]>
Commit | Line | Data |
---|---|---|
ed9b544e | 1 | /* Hash Tables Implementation. |
2 | * | |
3 | * This file implements in memory hash tables with insert/del/replace/find/ | |
4 | * get-random-element operations. Hash tables will auto resize if needed | |
5 | * tables of power of two in size are used, collisions are handled by | |
6 | * chaining. See the source code for more information... :) | |
7 | * | |
8 | * Copyright (c) 2006-2009, Salvatore Sanfilippo <antirez at gmail dot com> | |
9 | * All rights reserved. | |
10 | * | |
11 | * Redistribution and use in source and binary forms, with or without | |
12 | * modification, are permitted provided that the following conditions are met: | |
13 | * | |
14 | * * Redistributions of source code must retain the above copyright notice, | |
15 | * this list of conditions and the following disclaimer. | |
16 | * * Redistributions in binary form must reproduce the above copyright | |
17 | * notice, this list of conditions and the following disclaimer in the | |
18 | * documentation and/or other materials provided with the distribution. | |
19 | * * Neither the name of Redis nor the names of its contributors may be used | |
20 | * to endorse or promote products derived from this software without | |
21 | * specific prior written permission. | |
22 | * | |
23 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
24 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
25 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
26 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
27 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
28 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
29 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
30 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
31 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
32 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
33 | * POSSIBILITY OF SUCH DAMAGE. | |
34 | */ | |
35 | ||
36 | #include <stdio.h> | |
37 | #include <stdlib.h> | |
38 | #include <string.h> | |
39 | #include <stdarg.h> | |
40 | #include <assert.h> | |
41 | ||
42 | #include "dict.h" | |
43 | #include "zmalloc.h" | |
44 | ||
45 | /* ---------------------------- Utility funcitons --------------------------- */ | |
46 | ||
47 | static void _dictPanic(const char *fmt, ...) | |
48 | { | |
49 | va_list ap; | |
50 | ||
51 | va_start(ap, fmt); | |
52 | fprintf(stderr, "\nDICT LIBRARY PANIC: "); | |
53 | vfprintf(stderr, fmt, ap); | |
54 | fprintf(stderr, "\n\n"); | |
55 | va_end(ap); | |
56 | } | |
57 | ||
58 | /* ------------------------- Heap Management Wrappers------------------------ */ | |
59 | ||
60 | static void *_dictAlloc(int size) | |
61 | { | |
62 | void *p = zmalloc(size); | |
63 | if (p == NULL) | |
64 | _dictPanic("Out of memory"); | |
65 | return p; | |
66 | } | |
67 | ||
68 | static void _dictFree(void *ptr) { | |
69 | zfree(ptr); | |
70 | } | |
71 | ||
72 | /* -------------------------- private prototypes ---------------------------- */ | |
73 | ||
74 | static int _dictExpandIfNeeded(dict *ht); | |
75 | static unsigned int _dictNextPower(unsigned int size); | |
76 | static int _dictKeyIndex(dict *ht, const void *key); | |
77 | static int _dictInit(dict *ht, dictType *type, void *privDataPtr); | |
78 | ||
79 | /* -------------------------- hash functions -------------------------------- */ | |
80 | ||
81 | /* Thomas Wang's 32 bit Mix Function */ | |
82 | unsigned int dictIntHashFunction(unsigned int key) | |
83 | { | |
84 | key += ~(key << 15); | |
85 | key ^= (key >> 10); | |
86 | key += (key << 3); | |
87 | key ^= (key >> 6); | |
88 | key += ~(key << 11); | |
89 | key ^= (key >> 16); | |
90 | return key; | |
91 | } | |
92 | ||
93 | /* Identity hash function for integer keys */ | |
94 | unsigned int dictIdentityHashFunction(unsigned int key) | |
95 | { | |
96 | return key; | |
97 | } | |
98 | ||
99 | /* Generic hash function (a popular one from Bernstein). | |
