]>
Commit | Line | Data |
---|---|---|
ed9b544e | 1 | /* Hash Tables Implementation. |
2 | * | |
3 | * This file implements in memory hash tables with insert/del/replace/find/ | |
4 | * get-random-element operations. Hash tables will auto resize if needed | |
5 | * tables of power of two in size are used, collisions are handled by | |
6 | * chaining. See the source code for more information... :) | |
7 | * | |
12d090d2 | 8 | * Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com> |
ed9b544e | 9 | * All rights reserved. |
10 | * | |
11 | * Redistribution and use in source and binary forms, with or without | |
12 | * modification, are permitted provided that the following conditions are met: | |
13 | * | |
14 | * * Redistributions of source code must retain the above copyright notice, | |
15 | * this list of conditions and the following disclaimer. | |
16 | * * Redistributions in binary form must reproduce the above copyright | |
17 | * notice, this list of conditions and the following disclaimer in the | |
18 | * documentation and/or other materials provided with the distribution. | |
19 | * * Neither the name of Redis nor the names of its contributors may be used | |
20 | * to endorse or promote products derived from this software without | |
21 | * specific prior written permission. | |
22 | * | |
23 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
24 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
25 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
26 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
27 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
28 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
29 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
30 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
31 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
32 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
33 | * POSSIBILITY OF SUCH DAMAGE. | |
34 | */ | |
35 | ||
23d4709d | 36 | #include "fmacros.h" |
37 | ||
ed9b544e | 38 | #include <stdio.h> |
39 | #include <stdlib.h> | |
40 | #include <string.h> | |
41 | #include <stdarg.h> | |
42 | #include <assert.h> | |
f2923bec | 43 | #include <limits.h> |
ed9b544e | 44 | |
45 | #include "dict.h" | |
46 | #include "zmalloc.h" | |
47 | ||
48 | /* ---------------------------- Utility funcitons --------------------------- */ | |
49 | ||
50 | static void _dictPanic(const char *fmt, ...) | |
51 | { | |
52 | va_list ap; | |
53 | ||
54 | va_start(ap, fmt); | |
55 | fprintf(stderr, "\nDICT LIBRARY PANIC: "); | |
56 | vfprintf(stderr, fmt, ap); | |
57 | fprintf(stderr, "\n\n"); | |
58 | va_end(ap); | |
59 | } | |
60 | ||
61 | /* ------------------------- Heap Management Wrappers------------------------ */ | |
62 | ||
71aee3e9 | 63 | static void *_dictAlloc(size_t size) |
ed9b544e | 64 | { |
65 | void *p = zmalloc(size); | |
66 | if (p == NULL) | |
67 | _dictPanic("Out of memory"); | |
68 | return p; | |
69 | } | |
70 | ||
71 | static void _dictFree(void *ptr) { | |
72 | zfree(ptr); | |
73 | } | |
74 | ||
75 | /* -------------------------- private prototypes ---------------------------- */ | |
76 | ||
77 | static int _dictExpandIfNeeded(dict *ht); | |
f2923bec | 78 | static unsigned long _dictNextPower(unsigned long size); |
ed9b544e | 79 | static int _dictKeyIndex(dict *ht, const void *key); |
80 | static int _dictInit(dict *ht, dictType *type, void *privDataPtr); | |
81 | ||
