]>
Commit | Line | Data |
---|---|---|
ed9b544e | 1 | /* Hash Tables Implementation. |
2 | * | |
3 | * This file implements in memory hash tables with insert/del/replace/find/ | |
4 | * get-random-element operations. Hash tables will auto resize if needed | |
5 | * tables of power of two in size are used, collisions are handled by | |
6 | * chaining. See the source code for more information... :) | |
7 | * | |
12d090d2 | 8 | * Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com> |
ed9b544e | 9 | * All rights reserved. |
10 | * | |
11 | * Redistribution and use in source and binary forms, with or without | |
12 | * modification, are permitted provided that the following conditions are met: | |
13 | * | |
14 | * * Redistributions of source code must retain the above copyright notice, | |
15 | * this list of conditions and the following disclaimer. | |
16 | * * Redistributions in binary form must reproduce the above copyright | |
17 | * notice, this list of conditions and the following disclaimer in the | |
18 | * documentation and/or other materials provided with the distribution. | |
19 | * * Neither the name of Redis nor the names of its contributors may be used | |
20 | * to endorse or promote products derived from this software without | |
21 | * specific prior written permission. | |
22 | * | |
23 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
24 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
25 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
26 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
27 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
28 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
29 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
30 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
31 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
32 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
33 | * POSSIBILITY OF SUCH DAMAGE. | |
34 | */ | |
35 | ||
23d4709d | 36 | #include "fmacros.h" |
37 | ||
ed9b544e | 38 | #include <stdio.h> |
39 | #include <stdlib.h> | |
40 | #include <string.h> | |
41 | #include <stdarg.h> | |
42 | #include <assert.h> | |
f2923bec | 43 | #include <limits.h> |
8ca3e9d1 | 44 | #include <sys/time.h> |
1b1f47c9 | 45 | #include <ctype.h> |
ed9b544e | 46 | |
47 | #include "dict.h" | |
48 | #include "zmalloc.h" | |
49 | ||
884d4b39 | 50 | /* Using dictEnableResize() / dictDisableResize() we make possible to |
51 | * enable/disable resizing of the hash table as needed. This is very important | |
52 | * for Redis, as we use copy-on-write and don't want to move too much memory | |
3856f147 | 53 | * around when there is a child performing saving operations. |
54 | * | |
55 | * Note that even when dict_can_resize is set to 0, not all resizes are | |
56 | * prevented: an hash table is still allowed to grow if the ratio between | |
57 | * the number of elements and the buckets > dict_force_resize_ratio. */ | |
884d4b39 | 58 | static int dict_can_resize = 1; |
3856f147 | 59 | static unsigned int dict_force_resize_ratio = 5; |
884d4b39 | 60 | |
ed9b544e | 61 | /* -------------------------- private prototypes ---------------------------- */ |
62 | ||
63 | static int _dictExpandIfNeeded(dict *ht); | |
f2923bec | 64 | static unsigned long _dictNextPower(unsigned long size); |
ed9b544e | 65 | static int _dictKeyIndex(dict *ht, const void *key); |
66 | static int _dictInit(dict *ht, dictType *type, void *privDataPtr); | |
