]> git.saurik.com Git - redis.git/blame - src/dict.c
portability fix in redis benchmark, using zu format specified with size_t instead...
[redis.git] / src / dict.c
CommitLineData
ed9b544e 1/* Hash Tables Implementation.
2 *
3 * This file implements in memory hash tables with insert/del/replace/find/
4 * get-random-element operations. Hash tables will auto resize if needed
5 * tables of power of two in size are used, collisions are handled by
6 * chaining. See the source code for more information... :)
7 *
12d090d2 8 * Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com>
ed9b544e 9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions are met:
13 *
14 * * Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * * Neither the name of Redis nor the names of its contributors may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
23d4709d 36#include "fmacros.h"
37
ed9b544e 38#include <stdio.h>
39#include <stdlib.h>
40#include <string.h>
41#include <stdarg.h>
42#include <assert.h>
f2923bec 43#include <limits.h>
8ca3e9d1 44#include <sys/time.h>
1b1f47c9 45#include <ctype.h>
ed9b544e 46
47#include "dict.h"
48#include "zmalloc.h"
49
884d4b39 50/* Using dictEnableResize() / dictDisableResize() we make possible to
51 * enable/disable resizing of the hash table as needed. This is very important
52 * for Redis, as we use copy-on-write and don't want to move too much memory
3856f147 53 * around when there is a child performing saving operations.
54 *
55 * Note that even when dict_can_resize is set to 0, not all resizes are
56 * prevented: an hash table is still allowed to grow if the ratio between
57 * the number of elements and the buckets > dict_force_resize_ratio. */
884d4b39 58static int dict_can_resize = 1;
3856f147 59static unsigned int dict_force_resize_ratio = 5;
884d4b39 60
ed9b544e 61/* -------------------------- private prototypes ---------------------------- */
62
63static int _dictExpandIfNeeded(dict *ht);
f2923bec 64static unsigned long _dictNextPower(unsigned long size);
ed9b544e 65static int _dictKeyIndex(dict *ht, const void *key);
66static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
67
68/* -------------------------- hash functions -------------------------------- */
69
70/* Thomas Wang's 32 bit Mix Function */
71unsigned int dictIntHashFunction(unsigned int key)
72{
73 key += ~(key << 15);
74 key ^= (key >> 10);
75 key += (key << 3);
76 key ^= (key >> 6);
77 key += ~(key << 11);
78 key ^= (key >> 16);
79 return key;
80}
81
82/* Identity hash function for integer keys */
83unsigned int dictIdentityHashFunction(unsigned int key)
84{
85 return key;
86}
87
88/* Generic hash function (a popular one from Bernstein).
89 * I tested a few and this was the best. */
90unsigned int dictGenHashFunction(const unsigned char *buf, int len) {
91 unsigned int hash = 5381;
92
93 while (len--)
94 hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */
95 return hash;
96}
97
1b1f47c9 98/* And a case insensitive version */
99unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len) {
100 unsigned int hash = 5381;
101
102 while (len--)
103 hash = ((hash << 5) + hash) + (tolower(*buf++)); /* hash * 33 + c */
104 return hash;
105}
106
ed9b544e 107/* ----------------------------- API implementation ------------------------- */
108
109/* Reset an hashtable already initialized with ht_init().
