]>
Commit | Line | Data |
---|---|---|
e2641e09 | 1 | #include "redis.h" |
2 | ||
3 | #include <fcntl.h> | |
4 | #include <pthread.h> | |
5 | #include <math.h> | |
6 | #include <signal.h> | |
7 | ||
33388d43 | 8 | /* dscache.c - Disk store cache for disk store backend. |
9 | * | |
10 | * When Redis is configured for using disk as backend instead of memory, the | |
11 | * memory is used as a cache, so that recently accessed keys are taken in | |
12 | * memory for fast read and write operations. | |
13 | * | |
14 | * Modified keys are marked to be flushed on disk, and will be flushed | |
15 | * as long as the maxium configured flush time elapsed. | |
16 | * | |
17 | * This file implements the whole caching subsystem and contains further | |
18 | * documentation. */ | |
19 | ||
20 | /* TODO: | |
133cf28e | 21 | * |
22 | * WARNING: most of the following todo items and design issues are no | |
23 | * longer relevant with the new design. Here as a checklist to see if | |
24 | * some old ideas still apply. | |
33388d43 | 25 | * |
26 | * - The WATCH helper will be used to signal the cache system | |
27 | * we need to flush a given key/dbid into disk, adding this key/dbid | |
28 | * pair into a server.ds_cache_dirty linked list AND hash table (so that we | |
29 | * don't add the same thing multiple times). | |
30 | * | |
31 | * - cron() checks if there are elements on this list. When there are things | |
32 | * to flush, we create an IO Job for the I/O thread. | |
16d77878 | 33 | * NOTE: We disalbe object sharing when server.ds_enabled == 1 so objects |
34 | * that are referenced an IO job for flushing on disk are marked as | |
35 | * o->storage == REDIS_DS_SAVING. | |
33388d43 | 36 | * |
37 | * - This is what we do on key lookup: | |
16d77878 | 38 | * 1) The key already exists in memory. object->storage == REDIS_DS_MEMORY |
39 | * or it is object->storage == REDIS_DS_DIRTY: | |
33388d43 | 40 | * We don't do nothing special, lookup, return value object pointer. |
41 | * 2) The key is in memory but object->storage == REDIS_DS_SAVING. | |
16d77878 | 42 | * When this happens we block waiting for the I/O thread to process |
43 | * this object. Then continue. | |
33388d43 | 44 | * 3) The key is not in memory. We block to load the key from disk. |
45 | * Of course the key may not be present at all on the disk store as well, | |
46 | * in such case we just detect this condition and continue, returning | |
47 | * NULL from lookup. | |
48 | * | |
49 | * - Preloading of needed keys: | |
50 | * 1) As it was done with VM, also with this new system we try preloading | |
51 | * keys a client is going to use. We block the client, load keys | |
52 | * using the I/O thread, unblock the client. Same code as VM more or less. | |
53 | * | |
16d77878 | 54 | * - Reclaiming memory. |
55 | * In cron() we detect our memory limit was reached. What we | |
56 | * do is deleting keys that are REDIS_DS_MEMORY, using LRU. | |
57 | * | |
33388d43 | 58 | * If this is not enough to return again under the memory limits we also |
59 | * start to flush keys that need to be synched on disk synchronously, | |
16d77878 | 60 | * removing it from the memory. We do this blocking as memory limit is a |
61 | * much "harder" barrirer in the new design. | |
33388d43 | 62 | * |
63 | * - IO thread operations are no longer stopped for sync loading/saving of | |
16d77878 | 64 | * things. When a key is found to be in the process of being saved |
65 | * we simply wait for the IO thread to end its work. | |
33388d43 | 66 | * |
67 | * Otherwise if there is to load a key without any IO thread operation | |
68 | * just started it is blocking-loaded in the lookup function. | |
16d77878 | 69 | * |
70 | * - What happens when an object is destroyed? | |
71 | * | |
72 | * If o->storage == REDIS_DS_MEMORY then we simply destory the object. | |
73 | * If o->storage == REDIS_DS_DIRTY we can still remove the object. It had | |
74 | * changes not flushed on disk, but is being removed so | |
75 | * who cares. | |
76 | * if o->storage == REDIS_DS_SAVING then the object is being saved so | |
77 | * it is impossible that its refcount == 1, must be at | |
78 | * least two. When the object is saved the storage will | |
79 | * be set back to DS_MEMORY. | |
80 | * | |
81 | * - What happens when keys are deleted? | |
82 | * | |
83 | * We simply schedule a key flush operation as usually, but when the | |
84 | * IO thread will be created the object pointer will be set to NULL | |
85 | * so the IO thread will know that the work to do is to delete the key | |
86 | * from the disk store. | |
87 | * | |
88 | * - What happens with MULTI/EXEC? | |
89 | * | |
90 | * Good question. | |
4ab98823 | 91 | * |
92 | * - If dsSet() fails on the write thread log the error and reschedule the | |
93 | * key for flush. | |
98a9abb6 | 94 | * |
95 | * - Check why INCR will not update the LRU info for the object. | |
8e6bb671 | 96 | * |
97 | * - Fix/Check the following race condition: a key gets a DEL so there is | |
98 | * a write operation scheduled against this key. Later the same key will | |