67 | ||
68 | /* -------------------------- hash functions -------------------------------- */ | |
69 | ||
70 | /* Thomas Wang's 32 bit Mix Function */ | |
71 | unsigned int dictIntHashFunction(unsigned int key) | |
72 | { | |
73 | key += ~(key << 15); | |
74 | key ^= (key >> 10); | |
75 | key += (key << 3); | |
76 | key ^= (key >> 6); | |
77 | key += ~(key << 11); | |
78 | key ^= (key >> 16); | |
79 | return key; | |
80 | } | |
81 | ||
82 | /* Identity hash function for integer keys */ | |
83 | unsigned int dictIdentityHashFunction(unsigned int key) | |
84 | { | |
85 | return key; | |
86 | } | |
87 | ||
88 | /* Generic hash function (a popular one from Bernstein). | |
89 | * I tested a few and this was the best. */ | |
90 | unsigned int dictGenHashFunction(const unsigned char *buf, int len) { | |
91 | unsigned int hash = 5381; | |
92 | ||
93 | while (len--) | |
94 | hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */ | |
95 | return hash; | |
96 | } | |
97 | ||
1b1f47c9 | 98 | /* And a case insensitive version */ |
99 | unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len) { | |
100 | unsigned int hash = 5381; | |
101 | ||
102 | while (len--) | |
103 | hash = ((hash << 5) + hash) + (tolower(*buf++)); /* hash * 33 + c */ | |
104 | return hash; | |
105 | } | |
106 | ||
ed9b544e | 107 | /* ----------------------------- API implementation ------------------------- */ |
108 | ||
109 | /* Reset an hashtable already initialized with ht_init(). | |
110 | * NOTE: This function should only called by ht_destroy(). */ | |
5413c40d | 111 | static void _dictReset(dictht *ht) |
ed9b544e | 112 | { |
113 | ht->table = NULL; | |
114 | ht->size = 0; | |
115 | ht->sizemask = 0; | |
116 | ht->used = 0; | |
117 | } | |
118 | ||
119 | /* Create a new hash table */ | |
120 | dict *dictCreate(dictType *type, | |
121 | void *privDataPtr) | |
122 | { | |
d9dd352b | 123 | dict *d = zmalloc(sizeof(*d)); |
ed9b544e | 124 | |
5413c40d | 125 | _dictInit(d,type,privDataPtr); |
126 | return d; | |
ed9b544e | 127 | } |
128 | ||
129 | /* Initialize the hash table */ | |
5413c40d | 130 | int _dictInit(dict *d, dictType *type, |
ed9b544e | 131 | void *privDataPtr) |
132 | { | |
5413c40d | 133 | _dictReset(&d->ht[0]); |
134 | _dictReset(&d->ht[1]); | |
135 | d->type = type; | |
136 | d->privdata = privDataPtr; | |
137 | d->rehashidx = -1; | |
138 | d->iterators = 0; | |
ed9b544e | 139 | return DICT_OK; |
140 | } | |
141 | ||
142 | /* Resize the table to the minimal size that contains all the elements, | |
3856f147 | 143 | * but with the invariant of a USER/BUCKETS ratio near to <= 1 */ |
5413c40d | 144 | int dictResize(dict *d) |
ed9b544e | 145 | { |
5413c40d | 146 | int minimal; |
ed9b544e | 147 | |
5413c40d | 148 | if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR; |
149 | minimal = d->ht[0].used; | |
ed9b544e | 150 | if (minimal < DICT_HT_INITIAL_SIZE) |
151 | minimal = DICT_HT_INITIAL_SIZE; | |
5413c40d | 152 | return dictExpand(d, minimal); |
ed9b544e | 153 | } |
154 | ||
155 | /* Expand or create the hashtable */ | |
5413c40d | 156 | int dictExpand(dict *d, unsigned long size) |
ed9b544e | 157 | { |
5413c40d | 158 | dictht n; /* the new hashtable */ |
159 | unsigned long realsize = _dictNextPower(size); | |
ed9b544e | 160 | |
161 | /* the size is invalid if it is smaller than the number of | |
162 | * elements already inside the hashtable */ | |