110 * NOTE: This function should only called by ht_destroy(). */
5413c40d 111static void _dictReset(dictht *ht)
ed9b544e 112{
113 ht->table = NULL;
114 ht->size = 0;
115 ht->sizemask = 0;
116 ht->used = 0;
117}
118
119/* Create a new hash table */
120dict *dictCreate(dictType *type,
121 void *privDataPtr)
122{
d9dd352b 123 dict *d = zmalloc(sizeof(*d));
ed9b544e 124
5413c40d 125 _dictInit(d,type,privDataPtr);
126 return d;
ed9b544e 127}
128
129/* Initialize the hash table */
5413c40d 130int _dictInit(dict *d, dictType *type,
ed9b544e 131 void *privDataPtr)
132{
5413c40d 133 _dictReset(&d->ht[0]);
134 _dictReset(&d->ht[1]);
135 d->type = type;
136 d->privdata = privDataPtr;
137 d->rehashidx = -1;
138 d->iterators = 0;
ed9b544e 139 return DICT_OK;
140}
141
142/* Resize the table to the minimal size that contains all the elements,
3856f147 143 * but with the invariant of a USER/BUCKETS ratio near to <= 1 */
5413c40d 144int dictResize(dict *d)
ed9b544e 145{
5413c40d 146 int minimal;
ed9b544e 147
5413c40d 148 if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
149 minimal = d->ht[0].used;
ed9b544e 150 if (minimal < DICT_HT_INITIAL_SIZE)
151 minimal = DICT_HT_INITIAL_SIZE;
5413c40d 152 return dictExpand(d, minimal);
ed9b544e 153}
154
155/* Expand or create the hashtable */
5413c40d 156int dictExpand(dict *d, unsigned long size)
ed9b544e 157{
5413c40d 158 dictht n; /* the new hashtable */
159 unsigned long realsize = _dictNextPower(size);
ed9b544e 160
161 /* the size is invalid if it is smaller than the number of
162 * elements already inside the hashtable */
5413c40d 163 if (dictIsRehashing(d) || d->ht[0].used > size)
ed9b544e 164 return DICT_ERR;
165
399f2f40 166 /* Allocate the new hashtable and initialize all pointers to NULL */
ed9b544e 167 n.size = realsize;
168 n.sizemask = realsize-1;
399f2f40 169 n.table = zcalloc(realsize*sizeof(dictEntry*));
5413c40d 170 n.used = 0;
ed9b544e 171
5413c40d 172 /* Is this the first initialization? If so it's not really a rehashing
173 * we just set the first hash table so that it can accept keys. */
174 if (d->ht[0].table == NULL) {
175 d->ht[0] = n;
176 return DICT_OK;
177 }
ed9b544e 178
5413c40d 179 /* Prepare a second hash table for incremental rehashing */
180 d->ht[1] = n;
181 d->rehashidx = 0;
182 return DICT_OK;
183}
184
185/* Performs N steps of incremental rehashing. Returns 1 if there are still
186 * keys to move from the old to the new hash table, otherwise 0 is returned.
187 * Note that a rehashing step consists in moving a bucket (that may have more
188 * thank one key as we use chaining) from the old to the new hash table. */
189int dictRehash(dict *d, int n) {
190 if (!dictIsRehashing(d)) return 0;
191
192 while(n--) {
193 dictEntry *de, *nextde;
194
195 /* Check if we already rehashed the whole table... */
196 if (d->ht[0].used == 0) {
d9dd352b 197 zfree(d->ht[0].table);
5413c40d 198 d->ht[0] = d->ht[1];
199 _dictReset(&d->ht[1]);
200 d->rehashidx = -1;
201 return 0;
202 }
203
204 /* Note that rehashidx can't overflow as we are sure there are more
205 * elements because ht[0].used != 0 */
206 while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++;
207 de = d->ht[0].table[d->rehashidx];
208 /* Move all the keys in this bucket from the old to the new hash HT */
209 while(de) {
ed9b544e 210 unsigned int h;
211
5413c40d 212 nextde = de->next;
213 /* Get the index in the new hash table */
214 h = dictHashKey(d, de->key) & d->ht[1].sizemask;
215 de->next = d->ht[1].table[h];
216 d->ht[1].table[h] = de;
217 d->ht[0].used--;
218 d->ht[1].used++;
219 de = nextde;
ed9b544e 220 }
5413c40d 221 d->ht[0].table[d->rehashidx] = NULL;
222 d->rehashidx++;
ed9b544e 223 }
5413c40d 224 return 1;
225}
ed9b544e 226
8ca3e9d1 227long long timeInMilliseconds(void) {
228 struct timeval tv;
229
230 gettimeofday(&tv,NULL);
231 return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
232}
233
234/* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
235int dictRehashMilliseconds(dict *d, int ms) {
236 long long start = timeInMilliseconds();
237 int rehashes = 0;
238
239 while(dictRehash(d,100)) {
240 rehashes += 100;
241 if (timeInMilliseconds()-start > ms) break;
242 }
243 return rehashes;
244}
245
5413c40d 246/* This function performs just a step of rehashing, and only if there are
247 * not iterators bound to our hash table. When we have iterators in the middle
248 * of a rehashing we can't mess with the two hash tables otherwise some element
249 * can be missed or duplicated.
