]>
Commit | Line | Data |
---|---|---|
ed9b544e | 1 | /* Hash Tables Implementation. |
2 | * | |
3 | * This file implements in memory hash tables with insert/del/replace/find/ | |
4 | * get-random-element operations. Hash tables will auto resize if needed | |
5 | * tables of power of two in size are used, collisions are handled by | |
6 | * chaining. See the source code for more information... :) | |
7 | * | |
12d090d2 | 8 | * Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com> |
ed9b544e | 9 | * All rights reserved. |
10 | * | |
11 | * Redistribution and use in source and binary forms, with or without | |
12 | * modification, are permitted provided that the following conditions are met: | |
13 | * | |
14 | * * Redistributions of source code must retain the above copyright notice, | |
15 | * this list of conditions and the following disclaimer. | |
16 | * * Redistributions in binary form must reproduce the above copyright | |
17 | * notice, this list of conditions and the following disclaimer in the | |
18 | * documentation and/or other materials provided with the distribution. | |
19 | * * Neither the name of Redis nor the names of its contributors may be used | |
20 | * to endorse or promote products derived from this software without | |
21 | * specific prior written permission. | |
22 | * | |
23 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
24 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
25 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
26 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
27 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
28 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
29 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
30 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
31 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
32 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
33 | * POSSIBILITY OF SUCH DAMAGE. | |
34 | */ | |
35 | ||
23d4709d | 36 | #include "fmacros.h" |
37 | ||
ed9b544e | 38 | #include <stdio.h> |
39 | #include <stdlib.h> | |
40 | #include <string.h> | |
41 | #include <stdarg.h> | |
42 | #include <assert.h> | |
f2923bec | 43 | #include <limits.h> |
8ca3e9d1 | 44 | #include <sys/time.h> |
ed9b544e | 45 | |
46 | #include "dict.h" | |
47 | #include "zmalloc.h" | |
48 | ||
884d4b39 | 49 | /* Using dictEnableResize() / dictDisableResize() we make possible to |
50 | * enable/disable resizing of the hash table as needed. This is very important | |
51 | * for Redis, as we use copy-on-write and don't want to move too much memory | |
3856f147 | 52 | * around when there is a child performing saving operations. |
53 | * | |
54 | * Note that even when dict_can_resize is set to 0, not all resizes are | |
55 | * prevented: an hash table is still allowed to grow if the ratio between | |
56 | * the number of elements and the buckets > dict_force_resize_ratio. */ | |
884d4b39 | 57 | static int dict_can_resize = 1; |
3856f147 | 58 | static unsigned int dict_force_resize_ratio = 5; |
884d4b39 | 59 | |
ed9b544e | 60 | /* -------------------------- private prototypes ---------------------------- */ |
61 | ||
62 | static int _dictExpandIfNeeded(dict *ht); | |
f2923bec | 63 | static unsigned long _dictNextPower(unsigned long size); |
ed9b544e | 64 | static int _dictKeyIndex(dict *ht, const void *key); |