82 | /* -------------------------- hash functions -------------------------------- */ | |
83 | ||
84 | /* Thomas Wang's 32 bit Mix Function */ | |
85 | unsigned int dictIntHashFunction(unsigned int key) | |
86 | { | |
87 | key += ~(key << 15); | |
88 | key ^= (key >> 10); | |
89 | key += (key << 3); | |
90 | key ^= (key >> 6); | |
91 | key += ~(key << 11); | |
92 | key ^= (key >> 16); | |
93 | return key; | |
94 | } | |
95 | ||
96 | /* Identity hash function for integer keys */ | |
97 | unsigned int dictIdentityHashFunction(unsigned int key) | |
98 | { | |
99 | return key; | |
100 | } | |
101 | ||
102 | /* Generic hash function (a popular one from Bernstein). | |
103 | * I tested a few and this was the best. */ | |
104 | unsigned int dictGenHashFunction(const unsigned char *buf, int len) { | |
105 | unsigned int hash = 5381; | |
106 | ||
107 | while (len--) | |
108 | hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */ | |
109 | return hash; | |
110 | } | |
111 | ||
112 | /* ----------------------------- API implementation ------------------------- */ | |
113 | ||
114 | /* Reset an hashtable already initialized with ht_init(). | |
115 | * NOTE: This function should only called by ht_destroy(). */ | |
116 | static void _dictReset(dict *ht) | |
117 | { | |
118 | ht->table = NULL; | |
119 | ht->size = 0; | |
120 | ht->sizemask = 0; | |
121 | ht->used = 0; | |
122 | } | |
123 | ||
124 | /* Create a new hash table */ | |
125 | dict *dictCreate(dictType *type, | |
126 | void *privDataPtr) | |
127 | { | |
128 | dict *ht = _dictAlloc(sizeof(*ht)); | |
129 | ||
130 | _dictInit(ht,type,privDataPtr); | |
131 | return ht; | |
132 | } | |
133 | ||
134 | /* Initialize the hash table */ | |
135 | int _dictInit(dict *ht, dictType *type, | |
136 | void *privDataPtr) | |
137 | { | |
138 | _dictReset(ht); | |
139 | ht->type = type; | |
140 | ht->privdata = privDataPtr; | |
141 | return DICT_OK; | |
142 | } | |
143 | ||
144 | /* Resize the table to the minimal size that contains all the elements, | |
145 | * but with the invariant of a USER/BUCKETS ration near to <= 1 */ | |
146 | int dictResize(dict *ht) | |
147 | { | |
148 | int minimal = ht->used; | |
149 | ||
150 | if (minimal < DICT_HT_INITIAL_SIZE) | |
151 | minimal = DICT_HT_INITIAL_SIZE; | |
152 | return dictExpand(ht, minimal); | |
153 | } | |
154 | ||
155 | /* Expand or create the hashtable */ | |
f2923bec | 156 | int dictExpand(dict *ht, unsigned long size) |
ed9b544e | 157 | { |
158 | dict n; /* the new hashtable */ | |
f2923bec | 159 | unsigned long realsize = _dictNextPower(size), i; |
ed9b544e | 160 | |
161 | /* the size is invalid if it is smaller than the number of | |
162 | * elements already inside the hashtable */ | |
163 | if (ht->used > size) | |
164 | return DICT_ERR; | |
165 | ||
166 | _dictInit(&n, ht->type, ht->privdata); | |
167 | n.size = realsize; | |
168 | n.sizemask = realsize-1; | |
169 | n.table = _dictAlloc(realsize*sizeof(dictEntry*)); | |
170 | ||
171 | /* Initialize all the pointers to NULL */ | |
172 | memset(n.table, 0, realsize*sizeof(dictEntry*)); | |
173 | ||
174 | /* Copy all the elements from the old to the new table: | |
175 | * note that if the old hash table is empty ht->size is zero, | |
176 | * so dictExpand just creates an hash table. */ | |
177 | n.used = ht->used; | |
178 | for (i = 0; i < ht->size && ht->used > 0; i++) { | |
179 | dictEntry *he, *nextHe; | |
180 | ||
181 | if (ht->table[i] == NULL) continue; | |