250 *
251 * This function is called by common lookup or update operations in the
252 * dictionary so that the hash table automatically migrates from H1 to H2
253 * while it is actively used. */
254static void _dictRehashStep(dict *d) {
255 if (d->iterators == 0) dictRehash(d,1);
ed9b544e 256}
257
258/* Add an element to the target hash table */
5413c40d 259int dictAdd(dict *d, void *key, void *val)
ed9b544e 260{
261 int index;
262 dictEntry *entry;
5413c40d 263 dictht *ht;
264
265 if (dictIsRehashing(d)) _dictRehashStep(d);
ed9b544e 266
267 /* Get the index of the new element, or -1 if
268 * the element already exists. */
5413c40d 269 if ((index = _dictKeyIndex(d, key)) == -1)
ed9b544e 270 return DICT_ERR;
271
272 /* Allocates the memory and stores key */
5413c40d 273 ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
d9dd352b 274 entry = zmalloc(sizeof(*entry));
ed9b544e 275 entry->next = ht->table[index];
276 ht->table[index] = entry;
5413c40d 277 ht->used++;
ed9b544e 278
279 /* Set the hash entry fields. */
5413c40d 280 dictSetHashKey(d, entry, key);
281 dictSetHashVal(d, entry, val);
ed9b544e 282 return DICT_OK;
283}
284
121796f7 285/* Add an element, discarding the old if the key already exists.
286 * Return 1 if the key was added from scratch, 0 if there was already an
287 * element with such key and dictReplace() just performed a value update
288 * operation. */
5413c40d 289int dictReplace(dict *d, void *key, void *val)
ed9b544e 290{
2069d06a 291 dictEntry *entry, auxentry;
ed9b544e 292
293 /* Try to add the element. If the key
294 * does not exists dictAdd will suceed. */
5413c40d 295 if (dictAdd(d, key, val) == DICT_OK)
121796f7 296 return 1;
ed9b544e 297 /* It already exists, get the entry */
5413c40d 298 entry = dictFind(d, key);
ed9b544e 299 /* Free the old value and set the new one */
2069d06a 300 /* Set the new value and free the old one. Note that it is important
301 * to do that in this order, as the value may just be exactly the same
302 * as the previous one. In this context, think to reference counting,
303 * you want to increment (set), and then decrement (free), and not the
304 * reverse. */
305 auxentry = *entry;
5413c40d 306 dictSetHashVal(d, entry, val);
307 dictFreeEntryVal(d, &auxentry);
121796f7 308 return 0;
ed9b544e 309}
310
311/* Search and remove an element */
5413c40d 312static int dictGenericDelete(dict *d, const void *key, int nofree)
ed9b544e 313{
5413c40d 314 unsigned int h, idx;
ed9b544e 315 dictEntry *he, *prevHe;
5413c40d 316 int table;
ed9b544e 317
5413c40d 318 if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */
319 if (dictIsRehashing(d)) _dictRehashStep(d);
320 h = dictHashKey(d, key);
ed9b544e 321
5413c40d 322 for (table = 0; table <= 1; table++) {
323 idx = h & d->ht[table].sizemask;
324 he = d->ht[table].table[idx];
325 prevHe = NULL;
326 while(he) {
327 if (dictCompareHashKeys(d, key, he->key)) {
328 /* Unlink the element from the list */
329 if (prevHe)
330 prevHe->next = he->next;
331 else
332 d->ht[table].table[idx] = he->next;
333 if (!nofree) {
334 dictFreeEntryKey(d, he);
335 dictFreeEntryVal(d, he);
336 }
d9dd352b 337 zfree(he);
5413c40d 338 d->ht[table].used--;
339 return DICT_OK;
ed9b544e 340 }
5413c40d 341 prevHe = he;
342 he = he->next;
ed9b544e 343 }
5413c40d 344 if (!dictIsRehashing(d)) break;
ed9b544e 345 }
346 return DICT_ERR; /* not found */
347}
348
349int dictDelete(dict *ht, const void *key) {
350 return dictGenericDelete(ht,key,0);
351}
352
353int dictDeleteNoFree(dict *ht, const void *key) {
354 return dictGenericDelete(ht,key,1);
355}
356
5413c40d 357/* Destroy an entire dictionary */