65 | static int _dictInit(dict *ht, dictType *type, void *privDataPtr); | |
66 | ||
67 | /* -------------------------- hash functions -------------------------------- */ | |
68 | ||
69 | /* Thomas Wang's 32 bit Mix Function */ | |
70 | unsigned int dictIntHashFunction(unsigned int key) | |
71 | { | |
72 | key += ~(key << 15); | |
73 | key ^= (key >> 10); | |
74 | key += (key << 3); | |
75 | key ^= (key >> 6); | |
76 | key += ~(key << 11); | |
77 | key ^= (key >> 16); | |
78 | return key; | |
79 | } | |
80 | ||
81 | /* Identity hash function for integer keys */ | |
82 | unsigned int dictIdentityHashFunction(unsigned int key) | |
83 | { | |
84 | return key; | |
85 | } | |
86 | ||
87 | /* Generic hash function (a popular one from Bernstein). | |
88 | * I tested a few and this was the best. */ | |
89 | unsigned int dictGenHashFunction(const unsigned char *buf, int len) { | |
90 | unsigned int hash = 5381; | |
91 | ||
92 | while (len--) | |
93 | hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */ | |
94 | return hash; | |
95 | } | |
96 | ||
97 | /* ----------------------------- API implementation ------------------------- */ | |
98 | ||
99 | /* Reset an hashtable already initialized with ht_init(). | |
100 | * NOTE: This function should only called by ht_destroy(). */ | |
5413c40d | 101 | static void _dictReset(dictht *ht) |
ed9b544e | 102 | { |
103 | ht->table = NULL; | |
104 | ht->size = 0; | |
105 | ht->sizemask = 0; | |
106 | ht->used = 0; | |
107 | } | |
108 | ||
109 | /* Create a new hash table */ | |
110 | dict *dictCreate(dictType *type, | |
111 | void *privDataPtr) | |
112 | { | |
d9dd352b | 113 | dict *d = zmalloc(sizeof(*d)); |
ed9b544e | 114 | |
5413c40d | 115 | _dictInit(d,type,privDataPtr); |
116 | return d; | |
ed9b544e | 117 | } |
118 | ||
119 | /* Initialize the hash table */ | |
5413c40d | 120 | int _dictInit(dict *d, dictType *type, |
ed9b544e | 121 | void *privDataPtr) |
122 | { | |
5413c40d | 123 | _dictReset(&d->ht[0]); |
124 | _dictReset(&d->ht[1]); | |
125 | d->type = type; | |
126 | d->privdata = privDataPtr; | |
127 | d->rehashidx = -1; | |
128 | d->iterators = 0; | |
ed9b544e | 129 | return DICT_OK; |
130 | } | |
131 | ||
132 | /* Resize the table to the minimal size that contains all the elements, | |
3856f147 | 133 | * but with the invariant of a USER/BUCKETS ratio near to <= 1 */ |
5413c40d | 134 | int dictResize(dict *d) |
ed9b544e | 135 | { |
5413c40d | 136 | int minimal; |
ed9b544e | 137 | |
5413c40d | 138 | if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR; |
139 | minimal = d->ht[0].used; | |
ed9b544e | 140 | if (minimal < DICT_HT_INITIAL_SIZE) |
141 | minimal = DICT_HT_INITIAL_SIZE; | |
5413c40d | 142 | return dictExpand(d, minimal); |
ed9b544e | 143 | } |
144 | ||
145 | /* Expand or create the hashtable */ | |
5413c40d | 146 | int dictExpand(dict *d, unsigned long size) |
ed9b544e | 147 | { |
5413c40d | 148 | dictht n; /* the new hashtable */ |
149 | unsigned long realsize = _dictNextPower(size); | |
ed9b544e | 150 | |
151 | /* the size is invalid if it is smaller than the number of | |
152 | * elements already inside the hashtable */ | |
5413c40d | 153 | if (dictIsRehashing(d) || d->ht[0].used > size) |
ed9b544e | 154 | return DICT_ERR; |
155 | ||
399f2f40 | 156 | /* Allocate the new hashtable and initialize all pointers to NULL */ |
ed9b544e | 157 | n.size = realsize; |
158 | n.sizemask = realsize-1; | |