182 | ||
183 | /* For each hash entry on this slot... */ | |
184 | he = ht->table[i]; | |
185 | while(he) { | |
186 | unsigned int h; | |
187 | ||
188 | nextHe = he->next; | |
189 | /* Get the new element index */ | |
190 | h = dictHashKey(ht, he->key) & n.sizemask; | |
191 | he->next = n.table[h]; | |
192 | n.table[h] = he; | |
193 | ht->used--; | |
194 | /* Pass to the next element */ | |
195 | he = nextHe; | |
196 | } | |
197 | } | |
198 | assert(ht->used == 0); | |
199 | _dictFree(ht->table); | |
200 | ||
201 | /* Remap the new hashtable in the old */ | |
202 | *ht = n; | |
203 | return DICT_OK; | |
204 | } | |
205 | ||
206 | /* Add an element to the target hash table */ | |
207 | int dictAdd(dict *ht, void *key, void *val) | |
208 | { | |
209 | int index; | |
210 | dictEntry *entry; | |
211 | ||
212 | /* Get the index of the new element, or -1 if | |
213 | * the element already exists. */ | |
214 | if ((index = _dictKeyIndex(ht, key)) == -1) | |
215 | return DICT_ERR; | |
216 | ||
217 | /* Allocates the memory and stores key */ | |
218 | entry = _dictAlloc(sizeof(*entry)); | |
219 | entry->next = ht->table[index]; | |
220 | ht->table[index] = entry; | |
221 | ||
222 | /* Set the hash entry fields. */ | |
223 | dictSetHashKey(ht, entry, key); | |
224 | dictSetHashVal(ht, entry, val); | |
225 | ht->used++; | |
226 | return DICT_OK; | |
227 | } | |
228 | ||
121796f7 | 229 | /* Add an element, discarding the old if the key already exists. |
230 | * Return 1 if the key was added from scratch, 0 if there was already an | |
231 | * element with such key and dictReplace() just performed a value update | |
232 | * operation. */ | |
ed9b544e | 233 | int dictReplace(dict *ht, void *key, void *val) |
234 | { | |
2069d06a | 235 | dictEntry *entry, auxentry; |
ed9b544e | 236 | |
237 | /* Try to add the element. If the key | |
238 | * does not exists dictAdd will suceed. */ | |
239 | if (dictAdd(ht, key, val) == DICT_OK) | |
121796f7 | 240 | return 1; |
ed9b544e | 241 | /* It already exists, get the entry */ |
242 | entry = dictFind(ht, key); | |
243 | /* Free the old value and set the new one */ | |
2069d06a | 244 | /* Set the new value and free the old one. Note that it is important |
245 | * to do that in this order, as the value may just be exactly the same | |
246 | * as the previous one. In this context, think to reference counting, | |
247 | * you want to increment (set), and then decrement (free), and not the | |
248 | * reverse. */ | |
249 | auxentry = *entry; | |
ed9b544e | 250 | dictSetHashVal(ht, entry, val); |
2069d06a | 251 | dictFreeEntryVal(ht, &auxentry); |
121796f7 | 252 | return 0; |
ed9b544e | 253 | } |
254 | ||
255 | /* Search and remove an element */ | |
256 | static int dictGenericDelete(dict *ht, const void *key, int nofree) | |
257 | { | |
258 | unsigned int h; | |
259 | dictEntry *he, *prevHe; | |
260 | ||
261 | if (ht->size == 0) | |
262 | return DICT_ERR; | |
263 | h = dictHashKey(ht, key) & ht->sizemask; | |
264 | he = ht->table[h]; | |
265 | ||
266 | prevHe = NULL; | |
267 | while(he) { | |
268 | if (dictCompareHashKeys(ht, key, he->key)) { | |
269 | /* Unlink the element from the list */ | |
270 | if (prevHe) | |
271 | prevHe->next = he->next; | |
272 | else | |
273 | ht->table[h] = he->next; | |
274 | if (!nofree) { | |
275 | dictFreeEntryKey(ht, he); | |
276 | dictFreeEntryVal(ht, he); | |
277 | } | |
278 | _dictFree(he); | |
279 | ht->used--; | |