5413c40d | 163 | if (dictIsRehashing(d) || d->ht[0].used > size) |
ed9b544e | 164 | return DICT_ERR; |
165 | ||
399f2f40 | 166 | /* Allocate the new hashtable and initialize all pointers to NULL */ |
ed9b544e | 167 | n.size = realsize; |
168 | n.sizemask = realsize-1; | |
399f2f40 | 169 | n.table = zcalloc(realsize*sizeof(dictEntry*)); |
5413c40d | 170 | n.used = 0; |
ed9b544e | 171 | |
5413c40d | 172 | /* Is this the first initialization? If so it's not really a rehashing |
173 | * we just set the first hash table so that it can accept keys. */ | |
174 | if (d->ht[0].table == NULL) { | |
175 | d->ht[0] = n; | |
176 | return DICT_OK; | |
177 | } | |
ed9b544e | 178 | |
5413c40d | 179 | /* Prepare a second hash table for incremental rehashing */ |
180 | d->ht[1] = n; | |
181 | d->rehashidx = 0; | |
182 | return DICT_OK; | |
183 | } | |
184 | ||
185 | /* Performs N steps of incremental rehashing. Returns 1 if there are still | |
186 | * keys to move from the old to the new hash table, otherwise 0 is returned. | |
187 | * Note that a rehashing step consists in moving a bucket (that may have more | |
188 | * thank one key as we use chaining) from the old to the new hash table. */ | |
189 | int dictRehash(dict *d, int n) { | |
190 | if (!dictIsRehashing(d)) return 0; | |
191 | ||
192 | while(n--) { | |
193 | dictEntry *de, *nextde; | |
194 | ||
195 | /* Check if we already rehashed the whole table... */ | |
196 | if (d->ht[0].used == 0) { | |
d9dd352b | 197 | zfree(d->ht[0].table); |
5413c40d | 198 | d->ht[0] = d->ht[1]; |
199 | _dictReset(&d->ht[1]); | |
200 | d->rehashidx = -1; | |
201 | return 0; | |
202 | } | |
203 | ||
204 | /* Note that rehashidx can't overflow as we are sure there are more | |
205 | * elements because ht[0].used != 0 */ | |
206 | while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++; | |
207 | de = d->ht[0].table[d->rehashidx]; | |
208 | /* Move all the keys in this bucket from the old to the new hash HT */ | |
209 | while(de) { | |
ed9b544e | 210 | unsigned int h; |
211 | ||
5413c40d | 212 | nextde = de->next; |
213 | /* Get the index in the new hash table */ | |
214 | h = dictHashKey(d, de->key) & d->ht[1].sizemask; | |
215 | de->next = d->ht[1].table[h]; | |
216 | d->ht[1].table[h] = de; | |
217 | d->ht[0].used--; | |
218 | d->ht[1].used++; | |
219 | de = nextde; | |
ed9b544e | 220 | } |
5413c40d | 221 | d->ht[0].table[d->rehashidx] = NULL; |
222 | d->rehashidx++; | |
ed9b544e | 223 | } |
5413c40d | 224 | return 1; |
225 | } | |
ed9b544e | 226 | |
8ca3e9d1 | 227 | long long timeInMilliseconds(void) { |
228 | struct timeval tv; | |
229 | ||
230 | gettimeofday(&tv,NULL); | |
231 | return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000); | |
232 | } | |
233 | ||
234 | /* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */ | |
235 | int dictRehashMilliseconds(dict *d, int ms) { | |
236 | long long start = timeInMilliseconds(); | |
237 | int rehashes = 0; | |
238 | ||
239 | while(dictRehash(d,100)) { | |
240 | rehashes += 100; | |
241 | if (timeInMilliseconds()-start > ms) break; | |
242 | } | |
243 | return rehashes; | |
244 | } | |
245 | ||
5413c40d | 246 | /* This function performs just a step of rehashing, and only if there are |
247 | * not iterators bound to our hash table. When we have iterators in the middle | |
248 | * of a rehashing we can't mess with the two hash tables otherwise some element | |