358int _dictClear(dict *d, dictht *ht)
ed9b544e 359{
f2923bec 360 unsigned long i;
ed9b544e 361
362 /* Free all the elements */
363 for (i = 0; i < ht->size && ht->used > 0; i++) {
364 dictEntry *he, *nextHe;
365
366 if ((he = ht->table[i]) == NULL) continue;
367 while(he) {
368 nextHe = he->next;
5413c40d 369 dictFreeEntryKey(d, he);
370 dictFreeEntryVal(d, he);
d9dd352b 371 zfree(he);
ed9b544e 372 ht->used--;
373 he = nextHe;
374 }
375 }
376 /* Free the table and the allocated cache structure */
d9dd352b 377 zfree(ht->table);
ed9b544e 378 /* Re-initialize the table */
379 _dictReset(ht);
380 return DICT_OK; /* never fails */
381}
382
383/* Clear & Release the hash table */
5413c40d 384void dictRelease(dict *d)
ed9b544e 385{
5413c40d 386 _dictClear(d,&d->ht[0]);
387 _dictClear(d,&d->ht[1]);
d9dd352b 388 zfree(d);
ed9b544e 389}
390
5413c40d 391dictEntry *dictFind(dict *d, const void *key)
ed9b544e 392{
393 dictEntry *he;
5413c40d 394 unsigned int h, idx, table;
395
396 if (d->ht[0].size == 0) return NULL; /* We don't have a table at all */
397 if (dictIsRehashing(d)) _dictRehashStep(d);
398 h = dictHashKey(d, key);
399 for (table = 0; table <= 1; table++) {
400 idx = h & d->ht[table].sizemask;
401 he = d->ht[table].table[idx];
402 while(he) {
403 if (dictCompareHashKeys(d, key, he->key))
404 return he;
405 he = he->next;
406 }
407 if (!dictIsRehashing(d)) return NULL;
ed9b544e 408 }
409 return NULL;
410}
411
58e1c9c1 412void *dictFetchValue(dict *d, const void *key) {
413 dictEntry *he;
414
415 he = dictFind(d,key);
416 return he ? dictGetEntryVal(he) : NULL;
417}
418
5413c40d 419dictIterator *dictGetIterator(dict *d)
ed9b544e 420{
d9dd352b 421 dictIterator *iter = zmalloc(sizeof(*iter));
ed9b544e 422
5413c40d 423 iter->d = d;
424 iter->table = 0;
ed9b544e 425 iter->index = -1;
426 iter->entry = NULL;
427 iter->nextEntry = NULL;
428 return iter;
429}
430
431dictEntry *dictNext(dictIterator *iter)
432{
433 while (1) {
434 if (iter->entry == NULL) {
5413c40d 435 dictht *ht = &iter->d->ht[iter->table];
436 if (iter->index == -1 && iter->table == 0) iter->d->iterators++;
ed9b544e 437 iter->index++;
5413c40d 438 if (iter->index >= (signed) ht->size) {
439 if (dictIsRehashing(iter->d) && iter->table == 0) {
440 iter->table++;
441 iter->index = 0;
442 ht = &iter->d->ht[1];
443 } else {
444 break;
445 }
446 }
447 iter->entry = ht->table[iter->index];
ed9b544e 448 } else {
449 iter->entry = iter->nextEntry;
450 }
451 if (iter->entry) {
452 /* We need to save the 'next' here, the iterator user
453 * may delete the entry we are returning. */
454 iter->nextEntry = iter->entry->next;
455 return iter->entry;
456 }
457 }
458 return NULL;
459}
460
461void dictReleaseIterator(dictIterator *iter)
462{
5413c40d 463 if (!(iter->index == -1 && iter->table == 0)) iter->d->iterators--;
d9dd352b 464 zfree(iter);
ed9b544e 465}
466
467/* Return a random entry from the hash table. Useful to
468 * implement randomized algorithms */
5413c40d 469dictEntry *dictGetRandomKey(dict *d)
ed9b544e 470{
5413c40d 471 dictEntry *he, *orighe;
ed9b544e 472 unsigned int h;
473 int listlen, listele;
474
5413c40d 475 if (dictSize(d) == 0) return NULL;
476 if (dictIsRehashing(d)) _dictRehashStep(d);
477 if (dictIsRehashing(d)) {
478 do {
479 h = random() % (d->ht[0].size+d->ht[1].size);
480 he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :
481 d->ht[0].table[h];
482 } while(he == NULL);
483 } else {
484 do {
485 h = random() & d->ht[0].sizemask;
486 he = d->ht[0].table[h];
487 } while(he == NULL);
488 }
ed9b544e 489
490 /* Now we found a non empty bucket, but it is a linked
491 * list and we need to get a random element from the list.
