]>
Commit | Line | Data |
---|---|---|
ed9b544e | 1 | /* Hash Tables Implementation. |
2 | * | |
3 | * This file implements in memory hash tables with insert/del/replace/find/ | |
4 | * get-random-element operations. Hash tables will auto resize if needed | |
5 | * tables of power of two in size are used, collisions are handled by | |
6 | * chaining. See the source code for more information... :) | |
7 | * | |
8 | * Copyright (c) 2006-2009, Salvatore Sanfilippo <antirez at gmail dot com> | |
9 | * All rights reserved. | |
10 | * | |
11 | * Redistribution and use in source and binary forms, with or without | |
12 | * modification, are permitted provided that the following conditions are met: | |
13 | * | |
14 | * * Redistributions of source code must retain the above copyright notice, | |
15 | * this list of conditions and the following disclaimer. | |
16 | * * Redistributions in binary form must reproduce the above copyright | |
17 | * notice, this list of conditions and the following disclaimer in the | |
18 | * documentation and/or other materials provided with the distribution. | |
19 | * * Neither the name of Redis nor the names of its contributors may be used | |
20 | * to endorse or promote products derived from this software without | |
21 | * specific prior written permission. | |
22 | * | |
23 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
24 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
25 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
26 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
27 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
28 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
29 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
30 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
31 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
32 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
33 | * POSSIBILITY OF SUCH DAMAGE. | |
34 | */ | |
35 | ||
23d4709d | 36 | #include "fmacros.h" |
37 | ||
ed9b544e | 38 | #include <stdio.h> |
39 | #include <stdlib.h> | |
40 | #include <string.h> | |
41 | #include <stdarg.h> | |
42 | #include <assert.h> | |
43 | ||
44 | #include "dict.h" | |
45 | #include "zmalloc.h" | |
46 | ||
47 | /* ---------------------------- Utility funcitons --------------------------- */ | |
48 | ||
49 | static void _dictPanic(const char *fmt, ...) | |
50 | { | |
51 | va_list ap; | |
52 | ||
53 | va_start(ap, fmt); | |
54 | fprintf(stderr, "\nDICT LIBRARY PANIC: "); | |
55 | vfprintf(stderr, fmt, ap); | |
56 | fprintf(stderr, "\n\n"); | |
57 | va_end(ap); | |
58 | } | |
59 | ||
60 | /* ------------------------- Heap Management Wrappers------------------------ */ | |
61 | ||
62 | static void *_dictAlloc(int size) | |
63 | { | |
64 | void *p = zmalloc(size); | |
65 | if (p == NULL) | |
66 | _dictPanic("Out of memory"); | |
67 | return p; | |
68 | } | |
69 | ||
70 | static void _dictFree(void *ptr) { | |
71 | zfree(ptr); | |
72 | } | |
73 | ||
74 | /* -------------------------- private prototypes ---------------------------- */ | |
75 | ||
76 | static int _dictExpandIfNeeded(dict *ht); | |
77 | static unsigned int _dictNextPower(unsigned int size); | |
78 | static int _dictKeyIndex(dict *ht, const void *key); | |
79 | static int _dictInit(dict *ht, dictType *type, void *privDataPtr); | |
80 | ||