249 | * can be missed or duplicated. | |
250 | * | |
251 | * This function is called by common lookup or update operations in the | |
252 | * dictionary so that the hash table automatically migrates from H1 to H2 | |
253 | * while it is actively used. */ | |
254 | static void _dictRehashStep(dict *d) { | |
255 | if (d->iterators == 0) dictRehash(d,1); | |
ed9b544e | 256 | } |
257 | ||
258 | /* Add an element to the target hash table */ | |
5413c40d | 259 | int dictAdd(dict *d, void *key, void *val) |
ed9b544e | 260 | { |
261 | int index; | |
262 | dictEntry *entry; | |
5413c40d | 263 | dictht *ht; |
264 | ||
265 | if (dictIsRehashing(d)) _dictRehashStep(d); | |
ed9b544e | 266 | |
267 | /* Get the index of the new element, or -1 if | |
268 | * the element already exists. */ | |
5413c40d | 269 | if ((index = _dictKeyIndex(d, key)) == -1) |
ed9b544e | 270 | return DICT_ERR; |
271 | ||
272 | /* Allocates the memory and stores key */ | |
5413c40d | 273 | ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0]; |
d9dd352b | 274 | entry = zmalloc(sizeof(*entry)); |
ed9b544e | 275 | entry->next = ht->table[index]; |
276 | ht->table[index] = entry; | |
5413c40d | 277 | ht->used++; |
ed9b544e | 278 | |
279 | /* Set the hash entry fields. */ | |
5413c40d | 280 | dictSetHashKey(d, entry, key); |
281 | dictSetHashVal(d, entry, val); | |
ed9b544e | 282 | return DICT_OK; |
283 | } | |
284 | ||
121796f7 | 285 | /* Add an element, discarding the old if the key already exists. |
286 | * Return 1 if the key was added from scratch, 0 if there was already an | |
287 | * element with such key and dictReplace() just performed a value update | |
288 | * operation. */ | |
5413c40d | 289 | int dictReplace(dict *d, void *key, void *val) |
ed9b544e | 290 | { |
2069d06a | 291 | dictEntry *entry, auxentry; |
ed9b544e | 292 | |
293 | /* Try to add the element. If the key | |
294 | * does not exists dictAdd will suceed. */ | |
5413c40d | 295 | if (dictAdd(d, key, val) == DICT_OK) |
121796f7 | 296 | return 1; |
ed9b544e | 297 | /* It already exists, get the entry */ |
5413c40d | 298 | entry = dictFind(d, key); |
ed9b544e | 299 | /* Free the old value and set the new one */ |
2069d06a | 300 | /* Set the new value and free the old one. Note that it is important |
301 | * to do that in this order, as the value may just be exactly the same | |
302 | * as the previous one. In this context, think to reference counting, | |
303 | * you want to increment (set), and then decrement (free), and not the | |
304 | * reverse. */ | |
305 | auxentry = *entry; | |
5413c40d | 306 | dictSetHashVal(d, entry, val); |
307 | dictFreeEntryVal(d, &auxentry); | |
121796f7 | 308 | return 0; |
ed9b544e | 309 | } |
310 | ||
311 | /* Search and remove an element */ | |
5413c40d | 312 | static int dictGenericDelete(dict *d, const void *key, int nofree) |
ed9b544e | 313 | { |
5413c40d | 314 | unsigned int h, idx; |
ed9b544e | 315 | dictEntry *he, *prevHe; |
5413c40d | 316 | int table; |
ed9b544e | 317 | |
5413c40d | 318 | if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */ |
319 | if (dictIsRehashing(d)) _dictRehashStep(d); | |
320 | h = dictHashKey(d, key); | |
ed9b544e | 321 | |
5413c40d | 322 | for (table = 0; table <= 1; table++) { |
323 | idx = h & d->ht[table].sizemask; | |
324 | he = d->ht[table].table[idx]; | |
325 | prevHe = NULL; | |
326 | while(he) { | |
327 | if (dictCompareHashKeys(d, key, he->key)) { | |