5413c40d 492 * The only sane way to do so is counting the elements and
ed9b544e 493 * select a random index. */
494 listlen = 0;
5413c40d 495 orighe = he;
ed9b544e 496 while(he) {
497 he = he->next;
498 listlen++;
499 }
500 listele = random() % listlen;
5413c40d 501 he = orighe;
ed9b544e 502 while(listele--) he = he->next;
503 return he;
504}
505
506/* ------------------------- private functions ------------------------------ */
507
508/* Expand the hash table if needed */
5413c40d 509static int _dictExpandIfNeeded(dict *d)
ed9b544e 510{
3856f147 511 /* Incremental rehashing already in progress. Return. */
5413c40d 512 if (dictIsRehashing(d)) return DICT_OK;
3856f147 513
514 /* If the hash table is empty expand it to the intial size. */
515 if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);
516
517 /* If we reached the 1:1 ratio, and we are allowed to resize the hash
518 * table (global setting) or we should avoid it but the ratio between
519 * elements/buckets is over the "safe" threshold, we resize doubling
520 * the number of buckets. */
521 if (d->ht[0].used >= d->ht[0].size &&
522 (dict_can_resize ||
523 d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
524 {
5413c40d 525 return dictExpand(d, ((d->ht[0].size > d->ht[0].used) ?
526 d->ht[0].size : d->ht[0].used)*2);
3856f147 527 }
ed9b544e 528 return DICT_OK;
529}
530
531/* Our hash table capability is a power of two */
f2923bec 532static unsigned long _dictNextPower(unsigned long size)
ed9b544e 533{
f2923bec 534 unsigned long i = DICT_HT_INITIAL_SIZE;
ed9b544e 535
f2923bec 536 if (size >= LONG_MAX) return LONG_MAX;
ed9b544e 537 while(1) {
538 if (i >= size)
539 return i;
540 i *= 2;
541 }
542}
543
544/* Returns the index of a free slot that can be populated with
545 * an hash entry for the given 'key'.
5413c40d 546 * If the key already exists, -1 is returned.
547 *
548 * Note that if we are in the process of rehashing the hash table, the
549 * index is always returned in the context of the second (new) hash table. */
550static int _dictKeyIndex(dict *d, const void *key)
ed9b544e 551{
8ca3e9d1 552 unsigned int h, idx, table;
ed9b544e 553 dictEntry *he;
554
555 /* Expand the hashtable if needed */
5413c40d 556 if (_dictExpandIfNeeded(d) == DICT_ERR)
ed9b544e 557 return -1;
558 /* Compute the key hash value */
5413c40d 559 h = dictHashKey(d, key);
8ca3e9d1 560 for (table = 0; table <= 1; table++) {
561 idx = h & d->ht[table].sizemask;
562 /* Search if this slot does not already contain the given key */
563 he = d->ht[table].table[idx];
564 while(he) {
565 if (dictCompareHashKeys(d, key, he->key))
566 return -1;
567 he = he->next;
568 }
569 if (!dictIsRehashing(d)) break;
ed9b544e 570 }
8ca3e9d1 571 return idx;
ed9b544e 572}
573
5413c40d 574void dictEmpty(dict *d) {
575 _dictClear(d,&d->ht[0]);
576 _dictClear(d,&d->ht[1]);
577 d->rehashidx = -1;
578 d->iterators = 0;
ed9b544e 579}
580
581#define DICT_STATS_VECTLEN 50
5413c40d 582static void _dictPrintStatsHt(dictht *ht) {
f2923bec 583 unsigned long i, slots = 0, chainlen, maxchainlen = 0;
584 unsigned long totchainlen = 0;
585 unsigned long clvector[DICT_STATS_VECTLEN];
ed9b544e 586
587 if (ht->used == 0) {
588 printf("No stats available for empty dictionaries\n");
589 return;
590 }
591
592 for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
593 for (i = 0; i < ht->size; i++) {
594 dictEntry *he;
595
596 if (ht->table[i] == NULL) {
597 clvector[0]++;
598 continue;
599 }
600 slots++;