81 | /* -------------------------- hash functions -------------------------------- */ | |
82 | ||
83 | /* Thomas Wang's 32 bit Mix Function */ | |
84 | unsigned int dictIntHashFunction(unsigned int key) | |
85 | { | |
86 | key += ~(key << 15); | |
87 | key ^= (key >> 10); | |
88 | key += (key << 3); | |
89 | key ^= (key >> 6); | |
90 | key += ~(key << 11); | |
91 | key ^= (key >> 16); | |
92 | return key; | |
93 | } | |
94 | ||
95 | /* Identity hash function for integer keys */ | |
96 | unsigned int dictIdentityHashFunction(unsigned int key) | |
97 | { | |
98 | return key; | |
99 | } | |
100 | ||
101 | /* Generic hash function (a popular one from Bernstein). | |
102 | * I tested a few and this was the best. */ | |
103 | unsigned int dictGenHashFunction(const unsigned char *buf, int len) { | |
104 | unsigned int hash = 5381; | |
105 | ||
106 | while (len--) | |
107 | hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */ | |
108 | return hash; | |
109 | } | |
110 | ||
111 | /* ----------------------------- API implementation ------------------------- */ | |
112 | ||
113 | /* Reset an hashtable already initialized with ht_init(). | |
114 | * NOTE: This function should only called by ht_destroy(). */ | |
115 | static void _dictReset(dict *ht) | |
116 | { | |
117 | ht->table = NULL; | |
118 | ht->size = 0; | |
119 | ht->sizemask = 0; | |
120 | ht->used = 0; | |
121 | } | |
122 | ||
123 | /* Create a new hash table */ | |
124 | dict *dictCreate(dictType *type, | |
125 | void *privDataPtr) | |
126 | { | |
127 | dict *ht = _dictAlloc(sizeof(*ht)); | |
128 | ||
129 | _dictInit(ht,type,privDataPtr); | |
130 | return ht; | |
131 | } | |
132 | ||
133 | /* Initialize the hash table */ | |
134 | int _dictInit(dict *ht, dictType *type, | |
135 | void *privDataPtr) | |
136 | { | |
137 | _dictReset(ht); | |
138 | ht->type = type; | |
139 | ht->privdata = privDataPtr; | |
140 | return DICT_OK; | |
141 | } | |
142 | ||
143 | /* Resize the table to the minimal size that contains all the elements, | |
144 | * but with the invariant of a USER/BUCKETS ration near to <= 1 */ | |
145 | int dictResize(dict *ht) | |
146 | { | |
147 | int minimal = ht->used; | |
148 | ||
149 | if (minimal < DICT_HT_INITIAL_SIZE) | |
150 | minimal = DICT_HT_INITIAL_SIZE; | |
151 | return dictExpand(ht, minimal); | |
152 | } | |
153 | ||
154 | /* Expand or create the hashtable */ | |
155 | int dictExpand(dict *ht, unsigned int size) | |
156 | { | |
157 | dict n; /* the new hashtable */ | |
158 | unsigned int realsize = _dictNextPower(size), i; | |
159 | ||
160 | /* the size is invalid if it is smaller than the number of | |
161 | * elements already inside the hashtable */ | |
162 | if (ht->used > size) | |
163 | return DICT_ERR; | |
164 | ||
165 | _dictInit(&n, ht->type, ht->privdata); | |
166 | n.size = realsize; | |
167 | n.sizemask = realsize-1; | |
168 | n.table = _dictAlloc(realsize*sizeof(dictEntry*)); | |
169 | ||
170 | /* Initialize all the pointers to NULL */ | |
171 | memset(n.table, 0, realsize*sizeof(dictEntry*)); | |
172 | ||
173 | /* Copy all the elements from the old to the new table: | |
174 | * note that if the old hash table is empty ht->size is zero, | |
175 | * so dictExpand just creates an hash table. */ | |
176 | n.used = ht->used; | |
177 | for (i = 0; i < ht->size && ht->used > 0; i++) { | |
178 | dictEntry *he, *nextHe; | |