328 | /* Unlink the element from the list */ | |
329 | if (prevHe) | |
330 | prevHe->next = he->next; | |
331 | else | |
332 | d->ht[table].table[idx] = he->next; | |
333 | if (!nofree) { | |
334 | dictFreeEntryKey(d, he); | |
335 | dictFreeEntryVal(d, he); | |
336 | } | |
d9dd352b | 337 | zfree(he); |
5413c40d | 338 | d->ht[table].used--; |
339 | return DICT_OK; | |
ed9b544e | 340 | } |
5413c40d | 341 | prevHe = he; |
342 | he = he->next; | |
ed9b544e | 343 | } |
5413c40d | 344 | if (!dictIsRehashing(d)) break; |
ed9b544e | 345 | } |
346 | return DICT_ERR; /* not found */ | |
347 | } | |
348 | ||
349 | int dictDelete(dict *ht, const void *key) { | |
350 | return dictGenericDelete(ht,key,0); | |
351 | } | |
352 | ||
353 | int dictDeleteNoFree(dict *ht, const void *key) { | |
354 | return dictGenericDelete(ht,key,1); | |
355 | } | |
356 | ||
5413c40d | 357 | /* Destroy an entire dictionary */ |
358 | int _dictClear(dict *d, dictht *ht) | |
ed9b544e | 359 | { |
f2923bec | 360 | unsigned long i; |
ed9b544e | 361 | |
362 | /* Free all the elements */ | |
363 | for (i = 0; i < ht->size && ht->used > 0; i++) { | |
364 | dictEntry *he, *nextHe; | |
365 | ||
366 | if ((he = ht->table[i]) == NULL) continue; | |
367 | while(he) { | |
368 | nextHe = he->next; | |
5413c40d | 369 | dictFreeEntryKey(d, he); |
370 | dictFreeEntryVal(d, he); | |
d9dd352b | 371 | zfree(he); |
ed9b544e | 372 | ht->used--; |
373 | he = nextHe; | |
374 | } | |
375 | } | |
376 | /* Free the table and the allocated cache structure */ | |
d9dd352b | 377 | zfree(ht->table); |
ed9b544e | 378 | /* Re-initialize the table */ |
379 | _dictReset(ht); | |
380 | return DICT_OK; /* never fails */ | |
381 | } | |
382 | ||
383 | /* Clear & Release the hash table */ | |
5413c40d | 384 | void dictRelease(dict *d) |
ed9b544e | 385 | { |
5413c40d | 386 | _dictClear(d,&d->ht[0]); |
387 | _dictClear(d,&d->ht[1]); | |
d9dd352b | 388 | zfree(d); |
ed9b544e | 389 | } |
390 | ||
5413c40d | 391 | dictEntry *dictFind(dict *d, const void *key) |
ed9b544e | 392 | { |
393 | dictEntry *he; | |
5413c40d | 394 | unsigned int h, idx, table; |
395 | ||
396 | if (d->ht[0].size == 0) return NULL; /* We don't have a table at all */ | |
397 | if (dictIsRehashing(d)) _dictRehashStep(d); | |
398 | h = dictHashKey(d, key); | |
399 | for (table = 0; table <= 1; table++) { | |
400 | idx = h & d->ht[table].sizemask; | |
401 | he = d->ht[table].table[idx]; | |
402 | while(he) { | |
403 | if (dictCompareHashKeys(d, key, he->key)) | |
404 | return he; | |
405 | he = he->next; | |
406 | } | |
407 | if (!dictIsRehashing(d)) return NULL; | |
ed9b544e | 408 | } |
409 | return NULL; | |
410 | } | |
411 | ||
58e1c9c1 | 412 | void *dictFetchValue(dict *d, const void *key) { |
413 | dictEntry *he; | |
414 | ||
415 | he = dictFind(d,key); | |
416 | return he ? dictGetEntryVal(he) : NULL; | |
417 | } | |
418 | ||
5413c40d | 419 | dictIterator *dictGetIterator(dict *d) |
ed9b544e | 420 | { |
d9dd352b | 421 | dictIterator *iter = zmalloc(sizeof(*iter)); |
ed9b544e | 422 | |
5413c40d | 423 | iter->d = d; |
424 | iter->table = 0; | |
ed9b544e | 425 | iter->index = -1; |
426 | iter->entry = NULL; | |
427 | iter->nextEntry = NULL; | |
428 | return iter; | |
429 | } | |
430 | ||
431 | dictEntry *dictNext(dictIterator *iter) | |
432 | { | |
433 | while (1) { | |
434 | if (iter->entry == NULL) { | |
5413c40d | 435 | dictht *ht = &iter->d->ht[iter->table]; |