99 | * be the argument of a GET, but the write operation was still not | |
100 | * completed (to delete the file). If the GET will be for some reason | |
101 | * a blocking loading (via lookup) we can load the old value on memory. | |
102 | * | |
103 | * This problems can be fixed with negative caching. We can use it | |
104 | * to optimize the system, but also when a key is deleted we mark | |
105 | * it as non existing on disk as well (in a way that this cache | |
106 | * entry can't be evicted, setting time to 0), then we avoid looking at | |
107 | * the disk at all if the key can't be there. When an IO Job complete | |
108 | * a deletion, we set the time of the negative caching to a non zero | |
109 | * value so it will be evicted later. | |
110 | * | |
111 | * Are there other patterns like this where we load stale data? | |
d934e1e8 | 112 | * |
113 | * Also, make sure that key preloading is ONLY done for keys that are | |
114 | * not marked as cacheKeyDoesNotExist(), otherwise, again, we can load | |
115 | * data from disk that should instead be deleted. | |
aa81e4d5 | 116 | * |
117 | * - dsSet() use rename(2) in order to avoid corruptions. | |
4942145d | 118 | * |
119 | * - Don't add a LOAD if there is already a LOADINPROGRESS, or is this | |
120 | * impossible since anyway the io_keys stuff will work as lock? | |
33388d43 | 121 | */ |
122 | ||
e2641e09 | 123 | /* Virtual Memory is composed mainly of two subsystems: |
124 | * - Blocking Virutal Memory | |
125 | * - Threaded Virtual Memory I/O | |
126 | * The two parts are not fully decoupled, but functions are split among two | |
127 | * different sections of the source code (delimited by comments) in order to | |
128 | * make more clear what functionality is about the blocking VM and what about | |
129 | * the threaded (not blocking) VM. | |
130 | * | |
131 | * Redis VM design: | |
132 | * | |
133 | * Redis VM is a blocking VM (one that blocks reading swapped values from | |
134 | * disk into memory when a value swapped out is needed in memory) that is made | |
135 | * unblocking by trying to examine the command argument vector in order to | |
136 | * load in background values that will likely be needed in order to exec | |
137 | * the command. The command is executed only once all the relevant keys | |
138 | * are loaded into memory. | |
139 | * | |
140 | * This basically is almost as simple of a blocking VM, but almost as parallel | |
141 | * as a fully non-blocking VM. | |
142 | */ | |
143 | ||
f34a6cd8 | 144 | void spawnIOThread(void); |
145 | ||
e2641e09 | 146 | /* =================== Virtual Memory - Blocking Side ====================== */ |
147 | ||
f2da3a62 | 148 | void dsInit(void) { |
e2641e09 | 149 | int pipefds[2]; |
150 | size_t stacksize; | |
e2641e09 | 151 | |
f2da3a62 | 152 | zmalloc_enable_thread_safeness(); /* we need thread safe zmalloc() */ |
e2641e09 | 153 | |
67b0b41c | 154 | redisLog(REDIS_NOTICE,"Opening Disk Store: %s", server.ds_path); |
f2da3a62 | 155 | /* Open Disk Store */ |
156 | if (dsOpen() != REDIS_OK) { | |
157 | redisLog(REDIS_WARNING,"Fatal error opening disk store. Exiting."); | |
e2641e09 | 158 | exit(1); |
f2da3a62 | 159 | }; |
e2641e09 | 160 | |
f2da3a62 | 161 | /* Initialize threaded I/O for Object Cache */ |
e2641e09 | 162 | server.io_newjobs = listCreate(); |
163 | server.io_processing = listCreate(); | |
164 | server.io_processed = listCreate(); | |
165 | server.io_ready_clients = listCreate(); | |
166 | pthread_mutex_init(&server.io_mutex,NULL); | |
98a9abb6 | 167 | pthread_cond_init(&server.io_condvar,NULL); |
e2641e09 | 168 | server.io_active_threads = 0; |
169 | if (pipe(pipefds) == -1) { | |
f2da3a62 | 170 | redisLog(REDIS_WARNING,"Unable to intialized DS: pipe(2): %s. Exiting." |
e2641e09 | 171 | ,strerror(errno)); |
172 | exit(1); | |
173 | } | |
174 | server.io_ready_pipe_read = pipefds[0]; | |
175 | server.io_ready_pipe_write = pipefds[1]; | |
176 | redisAssert(anetNonBlock(NULL,server.io_ready_pipe_read) != ANET_ERR); | |
177 | /* LZF requires a lot of stack */ | |
178 | pthread_attr_init(&server.io_threads_attr); | |
179 | pthread_attr_getstacksize(&server.io_threads_attr, &stacksize); | |
556bdfba | 180 | |
181 | /* Solaris may report a stacksize of 0, let's set it to 1 otherwise | |
182 | * multiplying it by 2 in the while loop later will not really help ;) */ | |
183 | if (!stacksize) stacksize = 1; | |
184 | ||
e2641e09 | 185 | while (stacksize < REDIS_THREAD_STACK_SIZE) stacksize *= 2; |
186 | pthread_attr_setstacksize(&server.io_threads_attr, stacksize); | |
187 | /* Listen for events in the threaded I/O pipe */ | |
188 | if (aeCreateFileEvent(server.el, server.io_ready_pipe_read, AE_READABLE, | |
189 | vmThreadedIOCompletedJob, NULL) == AE_ERR) | |
190 | oom("creating file event"); | |
e2641e09 | 191 | |
f2da3a62 | 192 | /* Spawn our I/O thread */ |
193 | spawnIOThread(); | |
e2641e09 | 194 | } |
195 | ||
f2da3a62 | 196 | /* Compute how good candidate the specified object is for eviction. |
197 | * An higher number means a better candidate. */ | |
e2641e09 | 198 | double computeObjectSwappability(robj *o) { |