179 | ||
180 | if (ht->table[i] == NULL) continue; | |
181 | ||
182 | /* For each hash entry on this slot... */ | |
183 | he = ht->table[i]; | |
184 | while(he) { | |
185 | unsigned int h; | |
186 | ||
187 | nextHe = he->next; | |
188 | /* Get the new element index */ | |
189 | h = dictHashKey(ht, he->key) & n.sizemask; | |
190 | he->next = n.table[h]; | |
191 | n.table[h] = he; | |
192 | ht->used--; | |
193 | /* Pass to the next element */ | |
194 | he = nextHe; | |
195 | } | |
196 | } | |
197 | assert(ht->used == 0); | |
198 | _dictFree(ht->table); | |
199 | ||
200 | /* Remap the new hashtable in the old */ | |
201 | *ht = n; | |
202 | return DICT_OK; | |
203 | } | |
204 | ||
205 | /* Add an element to the target hash table */ | |
206 | int dictAdd(dict *ht, void *key, void *val) | |
207 | { | |
208 | int index; | |
209 | dictEntry *entry; | |
210 | ||
211 | /* Get the index of the new element, or -1 if | |
212 | * the element already exists. */ | |
213 | if ((index = _dictKeyIndex(ht, key)) == -1) | |
214 | return DICT_ERR; | |
215 | ||
216 | /* Allocates the memory and stores key */ | |
217 | entry = _dictAlloc(sizeof(*entry)); | |
218 | entry->next = ht->table[index]; | |
219 | ht->table[index] = entry; | |
220 | ||
221 | /* Set the hash entry fields. */ | |
222 | dictSetHashKey(ht, entry, key); | |
223 | dictSetHashVal(ht, entry, val); | |
224 | ht->used++; | |
225 | return DICT_OK; | |
226 | } | |
227 | ||
228 | /* Add an element, discarding the old if the key already exists */ | |
229 | int dictReplace(dict *ht, void *key, void *val) | |
230 | { | |
231 | dictEntry *entry; | |
232 | ||
233 | /* Try to add the element. If the key | |
234 | * does not exists dictAdd will suceed. */ | |
235 | if (dictAdd(ht, key, val) == DICT_OK) | |
236 | return DICT_OK; | |
237 | /* It already exists, get the entry */ | |
238 | entry = dictFind(ht, key); | |
239 | /* Free the old value and set the new one */ | |
240 | dictFreeEntryVal(ht, entry); | |
241 | dictSetHashVal(ht, entry, val); | |
242 | return DICT_OK; | |
243 | } | |
244 | ||
245 | /* Search and remove an element */ | |
246 | static int dictGenericDelete(dict *ht, const void *key, int nofree) | |
247 | { | |
248 | unsigned int h; | |
249 | dictEntry *he, *prevHe; | |
250 | ||
251 | if (ht->size == 0) | |
252 | return DICT_ERR; | |
253 | h = dictHashKey(ht, key) & ht->sizemask; | |
254 | he = ht->table[h]; | |
255 | ||
256 | prevHe = NULL; | |
257 | while(he) { | |
258 | if (dictCompareHashKeys(ht, key, he->key)) { | |
259 | /* Unlink the element from the list */ | |
260 | if (prevHe) | |
261 | prevHe->next = he->next; | |
262 | else | |
263 | ht->table[h] = he->next; | |
264 | if (!nofree) { | |
265 | dictFreeEntryKey(ht, he); | |
266 | dictFreeEntryVal(ht, he); | |
267 | } | |
268 | _dictFree(he); | |
269 | ht->used--; | |
270 | return DICT_OK; | |
271 | } | |
272 | prevHe = he; | |
273 | he = he->next; | |
274 | } | |
275 | return DICT_ERR; /* not found */ | |
276 | } | |
277 | ||
278 | int dictDelete(dict *ht, const void *key) { | |
279 | return dictGenericDelete(ht,key,0); | |
280 | } | |
281 | ||
282 | int dictDeleteNoFree(dict *ht, const void *key) { | |
283 | return dictGenericDelete(ht,key,1); | |
284 | } | |
285 | ||
286 | /* Destroy an entire hash table */ | |
287 | int _dictClear(dict *ht) | |
288 | { | |