100 | * I tested a few and this was the best. */ | |
101 | unsigned int dictGenHashFunction(const unsigned char *buf, int len) { | |
102 | unsigned int hash = 5381; | |
103 | ||
104 | while (len--) | |
105 | hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */ | |
106 | return hash; | |
107 | } | |
108 | ||
109 | /* ----------------------------- API implementation ------------------------- */ | |
110 | ||
111 | /* Reset an hashtable already initialized with ht_init(). | |
112 | * NOTE: This function should only called by ht_destroy(). */ | |
113 | static void _dictReset(dict *ht) | |
114 | { | |
115 | ht->table = NULL; | |
116 | ht->size = 0; | |
117 | ht->sizemask = 0; | |
118 | ht->used = 0; | |
119 | } | |
120 | ||
121 | /* Create a new hash table */ | |
122 | dict *dictCreate(dictType *type, | |
123 | void *privDataPtr) | |
124 | { | |
125 | dict *ht = _dictAlloc(sizeof(*ht)); | |
126 | ||
127 | _dictInit(ht,type,privDataPtr); | |
128 | return ht; | |
129 | } | |
130 | ||
131 | /* Initialize the hash table */ | |
132 | int _dictInit(dict *ht, dictType *type, | |
133 | void *privDataPtr) | |
134 | { | |
135 | _dictReset(ht); | |
136 | ht->type = type; | |
137 | ht->privdata = privDataPtr; | |
138 | return DICT_OK; | |
139 | } | |
140 | ||
141 | /* Resize the table to the minimal size that contains all the elements, | |
142 | * but with the invariant of a USER/BUCKETS ration near to <= 1 */ | |
143 | int dictResize(dict *ht) | |
144 | { | |
145 | int minimal = ht->used; | |
146 | ||
147 | if (minimal < DICT_HT_INITIAL_SIZE) | |
148 | minimal = DICT_HT_INITIAL_SIZE; | |
149 | return dictExpand(ht, minimal); | |
150 | } | |
151 | ||
152 | /* Expand or create the hashtable */ | |
153 | int dictExpand(dict *ht, unsigned int size) | |
154 | { | |
155 | dict n; /* the new hashtable */ | |
156 | unsigned int realsize = _dictNextPower(size), i; | |
157 | ||
158 | /* the size is invalid if it is smaller than the number of | |
159 | * elements already inside the hashtable */ | |
160 | if (ht->used > size) | |
161 | return DICT_ERR; | |
162 | ||
163 | _dictInit(&n, ht->type, ht->privdata); | |
164 | n.size = realsize; | |
165 | n.sizemask = realsize-1; | |
166 | n.table = _dictAlloc(realsize*sizeof(dictEntry*)); | |
167 | ||
168 | /* Initialize all the pointers to NULL */ | |
169 | memset(n.table, 0, realsize*sizeof(dictEntry*)); | |
170 | ||
171 | /* Copy all the elements from the old to the new table: | |
172 | * note that if the old hash table is empty ht->size is zero, | |
173 | * so dictExpand just creates an hash table. */ | |
174 | n.used = ht->used; | |
175 | for (i = 0; i < ht->size && ht->used > 0; i++) { | |
176 | dictEntry *he, *nextHe; | |
177 | ||
178 | if (ht->table[i] == NULL) continue; | |
179 | ||
180 | /* For each hash entry on this slot... */ | |
181 | he = ht->table[i]; | |
182 | while(he) { | |
183 | unsigned int h; | |
184 | ||
185 | nextHe = he->next; | |
186 | /* Get the new element index */ | |
187 | h = dictHashKey(ht, he->key) & n.sizemask; | |
188 | he->next = n.table[h]; | |
189 | n.table[h] = he; | |
190 | ht->used--; | |
191 | /* Pass to the next element */ | |
192 | he = nextHe; | |
193 | } | |
194 | } | |
195 | assert(ht->used == 0); | |
196 | _dictFree(ht->table); | |
197 | ||
198 | /* Remap the new hashtable in the old */ | |
199 | *ht = n; | |
200 | return DICT_OK; | |
201 | } | |
202 | ||
203 | /* Add an element to the target hash table */ | |
204 | int dictAdd(dict *ht, void *key, void *val) | |
205 | { | |
206 | int index; | |
207 | dictEntry *entry; | |
208 | ||
209 | /* Get the index of the new element, or -1 if | |
210 | * the element already exists. */ | |
211 | if ((index = _dictKeyIndex(ht, key)) == -1) | |
212 | return DICT_ERR; | |
213 | ||
214 | /* Allocates the memory and stores key */ | |
215 | entry = _dictAlloc(sizeof(*entry)); | |
216 | entry->next = ht->table[index]; | |