199 | /* actual age can be >= minage, but not < minage. As we use wrapping | |
200 | * 21 bit clocks with minutes resolution for the LRU. */ | |
f081eaf1 | 201 | return (double) estimateObjectIdleTime(o); |
e2641e09 | 202 | } |
203 | ||
f2da3a62 | 204 | /* Try to free one entry from the diskstore object cache */ |
205 | int cacheFreeOneEntry(void) { | |
e2641e09 | 206 | int j, i; |
207 | struct dictEntry *best = NULL; | |
208 | double best_swappability = 0; | |
209 | redisDb *best_db = NULL; | |
210 | robj *val; | |
211 | sds key; | |
212 | ||
213 | for (j = 0; j < server.dbnum; j++) { | |
214 | redisDb *db = server.db+j; | |
215 | /* Why maxtries is set to 100? | |
216 | * Because this way (usually) we'll find 1 object even if just 1% - 2% | |
217 | * are swappable objects */ | |
218 | int maxtries = 100; | |
219 | ||
220 | if (dictSize(db->dict) == 0) continue; | |
221 | for (i = 0; i < 5; i++) { | |
222 | dictEntry *de; | |
223 | double swappability; | |
3be00d7e | 224 | robj keyobj; |
225 | sds keystr; | |
e2641e09 | 226 | |
227 | if (maxtries) maxtries--; | |
228 | de = dictGetRandomKey(db->dict); | |
3be00d7e | 229 | keystr = dictGetEntryKey(de); |
e2641e09 | 230 | val = dictGetEntryVal(de); |
3be00d7e | 231 | initStaticStringObject(keyobj,keystr); |
232 | ||
233 | /* Don't remove objects that are currently target of a | |
234 | * read or write operation. */ | |
235 | if (cacheScheduleIOGetFlags(db,&keyobj) != 0) { | |
e2641e09 | 236 | if (maxtries) i--; /* don't count this try */ |
237 | continue; | |
238 | } | |
239 | swappability = computeObjectSwappability(val); | |
240 | if (!best || swappability > best_swappability) { | |
241 | best = de; | |
242 | best_swappability = swappability; | |
243 | best_db = db; | |
244 | } | |
245 | } | |
246 | } | |
f2da3a62 | 247 | if (best == NULL) { |
248 | /* FIXME: If there are objects marked as DS_DIRTY or DS_SAVING | |
249 | * let's wait for this objects to be clear and retry... | |
250 | * | |
251 | * Object cache vm limit is considered an hard limit. */ | |
252 | return REDIS_ERR; | |
253 | } | |
e2641e09 | 254 | key = dictGetEntryKey(best); |
255 | val = dictGetEntryVal(best); | |
256 | ||
f2da3a62 | 257 | redisLog(REDIS_DEBUG,"Key selected for cache eviction: %s swappability:%f", |
e2641e09 | 258 | key, best_swappability); |
259 | ||
f2da3a62 | 260 | /* Delete this key from memory */ |
261 | { | |
262 | robj *kobj = createStringObject(key,sdslen(key)); | |
263 | dbDelete(best_db,kobj); | |
264 | decrRefCount(kobj); | |
e2641e09 | 265 | } |
5ef64098 | 266 | return REDIS_OK; |
e2641e09 | 267 | } |
268 | ||
e2641e09 | 269 | /* Return true if it's safe to swap out objects in a given moment. |
270 | * Basically we don't want to swap objects out while there is a BGSAVE | |
271 | * or a BGAEOREWRITE running in backgroud. */ | |
f2da3a62 | 272 | int dsCanTouchDiskStore(void) { |
e2641e09 | 273 | return (server.bgsavechildpid == -1 && server.bgrewritechildpid == -1); |
274 | } | |
275 | ||
d934e1e8 | 276 | /* ==================== Disk store negative caching ======================== |
277 | * | |
278 | * When disk store is enabled, we need negative caching, that is, to remember | |
279 | * keys that are for sure *not* on the disk key-value store. | |
280 | * | |
3be00d7e | 281 | * This is usefuls because without negative caching cache misses will cost us |
282 | * a disk lookup, even if the same non existing key is accessed again and again. | |
d934e1e8 | 283 | * |
3be00d7e | 284 | * With negative caching we remember that the key is not on disk, so if it's |
285 | * not in memory and we have a negative cache entry, we don't try a disk | |
286 | * access at all. | |
287 | */ | |
d934e1e8 | 288 | |
3be00d7e | 289 | /* Returns true if the specified key may exists on disk, that is, we don't |
290 | * have an entry in our negative cache for this key */ | |
d934e1e8 | 291 | int cacheKeyMayExist(redisDb *db, robj *key) { |
292 | return dictFind(db->io_negcache,key) == NULL; | |
293 | } | |
294 | ||
3be00d7e | 295 | /* Set the specified key as an entry that may possibily exist on disk, that is, |
296 | * remove the negative cache entry for this key if any. */ | |
d934e1e8 | 297 | void cacheSetKeyMayExist(redisDb *db, robj *key) { |
298 | dictDelete(db->io_negcache,key); | |
299 | } | |
300 | ||
3be00d7e | 301 | /* Set the specified key as non existing on disk, that is, create a negative |
302 | * cache entry for this key. */ | |
d934e1e8 | 303 | void cacheSetKeyDoesNotExist(redisDb *db, robj *key) { |
d934e1e8 | 304 | if (dictReplace(db->io_negcache,key,(void*)time(NULL))) { |
305 | incrRefCount(key); | |
306 | } | |
307 | } | |
308 | ||
d934e1e8 | 309 | /* ================== Disk store cache - Threaded I/O ====================== */ |
e2641e09 | 310 | |
311 | void freeIOJob(iojob *j) { | |
e2641e09 | 312 | decrRefCount(j->key); |
5ef64098 | 313 | /* j->val can be NULL if the job is about deleting the key from disk. */ |
314 | if (j->val) decrRefCount(j->val); | |
e2641e09 | 315 | zfree(j); |
316 | } | |
317 | ||
