]>
Commit | Line | Data |
---|---|---|
ed9b544e | 1 | /* Hash Tables Implementation. |
2 | * | |
3 | * This file implements in memory hash tables with insert/del/replace/find/ | |
4 | * get-random-element operations. Hash tables will auto resize if needed | |
5 | * tables of power of two in size are used, collisions are handled by | |
6 | * chaining. See the source code for more information... :) | |
7 | * | |
12d090d2 | 8 | * Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com> |
ed9b544e | 9 | * All rights reserved. |
10 | * | |
11 | * Redistribution and use in source and binary forms, with or without | |
12 | * modification, are permitted provided that the following conditions are met: | |
13 | * | |
14 | * * Redistributions of source code must retain the above copyright notice, | |
15 | * this list of conditions and the following disclaimer. | |
16 | * * Redistributions in binary form must reproduce the above copyright | |
17 | * notice, this list of conditions and the following disclaimer in the | |
18 | * documentation and/or other materials provided with the distribution. | |
19 | * * Neither the name of Redis nor the names of its contributors may be used | |
20 | * to endorse or promote products derived from this software without | |
21 | * specific prior written permission. | |
22 | * | |
23 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
24 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
25 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
26 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
27 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
28 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
29 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
30 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
31 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
32 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
33 | * POSSIBILITY OF SUCH DAMAGE. | |
34 | */ | |
35 | ||
23d4709d | 36 | #include "fmacros.h" |
37 | ||
ed9b544e | 38 | #include <stdio.h> |
39 | #include <stdlib.h> | |
40 | #include <string.h> | |
41 | #include <stdarg.h> | |
42 | #include <assert.h> | |
f2923bec | 43 | #include <limits.h> |
8ca3e9d1 | 44 | #include <sys/time.h> |
1b1f47c9 | 45 | #include <ctype.h> |
ed9b544e | 46 | |
47 | #include "dict.h" | |
48 | #include "zmalloc.h" | |
49 | ||
884d4b39 | 50 | /* Using dictEnableResize() / dictDisableResize() we make possible to |
51 | * enable/disable resizing of the hash table as needed. This is very important | |
52 | * for Redis, as we use copy-on-write and don't want to move too much memory | |
3856f147 | 53 | * around when there is a child performing saving operations. |
54 | * | |
55 | * Note that even when dict_can_resize is set to 0, not all resizes are | |
56 | * prevented: an hash table is still allowed to grow if the ratio between | |
57 | * the number of elements and the buckets > dict_force_resize_ratio. */ | |
884d4b39 | 58 | static int dict_can_resize = 1; |
3856f147 | 59 | static unsigned int dict_force_resize_ratio = 5; |
884d4b39 | 60 | |
ed9b544e | 61 | /* -------------------------- private prototypes ---------------------------- */ |
62 | ||
63 | static int _dictExpandIfNeeded(dict *ht); | |
f2923bec | 64 | static unsigned long _dictNextPower(unsigned long size); |
ed9b544e | 65 | static int _dictKeyIndex(dict *ht, const void *key); |
66 | static int _dictInit(dict *ht, dictType *type, void *privDataPtr); | |
67 | ||
68 | /* -------------------------- hash functions -------------------------------- */ | |
69 | ||
70 | /* Thomas Wang's 32 bit Mix Function */ | |
71 | unsigned int dictIntHashFunction(unsigned int key) | |
72 | { | |
73 | key += ~(key << 15); | |