436 | if (iter->index == -1 && iter->table == 0) iter->d->iterators++; | |
ed9b544e | 437 | iter->index++; |
5413c40d | 438 | if (iter->index >= (signed) ht->size) { |
439 | if (dictIsRehashing(iter->d) && iter->table == 0) { | |
440 | iter->table++; | |
441 | iter->index = 0; | |
442 | ht = &iter->d->ht[1]; | |
443 | } else { | |
444 | break; | |
445 | } | |
446 | } | |
447 | iter->entry = ht->table[iter->index]; | |
ed9b544e | 448 | } else { |
449 | iter->entry = iter->nextEntry; | |
450 | } | |
451 | if (iter->entry) { | |
452 | /* We need to save the 'next' here, the iterator user | |
453 | * may delete the entry we are returning. */ | |
454 | iter->nextEntry = iter->entry->next; | |
455 | return iter->entry; | |
456 | } | |
457 | } | |
458 | return NULL; | |
459 | } | |
460 | ||
461 | void dictReleaseIterator(dictIterator *iter) | |
462 | { | |
5413c40d | 463 | if (!(iter->index == -1 && iter->table == 0)) iter->d->iterators--; |
d9dd352b | 464 | zfree(iter); |
ed9b544e | 465 | } |
466 | ||
467 | /* Return a random entry from the hash table. Useful to | |
468 | * implement randomized algorithms */ | |
5413c40d | 469 | dictEntry *dictGetRandomKey(dict *d) |
ed9b544e | 470 | { |
5413c40d | 471 | dictEntry *he, *orighe; |
ed9b544e | 472 | unsigned int h; |
473 | int listlen, listele; | |
474 | ||
5413c40d | 475 | if (dictSize(d) == 0) return NULL; |
476 | if (dictIsRehashing(d)) _dictRehashStep(d); | |
477 | if (dictIsRehashing(d)) { | |
478 | do { | |
479 | h = random() % (d->ht[0].size+d->ht[1].size); | |
480 | he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] : | |
481 | d->ht[0].table[h]; | |
482 | } while(he == NULL); | |
483 | } else { | |
484 | do { | |
485 | h = random() & d->ht[0].sizemask; | |
486 | he = d->ht[0].table[h]; | |
487 | } while(he == NULL); | |
488 | } | |
ed9b544e | 489 | |
490 | /* Now we found a non empty bucket, but it is a linked | |
491 | * list and we need to get a random element from the list. | |
5413c40d | 492 | * The only sane way to do so is counting the elements and |
ed9b544e | 493 | * select a random index. */ |
494 | listlen = 0; | |
5413c40d | 495 | orighe = he; |
ed9b544e | 496 | while(he) { |
497 | he = he->next; | |
498 | listlen++; | |
499 | } | |
500 | listele = random() % listlen; | |
5413c40d | 501 | he = orighe; |
ed9b544e | 502 | while(listele--) he = he->next; |
503 | return he; | |
504 | } | |
505 | ||
506 | /* ------------------------- private functions ------------------------------ */ | |
507 | ||
508 | /* Expand the hash table if needed */ | |
5413c40d | 509 | static int _dictExpandIfNeeded(dict *d) |
ed9b544e | 510 | { |
3856f147 | 511 | /* Incremental rehashing already in progress. Return. */ |
5413c40d | 512 | if (dictIsRehashing(d)) return DICT_OK; |
3856f147 | 513 | |
514 | /* If the hash table is empty expand it to the intial size. */ | |
515 | if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE); | |
516 | ||
517 | /* If we reached the 1:1 ratio, and we are allowed to resize the hash | |
518 | * table (global setting) or we should avoid it but the ratio between | |
519 | * elements/buckets is over the "safe" threshold, we resize doubling | |
520 | * the number of buckets. */ | |
521 | if (d->ht[0].used >= d->ht[0].size && | |
522 | (dict_can_resize || | |
523 | d->ht[0].used/d->ht[0].size > dict_force_resize_ratio)) | |
524 | { | |
5413c40d | 525 | return dictExpand(d, ((d->ht[0].size > d->ht[0].used) ? |