289 | unsigned int i; | |
290 | ||
291 | /* Free all the elements */ | |
292 | for (i = 0; i < ht->size && ht->used > 0; i++) { | |
293 | dictEntry *he, *nextHe; | |
294 | ||
295 | if ((he = ht->table[i]) == NULL) continue; | |
296 | while(he) { | |
297 | nextHe = he->next; | |
298 | dictFreeEntryKey(ht, he); | |
299 | dictFreeEntryVal(ht, he); | |
300 | _dictFree(he); | |
301 | ht->used--; | |
302 | he = nextHe; | |
303 | } | |
304 | } | |
305 | /* Free the table and the allocated cache structure */ | |
306 | _dictFree(ht->table); | |
307 | /* Re-initialize the table */ | |
308 | _dictReset(ht); | |
309 | return DICT_OK; /* never fails */ | |
310 | } | |
311 | ||
312 | /* Clear & Release the hash table */ | |
313 | void dictRelease(dict *ht) | |
314 | { | |
315 | _dictClear(ht); | |
316 | _dictFree(ht); | |
317 | } | |
318 | ||
319 | dictEntry *dictFind(dict *ht, const void *key) | |
320 | { | |
321 | dictEntry *he; | |
322 | unsigned int h; | |
323 | ||
324 | if (ht->size == 0) return NULL; | |
325 | h = dictHashKey(ht, key) & ht->sizemask; | |
326 | he = ht->table[h]; | |
327 | while(he) { | |
328 | if (dictCompareHashKeys(ht, key, he->key)) | |
329 | return he; | |
330 | he = he->next; | |
331 | } | |
332 | return NULL; | |
333 | } | |
334 | ||
335 | dictIterator *dictGetIterator(dict *ht) | |
336 | { | |
337 | dictIterator *iter = _dictAlloc(sizeof(*iter)); | |
338 | ||
339 | iter->ht = ht; | |
340 | iter->index = -1; | |
341 | iter->entry = NULL; | |
342 | iter->nextEntry = NULL; | |
343 | return iter; | |
344 | } | |
345 | ||
346 | dictEntry *dictNext(dictIterator *iter) | |
347 | { | |
348 | while (1) { | |
349 | if (iter->entry == NULL) { | |
350 | iter->index++; | |
351 | if (iter->index >= | |
352 | (signed)iter->ht->size) break; | |
353 | iter->entry = iter->ht->table[iter->index]; | |
354 | } else { | |
355 | iter->entry = iter->nextEntry; | |
356 | } | |
357 | if (iter->entry) { | |
358 | /* We need to save the 'next' here, the iterator user | |
359 | * may delete the entry we are returning. */ | |
360 | iter->nextEntry = iter->entry->next; | |
361 | return iter->entry; | |
362 | } | |
363 | } | |
364 | return NULL; | |
365 | } | |
366 | ||
367 | void dictReleaseIterator(dictIterator *iter) | |
368 | { | |
369 | _dictFree(iter); | |
370 | } | |
371 | ||
372 | /* Return a random entry from the hash table. Useful to | |
373 | * implement randomized algorithms */ | |
374 | dictEntry *dictGetRandomKey(dict *ht) | |
375 | { | |
376 | dictEntry *he; | |
377 | unsigned int h; | |
378 | int listlen, listele; | |
379 | ||
380 | if (ht->size == 0) return NULL; | |
381 | do { | |
382 | h = random() & ht->sizemask; | |
383 | he = ht->table[h]; | |
384 | } while(he == NULL); | |
385 | ||
386 | /* Now we found a non empty bucket, but it is a linked | |
387 | * list and we need to get a random element from the list. | |
388 | * The only sane way to do so is to count the element and | |
389 | * select a random index. */ | |
390 | listlen = 0; | |
391 | while(he) { | |
392 | he = he->next; | |
393 | listlen++; | |
394 | } | |
395 | listele = random() % listlen; | |
396 | he = ht->table[h]; | |
397 | while(listele--) he = he->next; | |
398 | return he; | |
399 | } | |
400 | ||
401 | /* ------------------------- private functions ------------------------------ */ | |
402 | ||