318 | /* Every time a thread finished a Job, it writes a byte into the write side | |
319 | * of an unix pipe in order to "awake" the main thread, and this function | |
f34a6cd8 | 320 | * is called. */ |
e2641e09 | 321 | void vmThreadedIOCompletedJob(aeEventLoop *el, int fd, void *privdata, |
322 | int mask) | |
323 | { | |
324 | char buf[1]; | |
f34a6cd8 | 325 | int retval, processed = 0, toprocess = -1; |
e2641e09 | 326 | REDIS_NOTUSED(el); |
327 | REDIS_NOTUSED(mask); | |
328 | REDIS_NOTUSED(privdata); | |
329 | ||
330 | /* For every byte we read in the read side of the pipe, there is one | |
331 | * I/O job completed to process. */ | |
332 | while((retval = read(fd,buf,1)) == 1) { | |
333 | iojob *j; | |
334 | listNode *ln; | |
e2641e09 | 335 | |
336 | redisLog(REDIS_DEBUG,"Processing I/O completed job"); | |
337 | ||
338 | /* Get the processed element (the oldest one) */ | |
339 | lockThreadedIO(); | |
340 | redisAssert(listLength(server.io_processed) != 0); | |
341 | if (toprocess == -1) { | |
342 | toprocess = (listLength(server.io_processed)*REDIS_MAX_COMPLETED_JOBS_PROCESSED)/100; | |
343 | if (toprocess <= 0) toprocess = 1; | |
344 | } | |
345 | ln = listFirst(server.io_processed); | |
346 | j = ln->value; | |
347 | listDelNode(server.io_processed,ln); | |
348 | unlockThreadedIO(); | |
f34a6cd8 | 349 | |
e2641e09 | 350 | /* Post process it in the main thread, as there are things we |
351 | * can do just here to avoid race conditions and/or invasive locks */ | |
5ef64098 | 352 | redisLog(REDIS_DEBUG,"COMPLETED Job type %s, key: %s", |
353 | (j->type == REDIS_IOJOB_LOAD) ? "load" : "save", | |
354 | (unsigned char*)j->key->ptr); | |
e2641e09 | 355 | if (j->type == REDIS_IOJOB_LOAD) { |
5ef64098 | 356 | /* Create the key-value pair in the in-memory database */ |
4ab98823 | 357 | if (j->val != NULL) { |
3be00d7e | 358 | /* Note: it's possible that the key is already in memory |
359 | * due to a blocking load operation. */ | |
360 | if (dbAdd(j->db,j->key,j->val) == REDIS_OK) { | |
ad01a255 | 361 | incrRefCount(j->val); |
362 | if (j->expire != -1) setExpire(j->db,j->key,j->expire); | |
363 | } | |
4ab98823 | 364 | } else { |
365 | /* The key does not exist. Create a negative cache entry | |
366 | * for this key. */ | |
d934e1e8 | 367 | cacheSetKeyDoesNotExist(j->db,j->key); |
4ab98823 | 368 | } |
3be00d7e | 369 | cacheScheduleIODelFlag(j->db,j->key,REDIS_IO_LOADINPROG); |
5ef64098 | 370 | handleClientsBlockedOnSwappedKey(j->db,j->key); |
e2641e09 | 371 | freeIOJob(j); |
5f6e1183 | 372 | } else if (j->type == REDIS_IOJOB_SAVE) { |
31222292 | 373 | if (j->val) { |
d934e1e8 | 374 | cacheSetKeyMayExist(j->db,j->key); |
375 | } else { | |
3be00d7e | 376 | cacheSetKeyDoesNotExist(j->db,j->key); |
31222292 | 377 | } |
3be00d7e | 378 | cacheScheduleIODelFlag(j->db,j->key,REDIS_IO_SAVEINPROG); |
e2641e09 | 379 | freeIOJob(j); |
e2641e09 | 380 | } |
381 | processed++; | |
382 | if (processed == toprocess) return; | |
383 | } | |
384 | if (retval < 0 && errno != EAGAIN) { | |
385 | redisLog(REDIS_WARNING, | |
386 | "WARNING: read(2) error in vmThreadedIOCompletedJob() %s", | |
387 | strerror(errno)); | |
388 | } | |
389 | } | |
390 | ||
391 | void lockThreadedIO(void) { | |
392 | pthread_mutex_lock(&server.io_mutex); | |
393 | } | |
394 | ||
395 | void unlockThreadedIO(void) { | |
396 | pthread_mutex_unlock(&server.io_mutex); | |
397 | } | |
398 | ||
e2641e09 | 399 | void *IOThreadEntryPoint(void *arg) { |
400 | iojob *j; | |
401 | listNode *ln; | |
402 | REDIS_NOTUSED(arg); | |
403 | ||
404 | pthread_detach(pthread_self()); | |
98a9abb6 | 405 | lockThreadedIO(); |
e2641e09 | 406 | while(1) { |
407 | /* Get a new job to process */ | |
e2641e09 | 408 | if (listLength(server.io_newjobs) == 0) { |
a440ecf0 | 409 | /* Wait for more work to do */ |
410 | pthread_cond_wait(&server.io_condvar,&server.io_mutex); | |
1609a1c4 | 411 | continue; |
e2641e09 | 412 | } |
c4b64a13 | 413 | redisLog(REDIS_DEBUG,"%ld IO jobs to process", |
414 | listLength(server.io_newjobs)); | |
e2641e09 | 415 | ln = listFirst(server.io_newjobs); |
416 | j = ln->value; | |
417 | listDelNode(server.io_newjobs,ln); | |
418 | /* Add the job in the processing queue */ | |
e2641e09 | 419 | listAddNodeTail(server.io_processing,j); |
420 | ln = listLast(server.io_processing); /* We use ln later to remove it */ | |
421 | unlockThreadedIO(); | |
98a9abb6 | 422 | |
5ef64098 | 423 | redisLog(REDIS_DEBUG,"Thread %ld: new job type %s: %p about key '%s'", |
424 | (long) pthread_self(), | |
425 | (j->type == REDIS_IOJOB_LOAD) ? "load" : "save", | |
426 | (void*)j, (char*)j->key->ptr); | |
e2641e09 | 427 | |
428 | /* Process the Job */ | |
429 | if (j->type == REDIS_IOJOB_LOAD) { | |
4ab98823 | 430 | time_t expire; |
431 | ||
432 | j->val = dsGet(j->db,j->key,&expire); | |
433 | if (j->val) j->expire = expire; | |
5ef64098 | 434 | } else if (j->type == REDIS_IOJOB_SAVE) { |
31222292 | 435 | if (j->val) { |
5ef64098 | 436 | dsSet(j->db,j->key,j->val); |
31222292 | 437 | } else { |
5ef64098 | 438 | dsDel(j->db,j->key); |
31222292 | 439 | } |
e2641e09 | 440 | } |
441 | ||