280 | return DICT_OK; | |
281 | } | |
282 | prevHe = he; | |
283 | he = he->next; | |
284 | } | |
285 | return DICT_ERR; /* not found */ | |
286 | } | |
287 | ||
288 | int dictDelete(dict *ht, const void *key) { | |
289 | return dictGenericDelete(ht,key,0); | |
290 | } | |
291 | ||
292 | int dictDeleteNoFree(dict *ht, const void *key) { | |
293 | return dictGenericDelete(ht,key,1); | |
294 | } | |
295 | ||
296 | /* Destroy an entire hash table */ | |
297 | int _dictClear(dict *ht) | |
298 | { | |
f2923bec | 299 | unsigned long i; |
ed9b544e | 300 | |
301 | /* Free all the elements */ | |
302 | for (i = 0; i < ht->size && ht->used > 0; i++) { | |
303 | dictEntry *he, *nextHe; | |
304 | ||
305 | if ((he = ht->table[i]) == NULL) continue; | |
306 | while(he) { | |
307 | nextHe = he->next; | |
308 | dictFreeEntryKey(ht, he); | |
309 | dictFreeEntryVal(ht, he); | |
310 | _dictFree(he); | |
311 | ht->used--; | |
312 | he = nextHe; | |
313 | } | |
314 | } | |
315 | /* Free the table and the allocated cache structure */ | |
316 | _dictFree(ht->table); | |
317 | /* Re-initialize the table */ | |
318 | _dictReset(ht); | |
319 | return DICT_OK; /* never fails */ | |
320 | } | |
321 | ||
322 | /* Clear & Release the hash table */ | |
323 | void dictRelease(dict *ht) | |
324 | { | |
325 | _dictClear(ht); | |
326 | _dictFree(ht); | |
327 | } | |
328 | ||
329 | dictEntry *dictFind(dict *ht, const void *key) | |
330 | { | |
331 | dictEntry *he; | |
332 | unsigned int h; | |
333 | ||
334 | if (ht->size == 0) return NULL; | |
335 | h = dictHashKey(ht, key) & ht->sizemask; | |
336 | he = ht->table[h]; | |
337 | while(he) { | |
338 | if (dictCompareHashKeys(ht, key, he->key)) | |
339 | return he; | |
340 | he = he->next; | |
341 | } | |
342 | return NULL; | |
343 | } | |
344 | ||
345 | dictIterator *dictGetIterator(dict *ht) | |
346 | { | |
347 | dictIterator *iter = _dictAlloc(sizeof(*iter)); | |
348 | ||
349 | iter->ht = ht; | |
350 | iter->index = -1; | |
351 | iter->entry = NULL; | |
352 | iter->nextEntry = NULL; | |
353 | return iter; | |
354 | } | |
355 | ||
356 | dictEntry *dictNext(dictIterator *iter) | |
357 | { | |
358 | while (1) { | |
359 | if (iter->entry == NULL) { | |
360 | iter->index++; | |
361 | if (iter->index >= | |
362 | (signed)iter->ht->size) break; | |
363 | iter->entry = iter->ht->table[iter->index]; | |
364 | } else { | |
365 | iter->entry = iter->nextEntry; | |
366 | } | |
367 | if (iter->entry) { | |
368 | /* We need to save the 'next' here, the iterator user | |
369 | * may delete the entry we are returning. */ | |
370 | iter->nextEntry = iter->entry->next; | |
371 | return iter->entry; | |
372 | } | |
373 | } | |
374 | return NULL; | |
375 | } | |
376 | ||
377 | void dictReleaseIterator(dictIterator *iter) | |
378 | { | |
379 | _dictFree(iter); | |
380 | } | |
381 | ||
382 | /* Return a random entry from the hash table. Useful to | |
383 | * implement randomized algorithms */ | |
384 | dictEntry *dictGetRandomKey(dict *ht) | |
385 | { | |
386 | dictEntry *he; | |
387 | unsigned int h; | |
388 | int listlen, listele; | |
389 | ||
6f864e62 | 390 | if (ht->used == 0) return NULL; |
ed9b544e | 391 | do { |
392 | h = random() & ht->sizemask; | |
393 | he = ht->table[h]; | |
394 | } while(he == NULL); | |
395 | ||
396 | /* Now we found a non empty bucket, but it is a linked | |
397 | * list and we need to get a random element from the list. | |