526 | d->ht[0].size : d->ht[0].used)*2); | |
3856f147 | 527 | } |
ed9b544e | 528 | return DICT_OK; |
529 | } | |
530 | ||
531 | /* Our hash table capability is a power of two */ | |
f2923bec | 532 | static unsigned long _dictNextPower(unsigned long size) |
ed9b544e | 533 | { |
f2923bec | 534 | unsigned long i = DICT_HT_INITIAL_SIZE; |
ed9b544e | 535 | |
f2923bec | 536 | if (size >= LONG_MAX) return LONG_MAX; |
ed9b544e | 537 | while(1) { |
538 | if (i >= size) | |
539 | return i; | |
540 | i *= 2; | |
541 | } | |
542 | } | |
543 | ||
544 | /* Returns the index of a free slot that can be populated with | |
545 | * an hash entry for the given 'key'. | |
5413c40d | 546 | * If the key already exists, -1 is returned. |
547 | * | |
548 | * Note that if we are in the process of rehashing the hash table, the | |
549 | * index is always returned in the context of the second (new) hash table. */ | |
550 | static int _dictKeyIndex(dict *d, const void *key) | |
ed9b544e | 551 | { |
8ca3e9d1 | 552 | unsigned int h, idx, table; |
ed9b544e | 553 | dictEntry *he; |
554 | ||
555 | /* Expand the hashtable if needed */ | |
5413c40d | 556 | if (_dictExpandIfNeeded(d) == DICT_ERR) |
ed9b544e | 557 | return -1; |
558 | /* Compute the key hash value */ | |
5413c40d | 559 | h = dictHashKey(d, key); |
8ca3e9d1 | 560 | for (table = 0; table <= 1; table++) { |
561 | idx = h & d->ht[table].sizemask; | |
562 | /* Search if this slot does not already contain the given key */ | |
563 | he = d->ht[table].table[idx]; | |
564 | while(he) { | |
565 | if (dictCompareHashKeys(d, key, he->key)) | |
566 | return -1; | |
567 | he = he->next; | |
568 | } | |
569 | if (!dictIsRehashing(d)) break; | |
ed9b544e | 570 | } |
8ca3e9d1 | 571 | return idx; |
ed9b544e | 572 | } |
573 | ||
5413c40d | 574 | void dictEmpty(dict *d) { |
575 | _dictClear(d,&d->ht[0]); | |
576 | _dictClear(d,&d->ht[1]); | |
577 | d->rehashidx = -1; | |
578 | d->iterators = 0; | |
ed9b544e | 579 | } |
580 | ||
581 | #define DICT_STATS_VECTLEN 50 | |
5413c40d | 582 | static void _dictPrintStatsHt(dictht *ht) { |
f2923bec | 583 | unsigned long i, slots = 0, chainlen, maxchainlen = 0; |
584 | unsigned long totchainlen = 0; | |
585 | unsigned long clvector[DICT_STATS_VECTLEN]; | |
ed9b544e | 586 | |
587 | if (ht->used == 0) { | |
588 | printf("No stats available for empty dictionaries\n"); | |
589 | return; | |
590 | } | |
591 | ||
592 | for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0; | |
593 | for (i = 0; i < ht->size; i++) { | |
594 | dictEntry *he; | |
595 | ||
596 | if (ht->table[i] == NULL) { | |
597 | clvector[0]++; | |
598 | continue; | |
599 | } | |
600 | slots++; | |
601 | /* For each hash entry on this slot... */ | |
602 | chainlen = 0; | |
603 | he = ht->table[i]; | |
604 | while(he) { | |
605 | chainlen++; | |
606 | he = he->next; | |
607 | } | |
608 | clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++; | |
609 | if (chainlen > maxchainlen) maxchainlen = chainlen; | |
610 | totchainlen += chainlen; | |
611 | } | |
612 | printf("Hash table stats:\n"); | |
f2923bec | 613 | printf(" table size: %ld\n", ht->size); |
614 | printf(" number of elements: %ld\n", ht->used); | |
615 | printf(" different slots: %ld\n", slots); | |
616 | printf(" max chain length: %ld\n", maxchainlen); | |
ed9b544e | 617 | printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots); |