217 | ht->table[index] = entry; | |
218 | ||
219 | /* Set the hash entry fields. */ | |
220 | dictSetHashKey(ht, entry, key); | |
221 | dictSetHashVal(ht, entry, val); | |
222 | ht->used++; | |
223 | return DICT_OK; | |
224 | } | |
225 | ||
226 | /* Add an element, discarding the old if the key already exists */ | |
227 | int dictReplace(dict *ht, void *key, void *val) | |
228 | { | |
229 | dictEntry *entry; | |
230 | ||
231 | /* Try to add the element. If the key | |
232 | * does not exists dictAdd will suceed. */ | |
233 | if (dictAdd(ht, key, val) == DICT_OK) | |
234 | return DICT_OK; | |
235 | /* It already exists, get the entry */ | |
236 | entry = dictFind(ht, key); | |
237 | /* Free the old value and set the new one */ | |
238 | dictFreeEntryVal(ht, entry); | |
239 | dictSetHashVal(ht, entry, val); | |
240 | return DICT_OK; | |
241 | } | |
242 | ||
243 | /* Search and remove an element */ | |
244 | static int dictGenericDelete(dict *ht, const void *key, int nofree) | |
245 | { | |
246 | unsigned int h; | |
247 | dictEntry *he, *prevHe; | |
248 | ||
249 | if (ht->size == 0) | |
250 | return DICT_ERR; | |
251 | h = dictHashKey(ht, key) & ht->sizemask; | |
252 | he = ht->table[h]; | |
253 | ||
254 | prevHe = NULL; | |
255 | while(he) { | |
256 | if (dictCompareHashKeys(ht, key, he->key)) { | |
257 | /* Unlink the element from the list */ | |
258 | if (prevHe) | |
259 | prevHe->next = he->next; | |
260 | else | |
261 | ht->table[h] = he->next; | |
262 | if (!nofree) { | |
263 | dictFreeEntryKey(ht, he); | |
264 | dictFreeEntryVal(ht, he); | |
265 | } | |
266 | _dictFree(he); | |
267 | ht->used--; | |
268 | return DICT_OK; | |
269 | } | |
270 | prevHe = he; | |
271 | he = he->next; | |
272 | } | |
273 | return DICT_ERR; /* not found */ | |
274 | } | |
275 | ||
276 | int dictDelete(dict *ht, const void *key) { | |
277 | return dictGenericDelete(ht,key,0); | |
278 | } | |
279 | ||
280 | int dictDeleteNoFree(dict *ht, const void *key) { | |
281 | return dictGenericDelete(ht,key,1); | |
282 | } | |
283 | ||
284 | /* Destroy an entire hash table */ | |
285 | int _dictClear(dict *ht) | |
286 | { | |
287 | unsigned int i; | |
288 | ||
289 | /* Free all the elements */ | |
290 | for (i = 0; i < ht->size && ht->used > 0; i++) { | |
291 | dictEntry *he, *nextHe; | |
292 | ||
293 | if ((he = ht->table[i]) == NULL) continue; | |
294 | while(he) { | |
295 | nextHe = he->next; | |
296 | dictFreeEntryKey(ht, he); | |
297 | dictFreeEntryVal(ht, he); | |
298 | _dictFree(he); | |
299 | ht->used--; | |
300 | he = nextHe; | |
301 | } | |
302 | } | |
303 | /* Free the table and the allocated cache structure */ | |
304 | _dictFree(ht->table); | |
305 | /* Re-initialize the table */ | |
306 | _dictReset(ht); | |
307 | return DICT_OK; /* never fails */ | |
308 | } | |
309 | ||
310 | /* Clear & Release the hash table */ | |
311 | void dictRelease(dict *ht) | |
312 | { | |
313 | _dictClear(ht); | |
314 | _dictFree(ht); | |
315 | } | |
316 | ||
317 | dictEntry *dictFind(dict *ht, const void *key) | |
318 | { | |
319 | dictEntry *he; | |
320 | unsigned int h; | |
321 | ||
322 | if (ht->size == 0) return NULL; | |
323 | h = dictHashKey(ht, key) & ht->sizemask; | |
324 | he = ht->table[h]; | |
325 | while(he) { | |
326 | if (dictCompareHashKeys(ht, key, he->key)) | |
327 | return he; | |
328 | he = he->next; | |
329 | } | |
330 | return NULL; | |
331 | } | |
332 | ||
333 | dictIterator *dictGetIterator(dict *ht) | |
334 | { | |
335 | dictIterator *iter = _dictAlloc(sizeof(*iter)); | |
336 | ||
337 | iter->ht = ht; | |
338 | iter->index = -1; | |
339 | iter->entry = NULL; | |
340 | iter->nextEntry = NULL; | |
341 | return iter; | |
342 | } | |
343 | ||
344 | dictEntry *dictNext(dictIterator *iter) | |
345 | { | |
346 | while (1) { | |
347 | if (iter->entry == NULL) { | |
348 | iter->index++; | |
349 | if (iter->index >= | |
350 | (signed)iter->ht->size) break; | |
351 | iter->entry = iter->ht->table[iter->index]; | |