74 | key ^= (key >> 10); | |
75 | key += (key << 3); | |
76 | key ^= (key >> 6); | |
77 | key += ~(key << 11); | |
78 | key ^= (key >> 16); | |
79 | return key; | |
80 | } | |
81 | ||
82 | /* Identity hash function for integer keys */ | |
83 | unsigned int dictIdentityHashFunction(unsigned int key) | |
84 | { | |
85 | return key; | |
86 | } | |
87 | ||
b362c111 | 88 | static int dict_hash_function_seed = 5381; |
a48c8d87 | 89 | |
90 | void dictSetHashFunctionSeed(unsigned int seed) { | |
91 | dict_hash_function_seed = seed; | |
92 | } | |
93 | ||
94 | unsigned int dictGetHashFunctionSeed(void) { | |
95 | return dict_hash_function_seed; | |
96 | } | |
97 | ||
ed9b544e | 98 | /* Generic hash function (a popular one from Bernstein). |
99 | * I tested a few and this was the best. */ | |
100 | unsigned int dictGenHashFunction(const unsigned char *buf, int len) { | |
a48c8d87 | 101 | unsigned int hash = dict_hash_function_seed; |
ed9b544e | 102 | |
103 | while (len--) | |
104 | hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */ | |
105 | return hash; | |
106 | } | |
107 | ||
1b1f47c9 | 108 | /* And a case insensitive version */ |
109 | unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len) { | |
a48c8d87 | 110 | unsigned int hash = dict_hash_function_seed; |
1b1f47c9 | 111 | |
112 | while (len--) | |
113 | hash = ((hash << 5) + hash) + (tolower(*buf++)); /* hash * 33 + c */ | |
114 | return hash; | |
115 | } | |
116 | ||
ed9b544e | 117 | /* ----------------------------- API implementation ------------------------- */ |
118 | ||
65fd32ab ED |
119 | /* Reset a hash table already initialized with ht_init(). |
120 | * NOTE: This function should only be called by ht_destroy(). */ | |
5413c40d | 121 | static void _dictReset(dictht *ht) |
ed9b544e | 122 | { |
123 | ht->table = NULL; | |
124 | ht->size = 0; | |
125 | ht->sizemask = 0; | |
126 | ht->used = 0; | |
127 | } | |
128 | ||
129 | /* Create a new hash table */ | |
130 | dict *dictCreate(dictType *type, | |
131 | void *privDataPtr) | |
132 | { | |
d9dd352b | 133 | dict *d = zmalloc(sizeof(*d)); |
ed9b544e | 134 | |
5413c40d | 135 | _dictInit(d,type,privDataPtr); |
136 | return d; | |
ed9b544e | 137 | } |
138 | ||
139 | /* Initialize the hash table */ | |
5413c40d | 140 | int _dictInit(dict *d, dictType *type, |
ed9b544e | 141 | void *privDataPtr) |
142 | { | |
5413c40d | 143 | _dictReset(&d->ht[0]); |
144 | _dictReset(&d->ht[1]); | |
145 | d->type = type; | |
146 | d->privdata = privDataPtr; | |
147 | d->rehashidx = -1; | |
148 | d->iterators = 0; | |
ed9b544e | 149 | return DICT_OK; |
150 | } | |
151 | ||
152 | /* Resize the table to the minimal size that contains all the elements, | |
9448ddb0 | 153 | * but with the invariant of a USED/BUCKETS ratio near to <= 1 */ |
5413c40d | 154 | int dictResize(dict *d) |
ed9b544e | 155 | { |
5413c40d | 156 | int minimal; |
ed9b544e | 157 | |
5413c40d | 158 | if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR; |
159 | minimal = d->ht[0].used; | |
ed9b544e | 160 | if (minimal < DICT_HT_INITIAL_SIZE) |
161 | minimal = DICT_HT_INITIAL_SIZE; | |
5413c40d | 162 | return dictExpand(d, minimal); |
ed9b544e | 163 | } |
164 | ||
65fd32ab | 165 | /* Expand or create the hash table */ |
5413c40d | 166 | int dictExpand(dict *d, unsigned long size) |
ed9b544e | 167 | { |
65fd32ab | 168 | dictht n; /* the new hash table */ |
5413c40d | 169 | unsigned long realsize = _dictNextPower(size); |
ed9b544e | 170 | |
171 | /* the size is invalid if it is smaller than the number of | |
65fd32ab | 172 | * elements already inside the hash table */ |
5413c40d | 173 | if (dictIsRehashing(d) || d->ht[0].used > size) |
ed9b544e | 174 | return DICT_ERR; |
175 | ||