399f2f40 | 159 | n.table = zcalloc(realsize*sizeof(dictEntry*)); |
5413c40d | 160 | n.used = 0; |
ed9b544e | 161 | |
5413c40d | 162 | /* Is this the first initialization? If so it's not really a rehashing |
163 | * we just set the first hash table so that it can accept keys. */ | |
164 | if (d->ht[0].table == NULL) { | |
165 | d->ht[0] = n; | |
166 | return DICT_OK; | |
167 | } | |
ed9b544e | 168 | |
5413c40d | 169 | /* Prepare a second hash table for incremental rehashing */ |
170 | d->ht[1] = n; | |
171 | d->rehashidx = 0; | |
172 | return DICT_OK; | |
173 | } | |
174 | ||
175 | /* Performs N steps of incremental rehashing. Returns 1 if there are still | |
176 | * keys to move from the old to the new hash table, otherwise 0 is returned. | |
177 | * Note that a rehashing step consists in moving a bucket (that may have more | |
178 | * thank one key as we use chaining) from the old to the new hash table. */ | |
179 | int dictRehash(dict *d, int n) { | |
180 | if (!dictIsRehashing(d)) return 0; | |
181 | ||
182 | while(n--) { | |
183 | dictEntry *de, *nextde; | |
184 | ||
185 | /* Check if we already rehashed the whole table... */ | |
186 | if (d->ht[0].used == 0) { | |
d9dd352b | 187 | zfree(d->ht[0].table); |
5413c40d | 188 | d->ht[0] = d->ht[1]; |
189 | _dictReset(&d->ht[1]); | |
190 | d->rehashidx = -1; | |
191 | return 0; | |
192 | } | |
193 | ||
194 | /* Note that rehashidx can't overflow as we are sure there are more | |
195 | * elements because ht[0].used != 0 */ | |
196 | while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++; | |
197 | de = d->ht[0].table[d->rehashidx]; | |
198 | /* Move all the keys in this bucket from the old to the new hash HT */ | |
199 | while(de) { | |
ed9b544e | 200 | unsigned int h; |
201 | ||
5413c40d | 202 | nextde = de->next; |
203 | /* Get the index in the new hash table */ | |
204 | h = dictHashKey(d, de->key) & d->ht[1].sizemask; | |
205 | de->next = d->ht[1].table[h]; | |
206 | d->ht[1].table[h] = de; | |
207 | d->ht[0].used--; | |
208 | d->ht[1].used++; | |
209 | de = nextde; | |
ed9b544e | 210 | } |
5413c40d | 211 | d->ht[0].table[d->rehashidx] = NULL; |
212 | d->rehashidx++; | |
ed9b544e | 213 | } |
5413c40d | 214 | return 1; |
215 | } | |
ed9b544e | 216 | |
8ca3e9d1 | 217 | long long timeInMilliseconds(void) { |
218 | struct timeval tv; | |
219 | ||
220 | gettimeofday(&tv,NULL); | |
221 | return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000); | |
222 | } | |
223 | ||
224 | /* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */ | |
225 | int dictRehashMilliseconds(dict *d, int ms) { | |
226 | long long start = timeInMilliseconds(); | |
227 | int rehashes = 0; | |
228 | ||
229 | while(dictRehash(d,100)) { | |
230 | rehashes += 100; | |
231 | if (timeInMilliseconds()-start > ms) break; | |
232 | } | |
233 | return rehashes; | |
234 | } | |
235 | ||
5413c40d | 236 | /* This function performs just a step of rehashing, and only if there are |
237 | * not iterators bound to our hash table. When we have iterators in the middle | |
238 | * of a rehashing we can't mess with the two hash tables otherwise some element | |
239 | * can be missed or duplicated. | |
240 | * | |
241 | * This function is called by common lookup or update operations in the | |
242 | * dictionary so that the hash table automatically migrates from H1 to H2 | |