442 | /* Done: insert the job into the processed queue */ | |
443 | redisLog(REDIS_DEBUG,"Thread %ld completed the job: %p (key %s)", | |
444 | (long) pthread_self(), (void*)j, (char*)j->key->ptr); | |
98a9abb6 | 445 | |
e2641e09 | 446 | lockThreadedIO(); |
447 | listDelNode(server.io_processing,ln); | |
448 | listAddNodeTail(server.io_processed,j); | |
e2641e09 | 449 | |
450 | /* Signal the main thread there is new stuff to process */ | |
451 | redisAssert(write(server.io_ready_pipe_write,"x",1) == 1); | |
452 | } | |
98a9abb6 | 453 | /* never reached, but that's the full pattern... */ |
454 | unlockThreadedIO(); | |
455 | return NULL; | |
e2641e09 | 456 | } |
457 | ||
458 | void spawnIOThread(void) { | |
459 | pthread_t thread; | |
460 | sigset_t mask, omask; | |
461 | int err; | |
462 | ||
463 | sigemptyset(&mask); | |
464 | sigaddset(&mask,SIGCHLD); | |
465 | sigaddset(&mask,SIGHUP); | |
466 | sigaddset(&mask,SIGPIPE); | |
467 | pthread_sigmask(SIG_SETMASK, &mask, &omask); | |
468 | while ((err = pthread_create(&thread,&server.io_threads_attr,IOThreadEntryPoint,NULL)) != 0) { | |
469 | redisLog(REDIS_WARNING,"Unable to spawn an I/O thread: %s", | |
470 | strerror(err)); | |
471 | usleep(1000000); | |
472 | } | |
473 | pthread_sigmask(SIG_SETMASK, &omask, NULL); | |
474 | server.io_active_threads++; | |
475 | } | |
476 | ||
8d51fb6a | 477 | /* Wait that all the pending IO Jobs are processed */ |
e2641e09 | 478 | void waitEmptyIOJobsQueue(void) { |
479 | while(1) { | |
480 | int io_processed_len; | |
481 | ||
482 | lockThreadedIO(); | |
483 | if (listLength(server.io_newjobs) == 0 && | |
8d51fb6a | 484 | listLength(server.io_processing) == 0) |
e2641e09 | 485 | { |
486 | unlockThreadedIO(); | |
487 | return; | |
488 | } | |
a440ecf0 | 489 | /* If there are new jobs we need to signal the thread to |
490 | * process the next one. */ | |
491 | redisLog(REDIS_DEBUG,"waitEmptyIOJobsQueue: new %d, processing %d", | |
492 | listLength(server.io_newjobs), | |
493 | listLength(server.io_processing)); | |
494 | /* | |
495 | if (listLength(server.io_newjobs)) { | |
496 | pthread_cond_signal(&server.io_condvar); | |
497 | } | |
498 | */ | |
e2641e09 | 499 | /* While waiting for empty jobs queue condition we post-process some |
500 | * finshed job, as I/O threads may be hanging trying to write against | |
501 | * the io_ready_pipe_write FD but there are so much pending jobs that | |
502 | * it's blocking. */ | |
503 | io_processed_len = listLength(server.io_processed); | |
504 | unlockThreadedIO(); | |
505 | if (io_processed_len) { | |
c1ae36ae | 506 | vmThreadedIOCompletedJob(NULL,server.io_ready_pipe_read, |
507 | (void*)0xdeadbeef,0); | |
e2641e09 | 508 | usleep(1000); /* 1 millisecond */ |
509 | } else { | |
510 | usleep(10000); /* 10 milliseconds */ | |
511 | } | |
512 | } | |
513 | } | |
514 | ||
8d51fb6a | 515 | /* Process all the IO Jobs already completed by threads but still waiting |
516 | * processing from the main thread. */ | |
517 | void processAllPendingIOJobs(void) { | |
518 | while(1) { | |
519 | int io_processed_len; | |
520 | ||
521 | lockThreadedIO(); | |
522 | io_processed_len = listLength(server.io_processed); | |
523 | unlockThreadedIO(); | |
524 | if (io_processed_len == 0) return; | |
525 | vmThreadedIOCompletedJob(NULL,server.io_ready_pipe_read, | |
526 | (void*)0xdeadbeef,0); | |
527 | } | |
528 | } | |
529 | ||
e2641e09 | 530 | /* This function must be called while with threaded IO locked */ |
531 | void queueIOJob(iojob *j) { | |
532 | redisLog(REDIS_DEBUG,"Queued IO Job %p type %d about key '%s'\n", | |
533 | (void*)j, j->type, (char*)j->key->ptr); | |
534 | listAddNodeTail(server.io_newjobs,j); | |
535 | if (server.io_active_threads < server.vm_max_threads) | |
536 | spawnIOThread(); | |
537 | } | |
538 | ||
5ef64098 | 539 | void dsCreateIOJob(int type, redisDb *db, robj *key, robj *val) { |
e2641e09 | 540 | iojob *j; |
541 | ||
542 | j = zmalloc(sizeof(*j)); | |
5ef64098 | 543 | j->type = type; |
e2641e09 | 544 | j->db = db; |
545 | j->key = key; | |
546 | incrRefCount(key); | |
5ef64098 | 547 | j->val = val; |
1609a1c4 | 548 | if (val) incrRefCount(val); |
e2641e09 | 549 | |
550 | lockThreadedIO(); | |
551 | queueIOJob(j); | |
98a9abb6 | 552 | pthread_cond_signal(&server.io_condvar); |
e2641e09 | 553 | unlockThreadedIO(); |
e2641e09 | 554 | } |
555 | ||
3be00d7e | 556 | /* ============= Disk store cache - Scheduling of IO operations ============= |
557 | * | |
558 | * We use a queue and an hash table to hold the state of IO operations | |
559 | * so that's fast to lookup if there is already an IO operation in queue | |
560 | * for a given key. | |
561 | * | |
562 | * There are two types of IO operations for a given key: | |
563 | * REDIS_IO_LOAD and REDIS_IO_SAVE. | |
564 | * | |
565 | * The function cacheScheduleIO() function pushes the specified IO operation | |
566 | * in the queue, but avoid adding the same key for the same operation | |
567 | * multiple times, thanks to the associated hash table. | |
568 | * | |
569 | * We take a set of flags per every key, so when the scheduled IO operation | |