65fd32ab | 176 | /* Allocate the new hash table and initialize all pointers to NULL */ |
ed9b544e | 177 | n.size = realsize; |
178 | n.sizemask = realsize-1; | |
399f2f40 | 179 | n.table = zcalloc(realsize*sizeof(dictEntry*)); |
5413c40d | 180 | n.used = 0; |
ed9b544e | 181 | |
5413c40d | 182 | /* Is this the first initialization? If so it's not really a rehashing |
183 | * we just set the first hash table so that it can accept keys. */ | |
184 | if (d->ht[0].table == NULL) { | |
185 | d->ht[0] = n; | |
186 | return DICT_OK; | |
187 | } | |
ed9b544e | 188 | |
5413c40d | 189 | /* Prepare a second hash table for incremental rehashing */ |
190 | d->ht[1] = n; | |
191 | d->rehashidx = 0; | |
192 | return DICT_OK; | |
193 | } | |
194 | ||
195 | /* Performs N steps of incremental rehashing. Returns 1 if there are still | |
196 | * keys to move from the old to the new hash table, otherwise 0 is returned. | |
197 | * Note that a rehashing step consists in moving a bucket (that may have more | |
198 | * thank one key as we use chaining) from the old to the new hash table. */ | |
199 | int dictRehash(dict *d, int n) { | |
200 | if (!dictIsRehashing(d)) return 0; | |
201 | ||
202 | while(n--) { | |
203 | dictEntry *de, *nextde; | |
204 | ||
205 | /* Check if we already rehashed the whole table... */ | |
206 | if (d->ht[0].used == 0) { | |
d9dd352b | 207 | zfree(d->ht[0].table); |
5413c40d | 208 | d->ht[0] = d->ht[1]; |
209 | _dictReset(&d->ht[1]); | |
210 | d->rehashidx = -1; | |
211 | return 0; | |
212 | } | |
213 | ||
214 | /* Note that rehashidx can't overflow as we are sure there are more | |
215 | * elements because ht[0].used != 0 */ | |
05600eb8 | 216 | assert(d->ht[0].size > (unsigned)d->rehashidx); |
5413c40d | 217 | while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++; |
218 | de = d->ht[0].table[d->rehashidx]; | |
219 | /* Move all the keys in this bucket from the old to the new hash HT */ | |
220 | while(de) { | |
ed9b544e | 221 | unsigned int h; |
222 | ||
5413c40d | 223 | nextde = de->next; |
224 | /* Get the index in the new hash table */ | |
225 | h = dictHashKey(d, de->key) & d->ht[1].sizemask; | |
226 | de->next = d->ht[1].table[h]; | |
227 | d->ht[1].table[h] = de; | |
228 | d->ht[0].used--; | |
229 | d->ht[1].used++; | |
230 | de = nextde; | |
ed9b544e | 231 | } |
5413c40d | 232 | d->ht[0].table[d->rehashidx] = NULL; |
233 | d->rehashidx++; | |
ed9b544e | 234 | } |
5413c40d | 235 | return 1; |
236 | } | |
ed9b544e | 237 | |
8ca3e9d1 | 238 | long long timeInMilliseconds(void) { |
239 | struct timeval tv; | |
240 | ||
241 | gettimeofday(&tv,NULL); | |
242 | return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000); | |
243 | } | |
244 | ||
245 | /* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */ | |
246 | int dictRehashMilliseconds(dict *d, int ms) { | |
247 | long long start = timeInMilliseconds(); | |
248 | int rehashes = 0; | |
249 | ||
250 | while(dictRehash(d,100)) { | |
251 | rehashes += 100; | |
252 | if (timeInMilliseconds()-start > ms) break; | |
253 | } | |
254 | return rehashes; | |
255 | } | |
256 | ||
5413c40d | 257 | /* This function performs just a step of rehashing, and only if there are |
4b53e736 | 258 | * no safe iterators bound to our hash table. When we have iterators in the |
259 | * middle of a rehashing we can't mess with the two hash tables otherwise | |
260 | * some element can be missed or duplicated. | |
5413c40d | 261 | * |
262 | * This function is called by common lookup or update operations in the | |
263 | * dictionary so that the hash table automatically migrates from H1 to H2 | |
264 | * while it is actively used. */ | |
265 | static void _dictRehashStep(dict *d) { | |
266 | if (d->iterators == 0) dictRehash(d,1); | |