243 | * while it is actively used. */ | |
244 | static void _dictRehashStep(dict *d) { | |
245 | if (d->iterators == 0) dictRehash(d,1); | |
ed9b544e | 246 | } |
247 | ||
248 | /* Add an element to the target hash table */ | |
5413c40d | 249 | int dictAdd(dict *d, void *key, void *val) |
ed9b544e | 250 | { |
251 | int index; | |
252 | dictEntry *entry; | |
5413c40d | 253 | dictht *ht; |
254 | ||
255 | if (dictIsRehashing(d)) _dictRehashStep(d); | |
ed9b544e | 256 | |
257 | /* Get the index of the new element, or -1 if | |
258 | * the element already exists. */ | |
5413c40d | 259 | if ((index = _dictKeyIndex(d, key)) == -1) |
ed9b544e | 260 | return DICT_ERR; |
261 | ||
262 | /* Allocates the memory and stores key */ | |
5413c40d | 263 | ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0]; |
d9dd352b | 264 | entry = zmalloc(sizeof(*entry)); |
ed9b544e | 265 | entry->next = ht->table[index]; |
266 | ht->table[index] = entry; | |
5413c40d | 267 | ht->used++; |
ed9b544e | 268 | |
269 | /* Set the hash entry fields. */ | |
5413c40d | 270 | dictSetHashKey(d, entry, key); |
271 | dictSetHashVal(d, entry, val); | |
ed9b544e | 272 | return DICT_OK; |
273 | } | |
274 | ||
121796f7 | 275 | /* Add an element, discarding the old if the key already exists. |
276 | * Return 1 if the key was added from scratch, 0 if there was already an | |
277 | * element with such key and dictReplace() just performed a value update | |
278 | * operation. */ | |
5413c40d | 279 | int dictReplace(dict *d, void *key, void *val) |
ed9b544e | 280 | { |
2069d06a | 281 | dictEntry *entry, auxentry; |
ed9b544e | 282 | |
283 | /* Try to add the element. If the key | |
284 | * does not exists dictAdd will suceed. */ | |
5413c40d | 285 | if (dictAdd(d, key, val) == DICT_OK) |
121796f7 | 286 | return 1; |
ed9b544e | 287 | /* It already exists, get the entry */ |
5413c40d | 288 | entry = dictFind(d, key); |
ed9b544e | 289 | /* Free the old value and set the new one */ |
2069d06a | 290 | /* Set the new value and free the old one. Note that it is important |
291 | * to do that in this order, as the value may just be exactly the same | |
292 | * as the previous one. In this context, think to reference counting, | |
293 | * you want to increment (set), and then decrement (free), and not the | |
294 | * reverse. */ | |
295 | auxentry = *entry; | |
5413c40d | 296 | dictSetHashVal(d, entry, val); |
297 | dictFreeEntryVal(d, &auxentry); | |
121796f7 | 298 | return 0; |
ed9b544e | 299 | } |
300 | ||
301 | /* Search and remove an element */ | |
5413c40d | 302 | static int dictGenericDelete(dict *d, const void *key, int nofree) |
ed9b544e | 303 | { |
5413c40d | 304 | unsigned int h, idx; |
ed9b544e | 305 | dictEntry *he, *prevHe; |
5413c40d | 306 | int table; |
ed9b544e | 307 | |
5413c40d | 308 | if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */ |
309 | if (dictIsRehashing(d)) _dictRehashStep(d); | |
310 | h = dictHashKey(d, key); | |
ed9b544e | 311 | |
5413c40d | 312 | for (table = 0; table <= 1; table++) { |
313 | idx = h & d->ht[table].sizemask; | |
314 | he = d->ht[table].table[idx]; | |
315 | prevHe = NULL; | |
316 | while(he) { | |
317 | if (dictCompareHashKeys(d, key, he->key)) { | |
318 | /* Unlink the element from the list */ | |
319 | if (prevHe) | |
320 | prevHe->next = he->next; | |
321 | else | |
322 | d->ht[table].table[idx] = he->next; | |
323 | if (!nofree) { | |
