) {
1001 listDelNode(c->io_keys,ln);
1002 break;
1003 }
1004 }
1005 redisAssert(ln != NULL);
1006
1007 /* Remove the client form the key => waiting clients map. */
1008 de = dictFind(c->db->io_keys,key);
1009 redisAssert(de != NULL);
1010 l = dictGetEntryVal(de);
1011 ln = listSearchKey(l,c);
1012 redisAssert(ln != NULL);
1013 listDelNode(l,ln);
1014 if (listLength(l) == 0)
1015 dictDelete(c->db->io_keys,key);
1016
c8a10631 1017 decrRefCount(key);
e2641e09 1018 return listLength(c->io_keys) == 0;
1019}
1020
1021/* Every time we now a key was loaded back in memory, we handle clients
1022 * waiting for this key if any. */
1023void handleClientsBlockedOnSwappedKey(redisDb *db, robj *key) {
1024 struct dictEntry *de;
1025 list *l;
1026 listNode *ln;
1027 int len;
1028
1029 de = dictFind(db->io_keys,key);
1030 if (!de) return;
1031
1032 l = dictGetEntryVal(de);
1033 len = listLength(l);
1034 /* Note: we can't use something like while(listLength(l)) as the list
1035 * can be freed by the calling function when we remove the last element. */
1036 while (len--) {
1037 ln = listFirst(l);
1038 redisClient *c = ln->value;
1039
1040 if (dontWaitForSwappedKey(c,key)) {
1041 /* Put the client in the list of clients ready to go as we
1042 * loaded all the keys about it. */
1043 listAddNodeTail(server.io_ready_clients,c);
1044 }
1045 }
1046}