ed9b544e | 267 | } |
268 | ||
269 | /* Add an element to the target hash table */ | |
5413c40d | 270 | int dictAdd(dict *d, void *key, void *val) |
71a50956 | 271 | { |
272 | dictEntry *entry = dictAddRaw(d,key); | |
273 | ||
274 | if (!entry) return DICT_ERR; | |
c0ba9ebe | 275 | dictSetVal(d, entry, val); |
71a50956 | 276 | return DICT_OK; |
277 | } | |
278 | ||
279 | /* Low level add. This function adds the entry but instead of setting | |
280 | * a value returns the dictEntry structure to the user, that will make | |
281 | * sure to fill the value field as he wishes. | |
282 | * | |
65fd32ab | 283 | * This function is also directly exposed to user API to be called |
71a50956 | 284 | * mainly in order to store non-pointers inside the hash value, example: |
285 | * | |
286 | * entry = dictAddRaw(dict,mykey); | |
aa9a61cc | 287 | * if (entry != NULL) dictSetSignedIntegerVal(entry,1000); |
71a50956 | 288 | * |
289 | * Return values: | |
290 | * | |
291 | * If key already exists NULL is returned. | |
292 | * If key was added, the hash entry is returned to be manipulated by the caller. | |
293 | */ | |
294 | dictEntry *dictAddRaw(dict *d, void *key) | |
ed9b544e | 295 | { |
296 | int index; | |
297 | dictEntry *entry; | |
5413c40d | 298 | dictht *ht; |
299 | ||
300 | if (dictIsRehashing(d)) _dictRehashStep(d); | |
ed9b544e | 301 | |
302 | /* Get the index of the new element, or -1 if | |
303 | * the element already exists. */ | |
5413c40d | 304 | if ((index = _dictKeyIndex(d, key)) == -1) |
71a50956 | 305 | return NULL; |
ed9b544e | 306 | |
6a7841eb | 307 | /* Allocate the memory and store the new entry */ |
5413c40d | 308 | ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0]; |
d9dd352b | 309 | entry = zmalloc(sizeof(*entry)); |
ed9b544e | 310 | entry->next = ht->table[index]; |
311 | ht->table[index] = entry; | |
5413c40d | 312 | ht->used++; |
ed9b544e | 313 | |
314 | /* Set the hash entry fields. */ | |
c0ba9ebe | 315 | dictSetKey(d, entry, key); |
71a50956 | 316 | return entry; |
ed9b544e | 317 | } |
318 | ||
121796f7 | 319 | /* Add an element, discarding the old if the key already exists. |
320 | * Return 1 if the key was added from scratch, 0 if there was already an | |
321 | * element with such key and dictReplace() just performed a value update | |
322 | * operation. */ | |
5413c40d | 323 | int dictReplace(dict *d, void *key, void *val) |
ed9b544e | 324 | { |
2069d06a | 325 | dictEntry *entry, auxentry; |
ed9b544e | 326 | |
327 | /* Try to add the element. If the key | |
328 | * does not exists dictAdd will suceed. */ | |
5413c40d | 329 | if (dictAdd(d, key, val) == DICT_OK) |
121796f7 | 330 | return 1; |
ed9b544e | 331 | /* It already exists, get the entry */ |
5413c40d | 332 | entry = dictFind(d, key); |
2069d06a | 333 | /* Set the new value and free the old one. Note that it is important |
334 | * to do that in this order, as the value may just be exactly the same | |
335 | * as the previous one. In this context, think to reference counting, | |
336 | * you want to increment (set), and then decrement (free), and not the | |
337 | * reverse. */ | |
338 | auxentry = *entry; | |
c0ba9ebe | 339 | dictSetVal(d, entry, val); |
340 | dictFreeVal(d, &auxentry); | |
121796f7 | 341 | return 0; |
ed9b544e | 342 | } |
343 | ||
71a50956 | 344 | /* dictReplaceRaw() is simply a version of dictAddRaw() that always |
345 | * returns the hash entry of the specified key, even if the key already | |
346 | * exists and can't be added (in that case the entry of the already | |
347 | * existing key is returned.) | |
348 | * | |
349 | * See dictAddRaw() for more information. */ | |
350 | dictEntry *dictReplaceRaw(dict *d, void *key) { | |