324 | dictFreeEntryKey(d, he); | |
325 | dictFreeEntryVal(d, he); | |
326 | } | |
d9dd352b | 327 | zfree(he); |
5413c40d | 328 | d->ht[table].used--; |
329 | return DICT_OK; | |
ed9b544e | 330 | } |
5413c40d | 331 | prevHe = he; |
332 | he = he->next; | |
ed9b544e | 333 | } |
5413c40d | 334 | if (!dictIsRehashing(d)) break; |
ed9b544e | 335 | } |
336 | return DICT_ERR; /* not found */ | |
337 | } | |
338 | ||
339 | int dictDelete(dict *ht, const void *key) { | |
340 | return dictGenericDelete(ht,key,0); | |
341 | } | |
342 | ||
343 | int dictDeleteNoFree(dict *ht, const void *key) { | |
344 | return dictGenericDelete(ht,key,1); | |
345 | } | |
346 | ||
5413c40d | 347 | /* Destroy an entire dictionary */ |
348 | int _dictClear(dict *d, dictht *ht) | |
ed9b544e | 349 | { |
f2923bec | 350 | unsigned long i; |
ed9b544e | 351 | |
352 | /* Free all the elements */ | |
353 | for (i = 0; i < ht->size && ht->used > 0; i++) { | |
354 | dictEntry *he, *nextHe; | |
355 | ||
356 | if ((he = ht->table[i]) == NULL) continue; | |
357 | while(he) { | |
358 | nextHe = he->next; | |
5413c40d | 359 | dictFreeEntryKey(d, he); |
360 | dictFreeEntryVal(d, he); | |
d9dd352b | 361 | zfree(he); |
ed9b544e | 362 | ht->used--; |
363 | he = nextHe; | |
364 | } | |
365 | } | |
366 | /* Free the table and the allocated cache structure */ | |
d9dd352b | 367 | zfree(ht->table); |
ed9b544e | 368 | /* Re-initialize the table */ |
369 | _dictReset(ht); | |
370 | return DICT_OK; /* never fails */ | |
371 | } | |
372 | ||
373 | /* Clear & Release the hash table */ | |
5413c40d | 374 | void dictRelease(dict *d) |
ed9b544e | 375 | { |
5413c40d | 376 | _dictClear(d,&d->ht[0]); |
377 | _dictClear(d,&d->ht[1]); | |
d9dd352b | 378 | zfree(d); |
ed9b544e | 379 | } |
380 | ||
5413c40d | 381 | dictEntry *dictFind(dict *d, const void *key) |
ed9b544e | 382 | { |
383 | dictEntry *he; | |
5413c40d | 384 | unsigned int h, idx, table; |
385 | ||
386 | if (d->ht[0].size == 0) return NULL; /* We don't have a table at all */ | |
387 | if (dictIsRehashing(d)) _dictRehashStep(d); | |
388 | h = dictHashKey(d, key); | |
389 | for (table = 0; table <= 1; table++) { | |
390 | idx = h & d->ht[table].sizemask; | |
391 | he = d->ht[table].table[idx]; | |
392 | while(he) { | |
393 | if (dictCompareHashKeys(d, key, he->key)) | |
394 | return he; | |
395 | he = he->next; | |
396 | } | |
397 | if (!dictIsRehashing(d)) return NULL; | |
ed9b544e | 398 | } |
399 | return NULL; | |
400 | } | |
401 | ||
58e1c9c1 | 402 | void *dictFetchValue(dict *d, const void *key) { |
403 | dictEntry *he; | |
404 | ||
405 | he = dictFind(d,key); | |
406 | return he ? dictGetEntryVal(he) : NULL; | |
407 | } | |
408 | ||
5413c40d | 409 | dictIterator *dictGetIterator(dict *d) |
ed9b544e | 410 | { |
d9dd352b | 411 | dictIterator *iter = zmalloc(sizeof(*iter)); |
ed9b544e | 412 | |
5413c40d | 413 | iter->d = d; |
414 | iter->table = 0; | |
ed9b544e | 415 | iter->index = -1; |
416 | iter->entry = NULL; | |
417 | iter->nextEntry = NULL; | |
418 | return iter; | |
419 | } | |
420 | ||
421 | dictEntry *dictNext(dictIterator *iter) | |
422 | { | |
423 | while (1) { | |
424 | if (iter->entry == NULL) { | |
5413c40d | 425 | dictht *ht = &iter->d->ht[iter->table]; |
426 | if (iter->index == -1 && iter->table == 0) iter->d->iterators++; | |
ed9b544e | 427 | iter->index++; |
5413c40d | 428 | if (iter->index >= (signed) ht->size) { |