398 | * The only sane way to do so is to count the element and | |
399 | * select a random index. */ | |
400 | listlen = 0; | |
401 | while(he) { | |
402 | he = he->next; | |
403 | listlen++; | |
404 | } | |
405 | listele = random() % listlen; | |
406 | he = ht->table[h]; | |
407 | while(listele--) he = he->next; | |
408 | return he; | |
409 | } | |
410 | ||
411 | /* ------------------------- private functions ------------------------------ */ | |
412 | ||
413 | /* Expand the hash table if needed */ | |
414 | static int _dictExpandIfNeeded(dict *ht) | |
415 | { | |
416 | /* If the hash table is empty expand it to the intial size, | |
417 | * if the table is "full" dobule its size. */ | |
418 | if (ht->size == 0) | |
419 | return dictExpand(ht, DICT_HT_INITIAL_SIZE); | |
420 | if (ht->used == ht->size) | |
421 | return dictExpand(ht, ht->size*2); | |
422 | return DICT_OK; | |
423 | } | |
424 | ||
425 | /* Our hash table capability is a power of two */ | |
f2923bec | 426 | static unsigned long _dictNextPower(unsigned long size) |
ed9b544e | 427 | { |
f2923bec | 428 | unsigned long i = DICT_HT_INITIAL_SIZE; |
ed9b544e | 429 | |
f2923bec | 430 | if (size >= LONG_MAX) return LONG_MAX; |
ed9b544e | 431 | while(1) { |
432 | if (i >= size) | |
433 | return i; | |
434 | i *= 2; | |
435 | } | |
436 | } | |
437 | ||
438 | /* Returns the index of a free slot that can be populated with | |
439 | * an hash entry for the given 'key'. | |
440 | * If the key already exists, -1 is returned. */ | |
441 | static int _dictKeyIndex(dict *ht, const void *key) | |
442 | { | |
443 | unsigned int h; | |
444 | dictEntry *he; | |
445 | ||
446 | /* Expand the hashtable if needed */ | |
447 | if (_dictExpandIfNeeded(ht) == DICT_ERR) | |
448 | return -1; | |
449 | /* Compute the key hash value */ | |
450 | h = dictHashKey(ht, key) & ht->sizemask; | |
451 | /* Search if this slot does not already contain the given key */ | |
452 | he = ht->table[h]; | |
453 | while(he) { | |
454 | if (dictCompareHashKeys(ht, key, he->key)) | |
455 | return -1; | |
456 | he = he->next; | |
457 | } | |
458 | return h; | |
459 | } | |
460 | ||
461 | void dictEmpty(dict *ht) { | |
462 | _dictClear(ht); | |
463 | } | |
464 | ||
465 | #define DICT_STATS_VECTLEN 50 | |
466 | void dictPrintStats(dict *ht) { | |
f2923bec | 467 | unsigned long i, slots = 0, chainlen, maxchainlen = 0; |
468 | unsigned long totchainlen = 0; | |
469 | unsigned long clvector[DICT_STATS_VECTLEN]; | |
ed9b544e | 470 | |
471 | if (ht->used == 0) { | |
472 | printf("No stats available for empty dictionaries\n"); | |
473 | return; | |
474 | } | |
475 | ||
476 | for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0; | |
477 | for (i = 0; i < ht->size; i++) { | |
478 | dictEntry *he; | |
479 | ||
480 | if (ht->table[i] == NULL) { | |
481 | clvector[0]++; | |
482 | continue; | |
483 | } | |
484 | slots++; | |
485 | /* For each hash entry on this slot... */ | |
486 | chainlen = 0; | |
487 | he = ht->table[i]; | |
488 | while(he) { | |
489 | chainlen++; | |
490 | he = he->next; | |
491 | } | |
492 | clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++; | |
493 | if (chainlen > maxchainlen) maxchainlen = chainlen; | |
494 | totchainlen += chainlen; | |
495 | } | |
496 | printf("Hash table stats:\n"); | |
f2923bec | 497 | printf(" table size: %ld\n", ht->size); |
498 | printf(" number of elements: %ld\n", ht->used); | |
499 | printf(" different slots: %ld\n", slots); | |