618 | printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots); | |
619 | printf(" Chain length distribution:\n"); | |
620 | for (i = 0; i < DICT_STATS_VECTLEN-1; i++) { | |
621 | if (clvector[i] == 0) continue; | |
f2923bec | 622 | printf(" %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100); |
ed9b544e | 623 | } |
624 | } | |
625 | ||
5413c40d | 626 | void dictPrintStats(dict *d) { |
627 | _dictPrintStatsHt(&d->ht[0]); | |
628 | if (dictIsRehashing(d)) { | |
629 | printf("-- Rehashing into ht[1]:\n"); | |
630 | _dictPrintStatsHt(&d->ht[1]); | |
631 | } | |
632 | } | |
633 | ||
884d4b39 | 634 | void dictEnableResize(void) { |
635 | dict_can_resize = 1; | |
636 | } | |
637 | ||
638 | void dictDisableResize(void) { | |
dae121d9 | 639 | dict_can_resize = 0; |
884d4b39 | 640 | } |
641 | ||
e0be2289 | 642 | #if 0 |
643 | ||
644 | /* The following are just example hash table types implementations. | |
645 | * Not useful for Redis so they are commented out. | |
646 | */ | |
647 | ||
ed9b544e | 648 | /* ----------------------- StringCopy Hash Table Type ------------------------*/ |
649 | ||
650 | static unsigned int _dictStringCopyHTHashFunction(const void *key) | |
651 | { | |
652 | return dictGenHashFunction(key, strlen(key)); | |
653 | } | |
654 | ||
b1e0bd4b | 655 | static void *_dictStringDup(void *privdata, const void *key) |
ed9b544e | 656 | { |
657 | int len = strlen(key); | |
d9dd352b | 658 | char *copy = zmalloc(len+1); |
ed9b544e | 659 | DICT_NOTUSED(privdata); |
660 | ||
661 | memcpy(copy, key, len); | |
662 | copy[len] = '\0'; | |
663 | return copy; | |
664 | } | |
665 | ||
ed9b544e | 666 | static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1, |
667 | const void *key2) | |
668 | { | |
669 | DICT_NOTUSED(privdata); | |
670 | ||
671 | return strcmp(key1, key2) == 0; | |
672 | } | |
673 | ||
b1e0bd4b | 674 | static void _dictStringDestructor(void *privdata, void *key) |
ed9b544e | 675 | { |
676 | DICT_NOTUSED(privdata); | |
677 | ||
d9dd352b | 678 | zfree(key); |
ed9b544e | 679 | } |
680 | ||
681 | dictType dictTypeHeapStringCopyKey = { | |
b1e0bd4b BK |
682 | _dictStringCopyHTHashFunction, /* hash function */ |
683 | _dictStringDup, /* key dup */ | |
684 | NULL, /* val dup */ | |
685 | _dictStringCopyHTKeyCompare, /* key compare */ | |
686 | _dictStringDestructor, /* key destructor */ | |
687 | NULL /* val destructor */ | |
ed9b544e | 688 | }; |
689 | ||
690 | /* This is like StringCopy but does not auto-duplicate the key. | |
691 | * It's used for intepreter's shared strings. */ | |
692 | dictType dictTypeHeapStrings = { | |
b1e0bd4b BK |
693 | _dictStringCopyHTHashFunction, /* hash function */ |
694 | NULL, /* key dup */ | |
695 | NULL, /* val dup */ | |
696 | _dictStringCopyHTKeyCompare, /* key compare */ | |
697 | _dictStringDestructor, /* key destructor */ | |
698 | NULL /* val destructor */ | |
ed9b544e | 699 | }; |
700 | ||
701 | /* This is like StringCopy but also automatically handle dynamic | |
702 | * allocated C strings as values. */ | |
703 | dictType dictTypeHeapStringCopyKeyValue = { | |
b1e0bd4b BK |
704 | _dictStringCopyHTHashFunction, /* hash function */ |
705 | _dictStringDup, /* key dup */ | |
706 | _dictStringDup, /* val dup */ | |
707 | _dictStringCopyHTKeyCompare, /* key compare */ | |
708 | _dictStringDestructor, /* key destructor */ | |
709 | _dictStringDestructor, /* val destructor */ | |
ed9b544e | 710 | }; |
e0be2289 | 711 | #endif |