429 | if (dictIsRehashing(iter->d) && iter->table == 0) { | |
430 | iter->table++; | |
431 | iter->index = 0; | |
432 | ht = &iter->d->ht[1]; | |
433 | } else { | |
434 | break; | |
435 | } | |
436 | } | |
437 | iter->entry = ht->table[iter->index]; | |
ed9b544e | 438 | } else { |
439 | iter->entry = iter->nextEntry; | |
440 | } | |
441 | if (iter->entry) { | |
442 | /* We need to save the 'next' here, the iterator user | |
443 | * may delete the entry we are returning. */ | |
444 | iter->nextEntry = iter->entry->next; | |
445 | return iter->entry; | |
446 | } | |
447 | } | |
448 | return NULL; | |
449 | } | |
450 | ||
451 | void dictReleaseIterator(dictIterator *iter) | |
452 | { | |
5413c40d | 453 | if (!(iter->index == -1 && iter->table == 0)) iter->d->iterators--; |
d9dd352b | 454 | zfree(iter); |
ed9b544e | 455 | } |
456 | ||
457 | /* Return a random entry from the hash table. Useful to | |
458 | * implement randomized algorithms */ | |
5413c40d | 459 | dictEntry *dictGetRandomKey(dict *d) |
ed9b544e | 460 | { |
5413c40d | 461 | dictEntry *he, *orighe; |
ed9b544e | 462 | unsigned int h; |
463 | int listlen, listele; | |
464 | ||
5413c40d | 465 | if (dictSize(d) == 0) return NULL; |
466 | if (dictIsRehashing(d)) _dictRehashStep(d); | |
467 | if (dictIsRehashing(d)) { | |
468 | do { | |
469 | h = random() % (d->ht[0].size+d->ht[1].size); | |
470 | he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] : | |
471 | d->ht[0].table[h]; | |
472 | } while(he == NULL); | |
473 | } else { | |
474 | do { | |
475 | h = random() & d->ht[0].sizemask; | |
476 | he = d->ht[0].table[h]; | |
477 | } while(he == NULL); | |
478 | } | |
ed9b544e | 479 | |
480 | /* Now we found a non empty bucket, but it is a linked | |
481 | * list and we need to get a random element from the list. | |
5413c40d | 482 | * The only sane way to do so is counting the elements and |
ed9b544e | 483 | * select a random index. */ |
484 | listlen = 0; | |
5413c40d | 485 | orighe = he; |
ed9b544e | 486 | while(he) { |
487 | he = he->next; | |
488 | listlen++; | |
489 | } | |
490 | listele = random() % listlen; | |
5413c40d | 491 | he = orighe; |
ed9b544e | 492 | while(listele--) he = he->next; |
493 | return he; | |
494 | } | |
495 | ||
496 | /* ------------------------- private functions ------------------------------ */ | |
497 | ||
498 | /* Expand the hash table if needed */ | |
5413c40d | 499 | static int _dictExpandIfNeeded(dict *d) |
ed9b544e | 500 | { |
3856f147 | 501 | /* Incremental rehashing already in progress. Return. */ |
5413c40d | 502 | if (dictIsRehashing(d)) return DICT_OK; |
3856f147 | 503 | |
504 | /* If the hash table is empty expand it to the intial size. */ | |
505 | if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE); | |
506 | ||
507 | /* If we reached the 1:1 ratio, and we are allowed to resize the hash | |
508 | * table (global setting) or we should avoid it but the ratio between | |
509 | * elements/buckets is over the "safe" threshold, we resize doubling | |
510 | * the number of buckets. */ | |
511 | if (d->ht[0].used >= d->ht[0].size && | |
512 | (dict_can_resize || | |
513 | d->ht[0].used/d->ht[0].size > dict_force_resize_ratio)) | |
514 | { | |
5413c40d | 515 | return dictExpand(d, ((d->ht[0].size > d->ht[0].used) ? |
516 | d->ht[0].size : d->ht[0].used)*2); | |
3856f147 | 517 | } |