352 | } else { | |
353 | iter->entry = iter->nextEntry; | |
354 | } | |
355 | if (iter->entry) { | |
356 | /* We need to save the 'next' here, the iterator user | |
357 | * may delete the entry we are returning. */ | |
358 | iter->nextEntry = iter->entry->next; | |
359 | return iter->entry; | |
360 | } | |
361 | } | |
362 | return NULL; | |
363 | } | |
364 | ||
365 | void dictReleaseIterator(dictIterator *iter) | |
366 | { | |
367 | _dictFree(iter); | |
368 | } | |
369 | ||
370 | /* Return a random entry from the hash table. Useful to | |
371 | * implement randomized algorithms */ | |
372 | dictEntry *dictGetRandomKey(dict *ht) | |
373 | { | |
374 | dictEntry *he; | |
375 | unsigned int h; | |
376 | int listlen, listele; | |
377 | ||
378 | if (ht->size == 0) return NULL; | |
379 | do { | |
380 | h = random() & ht->sizemask; | |
381 | he = ht->table[h]; | |
382 | } while(he == NULL); | |
383 | ||
384 | /* Now we found a non empty bucket, but it is a linked | |
385 | * list and we need to get a random element from the list. | |
386 | * The only sane way to do so is to count the element and | |
387 | * select a random index. */ | |
388 | listlen = 0; | |
389 | while(he) { | |
390 | he = he->next; | |
391 | listlen++; | |
392 | } | |
393 | listele = random() % listlen; | |
394 | he = ht->table[h]; | |
395 | while(listele--) he = he->next; | |
396 | return he; | |
397 | } | |
398 | ||
399 | /* ------------------------- private functions ------------------------------ */ | |
400 | ||
401 | /* Expand the hash table if needed */ | |
402 | static int _dictExpandIfNeeded(dict *ht) | |
403 | { | |
404 | /* If the hash table is empty expand it to the intial size, | |
405 | * if the table is "full" dobule its size. */ | |
406 | if (ht->size == 0) | |
407 | return dictExpand(ht, DICT_HT_INITIAL_SIZE); | |
408 | if (ht->used == ht->size) | |
409 | return dictExpand(ht, ht->size*2); | |
410 | return DICT_OK; | |
411 | } | |
412 | ||
413 | /* Our hash table capability is a power of two */ | |
414 | static unsigned int _dictNextPower(unsigned int size) | |
415 | { | |
416 | unsigned int i = DICT_HT_INITIAL_SIZE; | |
417 | ||
418 | if (size >= 2147483648U) | |
419 | return 2147483648U; | |
420 | while(1) { | |
421 | if (i >= size) | |
422 | return i; | |
423 | i *= 2; | |
424 | } | |
425 | } | |
426 | ||
427 | /* Returns the index of a free slot that can be populated with | |
428 | * an hash entry for the given 'key'. | |
429 | * If the key already exists, -1 is returned. */ | |
430 | static int _dictKeyIndex(dict *ht, const void *key) | |
431 | { | |
432 | unsigned int h; | |
433 | dictEntry *he; | |
434 | ||
435 | /* Expand the hashtable if needed */ | |
436 | if (_dictExpandIfNeeded(ht) == DICT_ERR) | |
437 | return -1; | |
438 | /* Compute the key hash value */ | |
439 | h = dictHashKey(ht, key) & ht->sizemask; | |
440 | /* Search if this slot does not already contain the given key */ | |
441 | he = ht->table[h]; | |
442 | while(he) { | |
443 | if (dictCompareHashKeys(ht, key, he->key)) | |
444 | return -1; | |
445 | he = he->next; | |
446 | } | |
447 | return h; | |
448 | } | |
449 | ||
450 | void dictEmpty(dict *ht) { | |
451 | _dictClear(ht); | |
452 | } | |
453 | ||
454 | #define DICT_STATS_VECTLEN 50 | |
455 | void dictPrintStats(dict *ht) { | |
456 | unsigned int i, slots = 0, chainlen, maxchainlen = 0; | |
457 | unsigned int totchainlen = 0; | |
458 | unsigned int clvector[DICT_STATS_VECTLEN]; | |
459 | ||
460 | if (ht->used == 0) { | |
461 | printf("No stats available for empty dictionaries\n"); | |
462 | return; | |
463 | } | |
464 | ||
465 | for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0; | |
466 | for (i = 0; i < ht->size; i++) { | |
467 | dictEntry *he; | |
468 | ||
469 | if (ht->table[i] == NULL) { | |
470 | clvector[0]++; | |
471 | continue; | |
472 | } | |
473 | slots++; | |
474 | /* For each hash entry on this slot... */ | |