351 | dictEntry *entry = dictFind(d,key); | |
352 | ||
353 | return entry ? entry : dictAddRaw(d,key); | |
354 | } | |
355 | ||
ed9b544e | 356 | /* Search and remove an element */ |
5413c40d | 357 | static int dictGenericDelete(dict *d, const void *key, int nofree) |
ed9b544e | 358 | { |
5413c40d | 359 | unsigned int h, idx; |
ed9b544e | 360 | dictEntry *he, *prevHe; |
5413c40d | 361 | int table; |
ed9b544e | 362 | |
5413c40d | 363 | if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */ |
364 | if (dictIsRehashing(d)) _dictRehashStep(d); | |
365 | h = dictHashKey(d, key); | |
ed9b544e | 366 | |
5413c40d | 367 | for (table = 0; table <= 1; table++) { |
368 | idx = h & d->ht[table].sizemask; | |
369 | he = d->ht[table].table[idx]; | |
370 | prevHe = NULL; | |
371 | while(he) { | |
c0ba9ebe | 372 | if (dictCompareKeys(d, key, he->key)) { |
5413c40d | 373 | /* Unlink the element from the list */ |
374 | if (prevHe) | |
375 | prevHe->next = he->next; | |
376 | else | |
377 | d->ht[table].table[idx] = he->next; | |
378 | if (!nofree) { | |
c0ba9ebe | 379 | dictFreeKey(d, he); |
380 | dictFreeVal(d, he); | |
5413c40d | 381 | } |
d9dd352b | 382 | zfree(he); |
5413c40d | 383 | d->ht[table].used--; |
384 | return DICT_OK; | |
ed9b544e | 385 | } |
5413c40d | 386 | prevHe = he; |
387 | he = he->next; | |
ed9b544e | 388 | } |
5413c40d | 389 | if (!dictIsRehashing(d)) break; |
ed9b544e | 390 | } |
391 | return DICT_ERR; /* not found */ | |
392 | } | |
393 | ||
394 | int dictDelete(dict *ht, const void *key) { | |
395 | return dictGenericDelete(ht,key,0); | |
396 | } | |
397 | ||
398 | int dictDeleteNoFree(dict *ht, const void *key) { | |
399 | return dictGenericDelete(ht,key,1); | |
400 | } | |
401 | ||
5413c40d | 402 | /* Destroy an entire dictionary */ |
403 | int _dictClear(dict *d, dictht *ht) | |
ed9b544e | 404 | { |
f2923bec | 405 | unsigned long i; |
ed9b544e | 406 | |
407 | /* Free all the elements */ | |
408 | for (i = 0; i < ht->size && ht->used > 0; i++) { | |
409 | dictEntry *he, *nextHe; | |
410 | ||
411 | if ((he = ht->table[i]) == NULL) continue; | |
412 | while(he) { | |
413 | nextHe = he->next; | |
c0ba9ebe | 414 | dictFreeKey(d, he); |
415 | dictFreeVal(d, he); | |
d9dd352b | 416 | zfree(he); |
ed9b544e | 417 | ht->used--; |
418 | he = nextHe; | |
419 | } | |
420 | } | |
421 | /* Free the table and the allocated cache structure */ | |
d9dd352b | 422 | zfree(ht->table); |
ed9b544e | 423 | /* Re-initialize the table */ |
424 | _dictReset(ht); | |
425 | return DICT_OK; /* never fails */ | |
426 | } | |
427 | ||
428 | /* Clear & Release the hash table */ | |
5413c40d | 429 | void dictRelease(dict *d) |
ed9b544e | 430 | { |
5413c40d | 431 | _dictClear(d,&d->ht[0]); |
432 | _dictClear(d,&d->ht[1]); | |
d9dd352b | 433 | zfree(d); |
ed9b544e | 434 | } |
435 | ||
5413c40d | 436 | dictEntry *dictFind(dict *d, const void *key) |
ed9b544e | 437 | { |
438 | dictEntry *he; | |
5413c40d | 439 | unsigned int h, idx, table; |
440 | ||
441 | if (d->ht[0].size == 0) return NULL; /* We don't have a table at all */ | |
442 | if (dictIsRehashing(d)) _dictRehashStep(d); | |
443 | h = dictHashKey(d, key); | |
444 | for (table = 0; table <= 1; table++) { | |
445 | idx = h & d->ht[table].sizemask; | |
446 | he = d->ht[table].table[idx]; | |
447 | while(he) { | |
c0ba9ebe | 448 | if (dictCompareKeys(d, key, he->key)) |
5413c40d | 449 | return he; |
450 | he = he->next; | |
451 | } | |
452 | if (!dictIsRehashing(d)) return NULL; | |
ed9b544e | 453 | } |
454 | return NULL; | |
455 | } | |
456 | ||
58e1c9c1 | 457 | void *dictFetchValue(dict *d, const void *key) { |
458 | dictEntry *he; | |
459 | ||
460 | he = dictFind(d,key); | |
c0ba9ebe | 461 | return he ? dictGetVal(he) : NULL; |