ed9b544e | 518 | return DICT_OK; |
519 | } | |
520 | ||
521 | /* Our hash table capability is a power of two */ | |
f2923bec | 522 | static unsigned long _dictNextPower(unsigned long size) |
ed9b544e | 523 | { |
f2923bec | 524 | unsigned long i = DICT_HT_INITIAL_SIZE; |
ed9b544e | 525 | |
f2923bec | 526 | if (size >= LONG_MAX) return LONG_MAX; |
ed9b544e | 527 | while(1) { |
528 | if (i >= size) | |
529 | return i; | |
530 | i *= 2; | |
531 | } | |
532 | } | |
533 | ||
534 | /* Returns the index of a free slot that can be populated with | |
535 | * an hash entry for the given 'key'. | |
5413c40d | 536 | * If the key already exists, -1 is returned. |
537 | * | |
538 | * Note that if we are in the process of rehashing the hash table, the | |
539 | * index is always returned in the context of the second (new) hash table. */ | |
540 | static int _dictKeyIndex(dict *d, const void *key) | |
ed9b544e | 541 | { |
8ca3e9d1 | 542 | unsigned int h, idx, table; |
ed9b544e | 543 | dictEntry *he; |
544 | ||
545 | /* Expand the hashtable if needed */ | |
5413c40d | 546 | if (_dictExpandIfNeeded(d) == DICT_ERR) |
ed9b544e | 547 | return -1; |
548 | /* Compute the key hash value */ | |
5413c40d | 549 | h = dictHashKey(d, key); |
8ca3e9d1 | 550 | for (table = 0; table <= 1; table++) { |
551 | idx = h & d->ht[table].sizemask; | |
552 | /* Search if this slot does not already contain the given key */ | |
553 | he = d->ht[table].table[idx]; | |
554 | while(he) { | |
555 | if (dictCompareHashKeys(d, key, he->key)) | |
556 | return -1; | |
557 | he = he->next; | |
558 | } | |
559 | if (!dictIsRehashing(d)) break; | |
ed9b544e | 560 | } |
8ca3e9d1 | 561 | return idx; |
ed9b544e | 562 | } |
563 | ||
5413c40d | 564 | void dictEmpty(dict *d) { |
565 | _dictClear(d,&d->ht[0]); | |
566 | _dictClear(d,&d->ht[1]); | |
567 | d->rehashidx = -1; | |
568 | d->iterators = 0; | |
ed9b544e | 569 | } |
570 | ||
571 | #define DICT_STATS_VECTLEN 50 | |
5413c40d | 572 | static void _dictPrintStatsHt(dictht *ht) { |
f2923bec | 573 | unsigned long i, slots = 0, chainlen, maxchainlen = 0; |
574 | unsigned long totchainlen = 0; | |
575 | unsigned long clvector[DICT_STATS_VECTLEN]; | |
ed9b544e | 576 | |
577 | if (ht->used == 0) { | |
578 | printf("No stats available for empty dictionaries\n"); | |
579 | return; | |
580 | } | |
581 | ||
582 | for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0; | |
583 | for (i = 0; i < ht->size; i++) { | |
584 | dictEntry *he; | |
585 | ||
586 | if (ht->table[i] == NULL) { | |
587 | clvector[0]++; | |
588 | continue; | |
589 | } | |
590 | slots++; | |
591 | /* For each hash entry on this slot... */ | |
592 | chainlen = 0; | |
593 | he = ht->table[i]; | |
594 | while(he) { | |
595 | chainlen++; | |
596 | he = he->next; | |
597 | } | |
598 | clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++; | |
599 | if (chainlen > maxchainlen) maxchainlen = chainlen; | |
600 | totchainlen += chainlen; | |
601 | } | |
602 | printf("Hash table stats:\n"); | |
f2923bec | 603 | printf(" table size: %ld\n", ht->size); |
604 | printf(" number of elements: %ld\n", ht->used); | |
605 | printf(" different slots: %ld\n", slots); | |
606 | printf(" max chain length: %ld\n", maxchainlen); | |
ed9b544e | 607 | printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots); |
608 | printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots); | |