570 | * gets moved from the scheduled queue to the actual IO Jobs queue that | |
571 | * is processed by the IO thread, we flag it as IO_LOADINPROG or | |
572 | * IO_SAVEINPROG. | |
573 | * | |
574 | * So for every given key we always know if there is some IO operation | |
575 | * scheduled, or in progress, for this key. | |
576 | * | |
577 | * NOTE: all this is very important in order to guarantee correctness of | |
578 | * the Disk Store Cache. Jobs are always queued here. Load jobs are | |
579 | * queued at the head for faster execution only in the case there is not | |
580 | * already a write operation of some kind for this job. | |
581 | * | |
582 | * So we have ordering, but can do exceptions when there are no already | |
583 | * operations for a given key. Also when we need to block load a given | |
584 | * key, for an immediate lookup operation, we can check if the key can | |
585 | * be accessed synchronously without race conditions (no IN PROGRESS | |
586 | * operations for this key), otherwise we blocking wait for completion. */ | |
587 | ||
588 | #define REDIS_IO_LOAD 1 | |
589 | #define REDIS_IO_SAVE 2 | |
590 | #define REDIS_IO_LOADINPROG 4 | |
591 | #define REDIS_IO_SAVEINPROG 8 | |
592 | ||
593 | void cacheScheduleIOAddFlag(redisDb *db, robj *key, long flag) { | |
594 | struct dictEntry *de = dictFind(db->io_queued,key); | |
595 | ||
596 | if (!de) { | |
597 | dictAdd(db->io_queued,key,(void*)flag); | |
598 | incrRefCount(key); | |
599 | return; | |
600 | } else { | |
601 | long flags = (long) dictGetEntryVal(de); | |
e37efb0d | 602 | |
603 | if (flags & flag) { | |
604 | redisLog(REDIS_WARNING,"Adding the same flag again: was: %ld, addede: %ld",flags,flag); | |
605 | redisAssert(!(flags & flag)); | |
606 | } | |
3be00d7e | 607 | flags |= flag; |
608 | dictGetEntryVal(de) = (void*) flags; | |
f63f0928 | 609 | } |
3be00d7e | 610 | } |
611 | ||
612 | void cacheScheduleIODelFlag(redisDb *db, robj *key, long flag) { | |
613 | struct dictEntry *de = dictFind(db->io_queued,key); | |
614 | long flags; | |
615 | ||
616 | redisAssert(de != NULL); | |
617 | flags = (long) dictGetEntryVal(de); | |
618 | redisAssert(flags & flag); | |
619 | flags &= ~flag; | |
620 | if (flags == 0) { | |
621 | dictDelete(db->io_queued,key); | |
622 | } else { | |
623 | dictGetEntryVal(de) = (void*) flags; | |
624 | } | |
625 | } | |
f63f0928 | 626 | |
3be00d7e | 627 | int cacheScheduleIOGetFlags(redisDb *db, robj *key) { |
628 | struct dictEntry *de = dictFind(db->io_queued,key); | |
629 | ||
630 | return (de == NULL) ? 0 : ((long) dictGetEntryVal(de)); | |
631 | } | |
632 | ||
633 | void cacheScheduleIO(redisDb *db, robj *key, int type) { | |
634 | ioop *op; | |
635 | long flags; | |
636 | ||
637 | if ((flags = cacheScheduleIOGetFlags(db,key)) & type) return; | |
638 | ||
639 | redisLog(REDIS_DEBUG,"Scheduling key %s for %s", | |
640 | key->ptr, type == REDIS_IO_LOAD ? "loading" : "saving"); | |
641 | cacheScheduleIOAddFlag(db,key,type); | |
642 | op = zmalloc(sizeof(*op)); | |
643 | op->type = type; | |
644 | op->db = db; | |
645 | op->key = key; | |
f63f0928 | 646 | incrRefCount(key); |
3be00d7e | 647 | op->ctime = time(NULL); |
648 | ||
649 | /* Give priority to load operations if there are no save already | |
650 | * in queue for the same key. */ | |
651 | if (type == REDIS_IO_LOAD && !(flags & REDIS_IO_SAVE)) { | |
652 | listAddNodeHead(server.cache_io_queue, op); | |
653 | } else { | |
654 | /* FIXME: probably when this happens we want to at least move | |
655 | * the write job about this queue on top, and set the creation time | |
656 | * to a value that will force processing ASAP. */ | |
657 | listAddNodeTail(server.cache_io_queue, op); | |
658 | } | |
f63f0928 | 659 | } |
660 | ||
661 | void cacheCron(void) { | |
662 | time_t now = time(NULL); | |
663 | listNode *ln; | |
c4b64a13 | 664 | int jobs, topush = 0; |
665 | ||
666 | /* Sync stuff on disk, but only if we have less than 100 IO jobs */ | |
667 | lockThreadedIO(); | |
668 | jobs = listLength(server.io_newjobs); | |
669 | unlockThreadedIO(); | |
670 | ||
671 | topush = 100-jobs; | |
672 | if (topush < 0) topush = 0; | |
e37efb0d | 673 | if (topush > (signed)listLength(server.cache_io_queue)) |
674 | topush = listLength(server.cache_io_queue); | |
f63f0928 | 675 | |
3be00d7e | 676 | while((ln = listFirst(server.cache_io_queue)) != NULL) { |
677 | ioop *op = ln->value; | |
f63f0928 | 678 | |
c4b64a13 | 679 | if (!topush) break; |
680 | topush--; | |
681 | ||
3be00d7e | 682 | if (op->type == REDIS_IO_LOAD || |
683 | (now - op->ctime) >= server.cache_flush_delay) | |
684 | { | |
f63f0928 | 685 | struct dictEntry *de; |
686 | robj *val; | |
687 | ||
e37efb0d | 688 | /* Don't add a SAVE job in queue if there is already |
689 | * a save in progress for the same key. */ | |
690 | if (op->type == REDIS_IO_SAVE && | |
691 | cacheScheduleIOGetFlags(op->db,op->key) & REDIS_IO_SAVEINPROG) | |
692 | { | |
693 | /* Move the operation at the end of the list of there | |
694 | * are other operations. Otherwise break, nothing to do | |
695 | * here. */ | |