58e1c9c1 | 462 | } |
463 | ||
5413c40d | 464 | dictIterator *dictGetIterator(dict *d) |
ed9b544e | 465 | { |
d9dd352b | 466 | dictIterator *iter = zmalloc(sizeof(*iter)); |
ed9b544e | 467 | |
5413c40d | 468 | iter->d = d; |
469 | iter->table = 0; | |
ed9b544e | 470 | iter->index = -1; |
4b53e736 | 471 | iter->safe = 0; |
ed9b544e | 472 | iter->entry = NULL; |
473 | iter->nextEntry = NULL; | |
474 | return iter; | |
475 | } | |
476 | ||
4b53e736 | 477 | dictIterator *dictGetSafeIterator(dict *d) { |
478 | dictIterator *i = dictGetIterator(d); | |
479 | ||
480 | i->safe = 1; | |
481 | return i; | |
482 | } | |
483 | ||
ed9b544e | 484 | dictEntry *dictNext(dictIterator *iter) |
485 | { | |
486 | while (1) { | |
487 | if (iter->entry == NULL) { | |
5413c40d | 488 | dictht *ht = &iter->d->ht[iter->table]; |
4b53e736 | 489 | if (iter->safe && iter->index == -1 && iter->table == 0) |
490 | iter->d->iterators++; | |
ed9b544e | 491 | iter->index++; |
5413c40d | 492 | if (iter->index >= (signed) ht->size) { |
493 | if (dictIsRehashing(iter->d) && iter->table == 0) { | |
494 | iter->table++; | |
495 | iter->index = 0; | |
496 | ht = &iter->d->ht[1]; | |
497 | } else { | |
498 | break; | |
499 | } | |
500 | } | |
501 | iter->entry = ht->table[iter->index]; | |
ed9b544e | 502 | } else { |
503 | iter->entry = iter->nextEntry; | |
504 | } | |
505 | if (iter->entry) { | |
506 | /* We need to save the 'next' here, the iterator user | |
507 | * may delete the entry we are returning. */ | |
508 | iter->nextEntry = iter->entry->next; | |
509 | return iter->entry; | |
510 | } | |
511 | } | |
512 | return NULL; | |
513 | } | |
514 | ||
515 | void dictReleaseIterator(dictIterator *iter) | |
516 | { | |
4b53e736 | 517 | if (iter->safe && !(iter->index == -1 && iter->table == 0)) |
518 | iter->d->iterators--; | |
d9dd352b | 519 | zfree(iter); |
ed9b544e | 520 | } |
521 | ||
522 | /* Return a random entry from the hash table. Useful to | |
523 | * implement randomized algorithms */ | |
5413c40d | 524 | dictEntry *dictGetRandomKey(dict *d) |
ed9b544e | 525 | { |
5413c40d | 526 | dictEntry *he, *orighe; |
ed9b544e | 527 | unsigned int h; |
528 | int listlen, listele; | |
529 | ||
5413c40d | 530 | if (dictSize(d) == 0) return NULL; |
531 | if (dictIsRehashing(d)) _dictRehashStep(d); | |
532 | if (dictIsRehashing(d)) { | |
533 | do { | |
534 | h = random() % (d->ht[0].size+d->ht[1].size); | |
535 | he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] : | |
536 | d->ht[0].table[h]; | |
537 | } while(he == NULL); | |
538 | } else { | |
539 | do { | |
540 | h = random() & d->ht[0].sizemask; | |
541 | he = d->ht[0].table[h]; | |
542 | } while(he == NULL); | |
543 | } | |
ed9b544e | 544 | |
545 | /* Now we found a non empty bucket, but it is a linked | |
546 | * list and we need to get a random element from the list. | |
5413c40d | 547 | * The only sane way to do so is counting the elements and |
ed9b544e | 548 | * select a random index. */ |
549 | listlen = 0; | |
5413c40d | 550 | orighe = he; |
ed9b544e | 551 | while(he) { |
552 | he = he->next; | |
553 | listlen++; | |
554 | } | |
555 | listele = random() % listlen; | |
5413c40d | 556 | he = orighe; |
ed9b544e | 557 | while(listele--) he = he->next; |
558 | return he; | |
559 | } | |
560 | ||
561 | /* ------------------------- private functions ------------------------------ */ | |
562 | ||
563 | /* Expand the hash table if needed */ | |
5413c40d | 564 | static int _dictExpandIfNeeded(dict *d) |
ed9b544e | 565 | { |
3856f147 | 566 | /* Incremental rehashing already in progress. Return. */ |
5413c40d | 567 | if (dictIsRehashing(d)) return DICT_OK; |
3856f147 | 568 | |
569 | /* If the hash table is empty expand it to the intial size. */ | |