500 | printf(" max chain length: %ld\n", maxchainlen); | |
ed9b544e | 501 | printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots); |
502 | printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots); | |
503 | printf(" Chain length distribution:\n"); | |
504 | for (i = 0; i < DICT_STATS_VECTLEN-1; i++) { | |
505 | if (clvector[i] == 0) continue; | |
f2923bec | 506 | printf(" %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100); |
ed9b544e | 507 | } |
508 | } | |
509 | ||
510 | /* ----------------------- StringCopy Hash Table Type ------------------------*/ | |
511 | ||
512 | static unsigned int _dictStringCopyHTHashFunction(const void *key) | |
513 | { | |
514 | return dictGenHashFunction(key, strlen(key)); | |
515 | } | |
516 | ||
517 | static void *_dictStringCopyHTKeyDup(void *privdata, const void *key) | |
518 | { | |
519 | int len = strlen(key); | |
520 | char *copy = _dictAlloc(len+1); | |
521 | DICT_NOTUSED(privdata); | |
522 | ||
523 | memcpy(copy, key, len); | |
524 | copy[len] = '\0'; | |
525 | return copy; | |
526 | } | |
527 | ||
528 | static void *_dictStringKeyValCopyHTValDup(void *privdata, const void *val) | |
529 | { | |
530 | int len = strlen(val); | |
531 | char *copy = _dictAlloc(len+1); | |
532 | DICT_NOTUSED(privdata); | |
533 | ||
534 | memcpy(copy, val, len); | |
535 | copy[len] = '\0'; | |
536 | return copy; | |
537 | } | |
538 | ||
539 | static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1, | |
540 | const void *key2) | |
541 | { | |
542 | DICT_NOTUSED(privdata); | |
543 | ||
544 | return strcmp(key1, key2) == 0; | |
545 | } | |
546 | ||
547 | static void _dictStringCopyHTKeyDestructor(void *privdata, void *key) | |
548 | { | |
549 | DICT_NOTUSED(privdata); | |
550 | ||
551 | _dictFree((void*)key); /* ATTENTION: const cast */ | |
552 | } | |
553 | ||
554 | static void _dictStringKeyValCopyHTValDestructor(void *privdata, void *val) | |
555 | { | |
556 | DICT_NOTUSED(privdata); | |
557 | ||
558 | _dictFree((void*)val); /* ATTENTION: const cast */ | |
559 | } | |
560 | ||
561 | dictType dictTypeHeapStringCopyKey = { | |
562 | _dictStringCopyHTHashFunction, /* hash function */ | |
563 | _dictStringCopyHTKeyDup, /* key dup */ | |
564 | NULL, /* val dup */ | |
565 | _dictStringCopyHTKeyCompare, /* key compare */ | |
566 | _dictStringCopyHTKeyDestructor, /* key destructor */ | |
567 | NULL /* val destructor */ | |
568 | }; | |
569 | ||
570 | /* This is like StringCopy but does not auto-duplicate the key. | |
571 | * It's used for intepreter's shared strings. */ | |
572 | dictType dictTypeHeapStrings = { | |
573 | _dictStringCopyHTHashFunction, /* hash function */ | |
574 | NULL, /* key dup */ | |
575 | NULL, /* val dup */ | |
576 | _dictStringCopyHTKeyCompare, /* key compare */ | |
577 | _dictStringCopyHTKeyDestructor, /* key destructor */ | |
578 | NULL /* val destructor */ | |
579 | }; | |
580 | ||
581 | /* This is like StringCopy but also automatically handle dynamic | |
582 | * allocated C strings as values. */ | |
583 | dictType dictTypeHeapStringCopyKeyValue = { | |
584 | _dictStringCopyHTHashFunction, /* hash function */ | |
585 | _dictStringCopyHTKeyDup, /* key dup */ | |
586 | _dictStringKeyValCopyHTValDup, /* val dup */ | |
587 | _dictStringCopyHTKeyCompare, /* key compare */ | |
588 | _dictStringCopyHTKeyDestructor, /* key destructor */ | |
589 | _dictStringKeyValCopyHTValDestructor, /* val destructor */ | |
590 | }; |