609 | printf(" Chain length distribution:\n"); | |
610 | for (i = 0; i < DICT_STATS_VECTLEN-1; i++) { | |
611 | if (clvector[i] == 0) continue; | |
f2923bec | 612 | printf(" %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100); |
ed9b544e | 613 | } |
614 | } | |
615 | ||
5413c40d | 616 | void dictPrintStats(dict *d) { |
617 | _dictPrintStatsHt(&d->ht[0]); | |
618 | if (dictIsRehashing(d)) { | |
619 | printf("-- Rehashing into ht[1]:\n"); | |
620 | _dictPrintStatsHt(&d->ht[1]); | |
621 | } | |
622 | } | |
623 | ||
884d4b39 | 624 | void dictEnableResize(void) { |
625 | dict_can_resize = 1; | |
626 | } | |
627 | ||
628 | void dictDisableResize(void) { | |
dae121d9 | 629 | dict_can_resize = 0; |
884d4b39 | 630 | } |
631 | ||
e0be2289 | 632 | #if 0 |
633 | ||
634 | /* The following are just example hash table types implementations. | |
635 | * Not useful for Redis so they are commented out. | |
636 | */ | |
637 | ||
ed9b544e | 638 | /* ----------------------- StringCopy Hash Table Type ------------------------*/ |
639 | ||
640 | static unsigned int _dictStringCopyHTHashFunction(const void *key) | |
641 | { | |
642 | return dictGenHashFunction(key, strlen(key)); | |
643 | } | |
644 | ||
b1e0bd4b | 645 | static void *_dictStringDup(void *privdata, const void *key) |
ed9b544e | 646 | { |
647 | int len = strlen(key); | |
d9dd352b | 648 | char *copy = zmalloc(len+1); |
ed9b544e | 649 | DICT_NOTUSED(privdata); |
650 | ||
651 | memcpy(copy, key, len); | |
652 | copy[len] = '\0'; | |
653 | return copy; | |
654 | } | |
655 | ||
ed9b544e | 656 | static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1, |
657 | const void *key2) | |
658 | { | |
659 | DICT_NOTUSED(privdata); | |
660 | ||
661 | return strcmp(key1, key2) == 0; | |
662 | } | |
663 | ||
b1e0bd4b | 664 | static void _dictStringDestructor(void *privdata, void *key) |
ed9b544e | 665 | { |
666 | DICT_NOTUSED(privdata); | |
667 | ||
d9dd352b | 668 | zfree(key); |
ed9b544e | 669 | } |
670 | ||
671 | dictType dictTypeHeapStringCopyKey = { | |
b1e0bd4b BK |
672 | _dictStringCopyHTHashFunction, /* hash function */ |
673 | _dictStringDup, /* key dup */ | |
674 | NULL, /* val dup */ | |
675 | _dictStringCopyHTKeyCompare, /* key compare */ | |
676 | _dictStringDestructor, /* key destructor */ | |
677 | NULL /* val destructor */ | |
ed9b544e | 678 | }; |
679 | ||
680 | /* This is like StringCopy but does not auto-duplicate the key. | |
681 | * It's used for intepreter's shared strings. */ | |
682 | dictType dictTypeHeapStrings = { | |
b1e0bd4b BK |
683 | _dictStringCopyHTHashFunction, /* hash function */ |
684 | NULL, /* key dup */ | |
685 | NULL, /* val dup */ | |
686 | _dictStringCopyHTKeyCompare, /* key compare */ | |
687 | _dictStringDestructor, /* key destructor */ | |
688 | NULL /* val destructor */ | |
ed9b544e | 689 | }; |
690 | ||
691 | /* This is like StringCopy but also automatically handle dynamic | |
692 | * allocated C strings as values. */ | |
693 | dictType dictTypeHeapStringCopyKeyValue = { | |
b1e0bd4b BK |
694 | _dictStringCopyHTHashFunction, /* hash function */ |
695 | _dictStringDup, /* key dup */ | |
696 | _dictStringDup, /* val dup */ | |
697 | _dictStringCopyHTKeyCompare, /* key compare */ | |
698 | _dictStringDestructor, /* key destructor */ | |
699 | _dictStringDestructor, /* val destructor */ | |
ed9b544e | 700 | }; |
e0be2289 | 701 | #endif |