570 | if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE); | |
571 | ||
572 | /* If we reached the 1:1 ratio, and we are allowed to resize the hash | |
573 | * table (global setting) or we should avoid it but the ratio between | |
574 | * elements/buckets is over the "safe" threshold, we resize doubling | |
575 | * the number of buckets. */ | |
576 | if (d->ht[0].used >= d->ht[0].size && | |
577 | (dict_can_resize || | |
578 | d->ht[0].used/d->ht[0].size > dict_force_resize_ratio)) | |
579 | { | |
5413c40d | 580 | return dictExpand(d, ((d->ht[0].size > d->ht[0].used) ? |
581 | d->ht[0].size : d->ht[0].used)*2); | |
3856f147 | 582 | } |
ed9b544e | 583 | return DICT_OK; |
584 | } | |
585 | ||
586 | /* Our hash table capability is a power of two */ | |
f2923bec | 587 | static unsigned long _dictNextPower(unsigned long size) |
ed9b544e | 588 | { |
f2923bec | 589 | unsigned long i = DICT_HT_INITIAL_SIZE; |
ed9b544e | 590 | |
f2923bec | 591 | if (size >= LONG_MAX) return LONG_MAX; |
ed9b544e | 592 | while(1) { |
593 | if (i >= size) | |
594 | return i; | |
595 | i *= 2; | |
596 | } | |
597 | } | |
598 | ||
599 | /* Returns the index of a free slot that can be populated with | |
600 | * an hash entry for the given 'key'. | |
5413c40d | 601 | * If the key already exists, -1 is returned. |
602 | * | |
603 | * Note that if we are in the process of rehashing the hash table, the | |
604 | * index is always returned in the context of the second (new) hash table. */ | |
605 | static int _dictKeyIndex(dict *d, const void *key) | |
ed9b544e | 606 | { |
8ca3e9d1 | 607 | unsigned int h, idx, table; |
ed9b544e | 608 | dictEntry *he; |
609 | ||
65fd32ab | 610 | /* Expand the hash table if needed */ |
5413c40d | 611 | if (_dictExpandIfNeeded(d) == DICT_ERR) |
ed9b544e | 612 | return -1; |
613 | /* Compute the key hash value */ | |
5413c40d | 614 | h = dictHashKey(d, key); |
8ca3e9d1 | 615 | for (table = 0; table <= 1; table++) { |
616 | idx = h & d->ht[table].sizemask; | |
617 | /* Search if this slot does not already contain the given key */ | |
618 | he = d->ht[table].table[idx]; | |
619 | while(he) { | |
c0ba9ebe | 620 | if (dictCompareKeys(d, key, he->key)) |
8ca3e9d1 | 621 | return -1; |
622 | he = he->next; | |
623 | } | |
624 | if (!dictIsRehashing(d)) break; | |
ed9b544e | 625 | } |
8ca3e9d1 | 626 | return idx; |
ed9b544e | 627 | } |
628 | ||
5413c40d | 629 | void dictEmpty(dict *d) { |
630 | _dictClear(d,&d->ht[0]); | |
631 | _dictClear(d,&d->ht[1]); | |
632 | d->rehashidx = -1; | |
633 | d->iterators = 0; | |
ed9b544e | 634 | } |
635 | ||
636 | #define DICT_STATS_VECTLEN 50 | |
5413c40d | 637 | static void _dictPrintStatsHt(dictht *ht) { |
f2923bec | 638 | unsigned long i, slots = 0, chainlen, maxchainlen = 0; |
639 | unsigned long totchainlen = 0; | |
640 | unsigned long clvector[DICT_STATS_VECTLEN]; | |
ed9b544e | 641 | |
642 | if (ht->used == 0) { | |
643 | printf("No stats available for empty dictionaries\n"); | |
644 | return; | |
645 | } | |
646 | ||
647 | for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0; | |
648 | for (i = 0; i < ht->size; i++) { | |
649 | dictEntry *he; | |
650 | ||
651 | if (ht->table[i] == NULL) { | |
652 | clvector[0]++; | |
653 | continue; | |
654 | } | |
655 | slots++; | |
656 | /* For each hash entry on this slot... */ | |
657 | chainlen = 0; | |
658 | he = ht->table[i]; | |
659 | while(he) { | |
660 | chainlen++; | |
661 | he = he->next; | |
662 | } | |
663 | clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++; | |
664 | if (chainlen > maxchainlen) maxchainlen = chainlen; | |
665 | totchainlen += chainlen; | |
666 | } | |
667 | printf("Hash table stats:\n"); | |
f2923bec | 668 | printf(" table size: %ld\n", ht->size); |