696 | if (listLength(server.cache_io_queue) > 1) { | |
697 | listDelNode(server.cache_io_queue,ln); | |
698 | listAddNodeTail(server.cache_io_queue,op); | |
699 | continue; | |
700 | } else { | |
701 | break; | |
702 | } | |
703 | } | |
704 | ||
3be00d7e | 705 | redisLog(REDIS_DEBUG,"Creating IO %s Job for key %s", |
706 | op->type == REDIS_IO_LOAD ? "load" : "save", op->key->ptr); | |
707 | ||
708 | if (op->type == REDIS_IO_LOAD) { | |
709 | dsCreateIOJob(REDIS_IOJOB_LOAD,op->db,op->key,NULL); | |
f63f0928 | 710 | } else { |
3be00d7e | 711 | /* Lookup the key, in order to put the current value in the IO |
712 | * Job. Otherwise if the key does not exists we schedule a disk | |
713 | * store delete operation, setting the value to NULL. */ | |
714 | de = dictFind(op->db->dict,op->key->ptr); | |
715 | if (de) { | |
716 | val = dictGetEntryVal(de); | |
717 | } else { | |
718 | /* Setting the value to NULL tells the IO thread to delete | |
719 | * the key on disk. */ | |
720 | val = NULL; | |
721 | } | |
722 | dsCreateIOJob(REDIS_IOJOB_SAVE,op->db,op->key,val); | |
f63f0928 | 723 | } |
3be00d7e | 724 | /* Mark the operation as in progress. */ |
725 | cacheScheduleIODelFlag(op->db,op->key,op->type); | |
726 | cacheScheduleIOAddFlag(op->db,op->key, | |
727 | (op->type == REDIS_IO_LOAD) ? REDIS_IO_LOADINPROG : | |
728 | REDIS_IO_SAVEINPROG); | |
729 | /* Finally remove the operation from the queue. | |
730 | * But we'll have trace of it in the hash table. */ | |
731 | listDelNode(server.cache_io_queue,ln); | |
732 | decrRefCount(op->key); | |
733 | zfree(op); | |
f63f0928 | 734 | } else { |
735 | break; /* too early */ | |
736 | } | |
737 | } | |
738 | ||
739 | /* Reclaim memory from the object cache */ | |
740 | while (server.ds_enabled && zmalloc_used_memory() > | |
741 | server.cache_max_memory) | |
742 | { | |
743 | if (cacheFreeOneEntry() == REDIS_ERR) break; | |
3be00d7e | 744 | /* FIXME: also free negative cache entries here. */ |
f63f0928 | 745 | } |
746 | } | |
747 | ||
3be00d7e | 748 | /* ========== Disk store cache - Blocking clients on missing keys =========== */ |
e2641e09 | 749 | |
750 | /* This function makes the clinet 'c' waiting for the key 'key' to be loaded. | |
3be00d7e | 751 | * If the key is already in memory we don't need to block. |
f63f0928 | 752 | * |
5ef64098 | 753 | * FIXME: we should try if it's actually better to suspend the client |
754 | * accessing an object that is being saved, and awake it only when | |
755 | * the saving was completed. | |
756 | * | |
757 | * Otherwise if the key is not in memory, we block the client and start | |
758 | * an IO Job to load it: | |
759 | * | |
760 | * the key is added to the io_keys list in the client structure, and also | |
e2641e09 | 761 | * in the hash table mapping swapped keys to waiting clients, that is, |
762 | * server.io_waited_keys. */ | |
763 | int waitForSwappedKey(redisClient *c, robj *key) { | |
764 | struct dictEntry *de; | |
e2641e09 | 765 | list *l; |
766 | ||
5ef64098 | 767 | /* Return ASAP if the key is in memory */ |
e2641e09 | 768 | de = dictFind(c->db->dict,key->ptr); |
5ef64098 | 769 | if (de != NULL) return 0; |
e2641e09 | 770 | |
d934e1e8 | 771 | /* Don't wait for keys we are sure are not on disk either */ |
772 | if (!cacheKeyMayExist(c->db,key)) return 0; | |
773 | ||
e2641e09 | 774 | /* Add the key to the list of keys this client is waiting for. |
775 | * This maps clients to keys they are waiting for. */ | |
776 | listAddNodeTail(c->io_keys,key); | |
777 | incrRefCount(key); | |
778 | ||
779 | /* Add the client to the swapped keys => clients waiting map. */ | |
780 | de = dictFind(c->db->io_keys,key); | |
781 | if (de == NULL) { | |
782 | int retval; | |
783 | ||
784 | /* For every key we take a list of clients blocked for it */ | |
785 | l = listCreate(); | |
786 | retval = dictAdd(c->db->io_keys,key,l); | |
787 | incrRefCount(key); | |
788 | redisAssert(retval == DICT_OK); | |
789 | } else { | |
790 | l = dictGetEntryVal(de); | |
791 | } | |
792 | listAddNodeTail(l,c); | |
793 | ||
794 | /* Are we already loading the key from disk? If not create a job */ | |
5ef64098 | 795 | if (de == NULL) |
3be00d7e | 796 | cacheScheduleIO(c->db,key,REDIS_IO_LOAD); |
e2641e09 | 797 | return 1; |
798 | } | |
799 | ||
800 | /* Preload keys for any command with first, last and step values for | |
801 | * the command keys prototype, as defined in the command table. */ | |
802 | void waitForMultipleSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) { | |
803 | int j, last; | |
804 | if (cmd->vm_firstkey == 0) return; | |
805 | last = cmd->vm_lastkey; | |
806 | if (last < 0) last = argc+last; | |
807 | for (j = cmd->vm_firstkey; j <= last; j += cmd->vm_keystep) { | |
808 | redisAssert(j < argc); | |
809 | waitForSwappedKey(c,argv[j]); | |
810 | } | |
811 | } | |
812 | ||
813 | /* Preload keys needed for the ZUNIONSTORE and ZINTERSTORE commands. | |
814 | * Note that the number of keys to preload is user-defined, so we need to | |
815 | * apply a sanity check against argc. */ | |