601 /* For each hash entry on this slot... */
602 chainlen = 0;
603 he = ht->table[i];
604 while(he) {
605 chainlen++;
606 he = he->next;
607 }
608 clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
609 if (chainlen > maxchainlen) maxchainlen = chainlen;
610 totchainlen += chainlen;
611 }
612 printf("Hash table stats:\n");
f2923bec 613 printf(" table size: %ld\n", ht->size);
614 printf(" number of elements: %ld\n", ht->used);
615 printf(" different slots: %ld\n", slots);
616 printf(" max chain length: %ld\n", maxchainlen);
ed9b544e 617 printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots);
618 printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots);
619 printf(" Chain length distribution:\n");
620 for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
621 if (clvector[i] == 0) continue;
f2923bec 622 printf(" %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100);
ed9b544e 623 }
624}
625
5413c40d 626void dictPrintStats(dict *d) {
627 _dictPrintStatsHt(&d->ht[0]);
628 if (dictIsRehashing(d)) {
629 printf("-- Rehashing into ht[1]:\n");
630 _dictPrintStatsHt(&d->ht[1]);
631 }
632}
633
884d4b39 634void dictEnableResize(void) {
635 dict_can_resize = 1;
636}
637
638void dictDisableResize(void) {
dae121d9 639 dict_can_resize = 0;
884d4b39 640}
641
e0be2289 642#if 0
643
644/* The following are just example hash table types implementations.
645 * Not useful for Redis so they are commented out.
646 */
647
ed9b544e 648/* ----------------------- StringCopy Hash Table Type ------------------------*/
649
650static unsigned int _dictStringCopyHTHashFunction(const void *key)
651{
652 return dictGenHashFunction(key, strlen(key));
653}
654
b1e0bd4b 655static void *_dictStringDup(void *privdata, const void *key)
ed9b544e 656{
657 int len = strlen(key);
d9dd352b 658 char *copy = zmalloc(len+1);
ed9b544e 659 DICT_NOTUSED(privdata);
660
661 memcpy(copy, key, len);
662 copy[len] = '\0';
663 return copy;
664}
665
ed9b544e 666static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1,
667 const void *key2)
668{
669 DICT_NOTUSED(privdata);
670
671 return strcmp(key1, key2) == 0;
672}
673
b1e0bd4b 674static void _dictStringDestructor(void *privdata, void *key)
ed9b544e 675{
676 DICT_NOTUSED(privdata);
677
d9dd352b 678 zfree(key);
ed9b544e 679}
680
681dictType dictTypeHeapStringCopyKey = {
b1e0bd4b
BK
682 _dictStringCopyHTHashFunction, /* hash function */
683 _dictStringDup, /* key dup */
684 NULL, /* val dup */
685 _dictStringCopyHTKeyCompare, /* key compare */
686 _dictStringDestructor, /* key destructor */
687 NULL /* val destructor */
ed9b544e 688};
689
690/* This is like StringCopy but does not auto-duplicate the key.
691 * It's used for intepreter's shared strings. */
692dictType dictTypeHeapStrings = {
b1e0bd4b
BK
693 _dictStringCopyHTHashFunction, /* hash function */
694 NULL, /* key dup */
695 NULL, /* val dup */
696 _dictStringCopyHTKeyCompare, /* key compare */
697 _dictStringDestructor, /* key destructor */
698 NULL /* val destructor */
ed9b544e 699};
700
701/* This is like StringCopy but also automatically handle dynamic
702 * allocated C strings as values. */
703dictType dictTypeHeapStringCopyKeyValue = {
b1e0bd4b
BK
704 _dictStringCopyHTHashFunction, /* hash function */
705 _dictStringDup, /* key dup */
706 _dictStringDup, /* val dup */
707 _dictStringCopyHTKeyCompare, /* key compare */
708 _dictStringDestructor, /* key destructor */
709 _dictStringDestructor, /* val destructor */
ed9b544e 710};
e0be2289 711#endif