669 | printf(" number of elements: %ld\n", ht->used); | |
670 | printf(" different slots: %ld\n", slots); | |
671 | printf(" max chain length: %ld\n", maxchainlen); | |
ed9b544e | 672 | printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots); |
673 | printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots); | |
674 | printf(" Chain length distribution:\n"); | |
675 | for (i = 0; i < DICT_STATS_VECTLEN-1; i++) { | |
676 | if (clvector[i] == 0) continue; | |
f2923bec | 677 | printf(" %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100); |
ed9b544e | 678 | } |
679 | } | |
680 | ||
5413c40d | 681 | void dictPrintStats(dict *d) { |
682 | _dictPrintStatsHt(&d->ht[0]); | |
683 | if (dictIsRehashing(d)) { | |
684 | printf("-- Rehashing into ht[1]:\n"); | |
685 | _dictPrintStatsHt(&d->ht[1]); | |
686 | } | |
687 | } | |
688 | ||
884d4b39 | 689 | void dictEnableResize(void) { |
690 | dict_can_resize = 1; | |
691 | } | |
692 | ||
693 | void dictDisableResize(void) { | |
dae121d9 | 694 | dict_can_resize = 0; |
884d4b39 | 695 | } |
696 | ||
e0be2289 | 697 | #if 0 |
698 | ||
699 | /* The following are just example hash table types implementations. | |
700 | * Not useful for Redis so they are commented out. | |
701 | */ | |
702 | ||
ed9b544e | 703 | /* ----------------------- StringCopy Hash Table Type ------------------------*/ |
704 | ||
705 | static unsigned int _dictStringCopyHTHashFunction(const void *key) | |
706 | { | |
707 | return dictGenHashFunction(key, strlen(key)); | |
708 | } | |
709 | ||
b1e0bd4b | 710 | static void *_dictStringDup(void *privdata, const void *key) |
ed9b544e | 711 | { |
712 | int len = strlen(key); | |
d9dd352b | 713 | char *copy = zmalloc(len+1); |
ed9b544e | 714 | DICT_NOTUSED(privdata); |
715 | ||
716 | memcpy(copy, key, len); | |
717 | copy[len] = '\0'; | |
718 | return copy; | |
719 | } | |
720 | ||
ed9b544e | 721 | static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1, |
722 | const void *key2) | |
723 | { | |
724 | DICT_NOTUSED(privdata); | |
725 | ||
726 | return strcmp(key1, key2) == 0; | |
727 | } | |
728 | ||
b1e0bd4b | 729 | static void _dictStringDestructor(void *privdata, void *key) |
ed9b544e | 730 | { |
731 | DICT_NOTUSED(privdata); | |
732 | ||
d9dd352b | 733 | zfree(key); |
ed9b544e | 734 | } |
735 | ||
736 | dictType dictTypeHeapStringCopyKey = { | |
b1e0bd4b BK |
737 | _dictStringCopyHTHashFunction, /* hash function */ |
738 | _dictStringDup, /* key dup */ | |
739 | NULL, /* val dup */ | |
740 | _dictStringCopyHTKeyCompare, /* key compare */ | |
741 | _dictStringDestructor, /* key destructor */ | |
742 | NULL /* val destructor */ | |
ed9b544e | 743 | }; |
744 | ||
745 | /* This is like StringCopy but does not auto-duplicate the key. | |
746 | * It's used for intepreter's shared strings. */ | |
747 | dictType dictTypeHeapStrings = { | |
b1e0bd4b BK |
748 | _dictStringCopyHTHashFunction, /* hash function */ |
749 | NULL, /* key dup */ | |
750 | NULL, /* val dup */ | |
751 | _dictStringCopyHTKeyCompare, /* key compare */ | |
752 | _dictStringDestructor, /* key destructor */ | |
753 | NULL /* val destructor */ | |
ed9b544e | 754 | }; |
755 | ||
756 | /* This is like StringCopy but also automatically handle dynamic | |
757 | * allocated C strings as values. */ | |
758 | dictType dictTypeHeapStringCopyKeyValue = { | |
b1e0bd4b BK |
759 | _dictStringCopyHTHashFunction, /* hash function */ |
760 | _dictStringDup, /* key dup */ | |
761 | _dictStringDup, /* val dup */ | |
762 | _dictStringCopyHTKeyCompare, /* key compare */ | |
763 | _dictStringDestructor, /* key destructor */ | |
764 | _dictStringDestructor, /* val destructor */ | |
ed9b544e | 765 | }; |
e0be2289 | 766 | #endif |