816 | void zunionInterBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) { | |
817 | int i, num; | |
818 | REDIS_NOTUSED(cmd); | |
819 | ||
820 | num = atoi(argv[2]->ptr); | |
821 | if (num > (argc-3)) return; | |
822 | for (i = 0; i < num; i++) { | |
823 | waitForSwappedKey(c,argv[3+i]); | |
824 | } | |
825 | } | |
826 | ||
827 | /* Preload keys needed to execute the entire MULTI/EXEC block. | |
828 | * | |
829 | * This function is called by blockClientOnSwappedKeys when EXEC is issued, | |
830 | * and will block the client when any command requires a swapped out value. */ | |
831 | void execBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) { | |
832 | int i, margc; | |
833 | struct redisCommand *mcmd; | |
834 | robj **margv; | |
835 | REDIS_NOTUSED(cmd); | |
836 | REDIS_NOTUSED(argc); | |
837 | REDIS_NOTUSED(argv); | |
838 | ||
839 | if (!(c->flags & REDIS_MULTI)) return; | |
840 | for (i = 0; i < c->mstate.count; i++) { | |
841 | mcmd = c->mstate.commands[i].cmd; | |
842 | margc = c->mstate.commands[i].argc; | |
843 | margv = c->mstate.commands[i].argv; | |
844 | ||
845 | if (mcmd->vm_preload_proc != NULL) { | |
846 | mcmd->vm_preload_proc(c,mcmd,margc,margv); | |
847 | } else { | |
848 | waitForMultipleSwappedKeys(c,mcmd,margc,margv); | |
849 | } | |
850 | } | |
851 | } | |
852 | ||
853 | /* Is this client attempting to run a command against swapped keys? | |
854 | * If so, block it ASAP, load the keys in background, then resume it. | |
855 | * | |
856 | * The important idea about this function is that it can fail! If keys will | |
857 | * still be swapped when the client is resumed, this key lookups will | |
858 | * just block loading keys from disk. In practical terms this should only | |
859 | * happen with SORT BY command or if there is a bug in this function. | |
860 | * | |
861 | * Return 1 if the client is marked as blocked, 0 if the client can | |
862 | * continue as the keys it is going to access appear to be in memory. */ | |
863 | int blockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd) { | |
864 | if (cmd->vm_preload_proc != NULL) { | |
865 | cmd->vm_preload_proc(c,cmd,c->argc,c->argv); | |
866 | } else { | |
867 | waitForMultipleSwappedKeys(c,cmd,c->argc,c->argv); | |
868 | } | |
869 | ||
870 | /* If the client was blocked for at least one key, mark it as blocked. */ | |
871 | if (listLength(c->io_keys)) { | |
872 | c->flags |= REDIS_IO_WAIT; | |
873 | aeDeleteFileEvent(server.el,c->fd,AE_READABLE); | |
5ef64098 | 874 | server.cache_blocked_clients++; |
e2641e09 | 875 | return 1; |
876 | } else { | |
877 | return 0; | |
878 | } | |
879 | } | |
880 | ||
881 | /* Remove the 'key' from the list of blocked keys for a given client. | |
882 | * | |
883 | * The function returns 1 when there are no longer blocking keys after | |
884 | * the current one was removed (and the client can be unblocked). */ | |
885 | int dontWaitForSwappedKey(redisClient *c, robj *key) { | |
886 | list *l; | |
887 | listNode *ln; | |
888 | listIter li; | |
889 | struct dictEntry *de; | |
890 | ||
c8a10631 PN |
891 | /* The key object might be destroyed when deleted from the c->io_keys |
892 | * list (and the "key" argument is physically the same object as the | |
893 | * object inside the list), so we need to protect it. */ | |
894 | incrRefCount(key); | |
895 | ||
e2641e09 | 896 | /* Remove the key from the list of keys this client is waiting for. */ |
897 | listRewind(c->io_keys,&li); | |
898 | while ((ln = listNext(&li)) != NULL) { | |
899 | if (equalStringObjects(ln->value,key)) { | |
900 | listDelNode(c->io_keys,ln); | |
901 | break; | |
902 | } | |
903 | } | |
904 | redisAssert(ln != NULL); | |
905 | ||
906 | /* Remove the client form the key => waiting clients map. */ | |
907 | de = dictFind(c->db->io_keys,key); | |
908 | redisAssert(de != NULL); | |
909 | l = dictGetEntryVal(de); | |
910 | ln = listSearchKey(l,c); | |
911 | redisAssert(ln != NULL); | |
912 | listDelNode(l,ln); | |
913 | if (listLength(l) == 0) | |
914 | dictDelete(c->db->io_keys,key); | |
915 | ||
c8a10631 | 916 | decrRefCount(key); |
e2641e09 | 917 | return listLength(c->io_keys) == 0; |
918 | } | |
919 | ||
920 | /* Every time we now a key was loaded back in memory, we handle clients | |
921 | * waiting for this key if any. */ | |
922 | void handleClientsBlockedOnSwappedKey(redisDb *db, robj *key) { | |
923 | struct dictEntry *de; | |
924 | list *l; | |
925 | listNode *ln; | |
926 | int len; | |
927 | ||
928 | de = dictFind(db->io_keys,key); | |
929 | if (!de) return; | |
930 | ||
931 | l = dictGetEntryVal(de); | |
932 | len = listLength(l); | |
933 | /* Note: we can't use something like while(listLength(l)) as the list | |
934 | * can be freed by the calling function when we remove the last element. */ | |
935 | while (len--) { | |
936 | ln = listFirst(l); | |
937 | redisClient *c = ln->value; | |
938 | ||
939 | if (dontWaitForSwappedKey(c,key)) { | |
940 | /* Put the client in the list of clients ready to go as we | |
941 | * loaded all the keys about it. */ | |
942 | listAddNodeTail(server.io_ready_clients,c); | |
943 | } | |
944 | } | |
945 | } |