475 | chainlen = 0; | |
476 | he = ht->table[i]; | |
477 | while(he) { | |
478 | chainlen++; | |
479 | he = he->next; | |
480 | } | |
481 | clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++; | |
482 | if (chainlen > maxchainlen) maxchainlen = chainlen; | |
483 | totchainlen += chainlen; | |
484 | } | |
485 | printf("Hash table stats:\n"); | |
486 | printf(" table size: %d\n", ht->size); | |
487 | printf(" number of elements: %d\n", ht->used); | |
488 | printf(" different slots: %d\n", slots); | |
489 | printf(" max chain length: %d\n", maxchainlen); | |
490 | printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots); | |
491 | printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots); | |
492 | printf(" Chain length distribution:\n"); | |
493 | for (i = 0; i < DICT_STATS_VECTLEN-1; i++) { | |
494 | if (clvector[i] == 0) continue; | |
495 | printf(" %s%d: %d (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100); | |
496 | } | |
497 | } | |
498 | ||
499 | /* ----------------------- StringCopy Hash Table Type ------------------------*/ | |
500 | ||
501 | static unsigned int _dictStringCopyHTHashFunction(const void *key) | |
502 | { | |
503 | return dictGenHashFunction(key, strlen(key)); | |
504 | } | |
505 | ||
506 | static void *_dictStringCopyHTKeyDup(void *privdata, const void *key) | |
507 | { | |
508 | int len = strlen(key); | |
509 | char *copy = _dictAlloc(len+1); | |
510 | DICT_NOTUSED(privdata); | |
511 | ||
512 | memcpy(copy, key, len); | |
513 | copy[len] = '\0'; | |
514 | return copy; | |
515 | } | |
516 | ||
517 | static void *_dictStringKeyValCopyHTValDup(void *privdata, const void *val) | |
518 | { | |
519 | int len = strlen(val); | |
520 | char *copy = _dictAlloc(len+1); | |
521 | DICT_NOTUSED(privdata); | |
522 | ||
523 | memcpy(copy, val, len); | |
524 | copy[len] = '\0'; | |
525 | return copy; | |
526 | } | |
527 | ||
528 | static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1, | |
529 | const void *key2) | |
530 | { | |
531 | DICT_NOTUSED(privdata); | |
532 | ||
533 | return strcmp(key1, key2) == 0; | |
534 | } | |
535 | ||
536 | static void _dictStringCopyHTKeyDestructor(void *privdata, void *key) | |
537 | { | |
538 | DICT_NOTUSED(privdata); | |
539 | ||
540 | _dictFree((void*)key); /* ATTENTION: const cast */ | |
541 | } | |
542 | ||
543 | static void _dictStringKeyValCopyHTValDestructor(void *privdata, void *val) | |
544 | { | |
545 | DICT_NOTUSED(privdata); | |
546 | ||
547 | _dictFree((void*)val); /* ATTENTION: const cast */ | |
548 | } | |
549 | ||
550 | dictType dictTypeHeapStringCopyKey = { | |
551 | _dictStringCopyHTHashFunction, /* hash function */ | |
552 | _dictStringCopyHTKeyDup, /* key dup */ | |
553 | NULL, /* val dup */ | |
554 | _dictStringCopyHTKeyCompare, /* key compare */ | |
555 | _dictStringCopyHTKeyDestructor, /* key destructor */ | |
556 | NULL /* val destructor */ | |
557 | }; | |
558 | ||
559 | /* This is like StringCopy but does not auto-duplicate the key. | |
560 | * It's used for intepreter's shared strings. */ | |
561 | dictType dictTypeHeapStrings = { | |
562 | _dictStringCopyHTHashFunction, /* hash function */ | |
563 | NULL, /* key dup */ | |
564 | NULL, /* val dup */ | |
565 | _dictStringCopyHTKeyCompare, /* key compare */ | |
566 | _dictStringCopyHTKeyDestructor, /* key destructor */ | |
567 | NULL /* val destructor */ | |
568 | }; | |
569 | ||
570 | /* This is like StringCopy but also automatically handle dynamic | |
571 | * allocated C strings as values. */ | |
572 | dictType dictTypeHeapStringCopyKeyValue = { | |
573 | _dictStringCopyHTHashFunction, /* hash function */ | |
574 | _dictStringCopyHTKeyDup, /* key dup */ | |
575 | _dictStringKeyValCopyHTValDup, /* val dup */ | |
576 | _dictStringCopyHTKeyCompare, /* key compare */ | |
577 | _dictStringCopyHTKeyDestructor, /* key destructor */ | |
578 | _dictStringKeyValCopyHTValDestructor, /* val destructor */ | |
579 | }; |