403 | /* Expand the hash table if needed */ | |
404 | static int _dictExpandIfNeeded(dict *ht) | |
405 | { | |
406 | /* If the hash table is empty expand it to the intial size, | |
407 | * if the table is "full" dobule its size. */ | |
408 | if (ht->size == 0) | |
409 | return dictExpand(ht, DICT_HT_INITIAL_SIZE); | |
410 | if (ht->used == ht->size) | |
411 | return dictExpand(ht, ht->size*2); | |
412 | return DICT_OK; | |
413 | } | |
414 | ||
415 | /* Our hash table capability is a power of two */ | |
416 | static unsigned int _dictNextPower(unsigned int size) | |
417 | { | |
418 | unsigned int i = DICT_HT_INITIAL_SIZE; | |
419 | ||
420 | if (size >= 2147483648U) | |
421 | return 2147483648U; | |
422 | while(1) { | |
423 | if (i >= size) | |
424 | return i; | |
425 | i *= 2; | |
426 | } | |
427 | } | |
428 | ||
429 | /* Returns the index of a free slot that can be populated with | |
430 | * an hash entry for the given 'key'. | |
431 | * If the key already exists, -1 is returned. */ | |
432 | static int _dictKeyIndex(dict *ht, const void *key) | |
433 | { | |
434 | unsigned int h; | |
435 | dictEntry *he; | |
436 | ||
437 | /* Expand the hashtable if needed */ | |
438 | if (_dictExpandIfNeeded(ht) == DICT_ERR) | |
439 | return -1; | |
440 | /* Compute the key hash value */ | |
441 | h = dictHashKey(ht, key) & ht->sizemask; | |
442 | /* Search if this slot does not already contain the given key */ | |
443 | he = ht->table[h]; | |
444 | while(he) { | |
445 | if (dictCompareHashKeys(ht, key, he->key)) | |
446 | return -1; | |
447 | he = he->next; | |
448 | } | |
449 | return h; | |
450 | } | |
451 | ||
452 | void dictEmpty(dict *ht) { | |
453 | _dictClear(ht); | |
454 | } | |
455 | ||
456 | #define DICT_STATS_VECTLEN 50 | |
457 | void dictPrintStats(dict *ht) { | |
458 | unsigned int i, slots = 0, chainlen, maxchainlen = 0; | |
459 | unsigned int totchainlen = 0; | |
460 | unsigned int clvector[DICT_STATS_VECTLEN]; | |
461 | ||
462 | if (ht->used == 0) { | |
463 | printf("No stats available for empty dictionaries\n"); | |
464 | return; | |
465 | } | |
466 | ||
467 | for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0; | |
468 | for (i = 0; i < ht->size; i++) { | |
469 | dictEntry *he; | |
470 | ||
471 | if (ht->table[i] == NULL) { | |
472 | clvector[0]++; | |
473 | continue; | |
474 | } | |
475 | slots++; | |
476 | /* For each hash entry on this slot... */ | |
477 | chainlen = 0; | |
478 | he = ht->table[i]; | |
479 | while(he) { | |
480 | chainlen++; | |
481 | he = he->next; | |
482 | } | |
483 | clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++; | |
484 | if (chainlen > maxchainlen) maxchainlen = chainlen; | |
485 | totchainlen += chainlen; | |
486 | } | |
487 | printf("Hash table stats:\n"); | |
488 | printf(" table size: %d\n", ht->size); | |
489 | printf(" number of elements: %d\n", ht->used); | |
490 | printf(" different slots: %d\n", slots); | |
491 | printf(" max chain length: %d\n", maxchainlen); | |
492 | printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots); | |
493 | printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots); | |
494 | printf(" Chain length distribution:\n"); | |
495 | for (i = 0; i < DICT_STATS_VECTLEN-1; i++) { | |
496 | if (clvector[i] == 0) continue; | |
497 | printf(" %s%d: %d (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100); | |
498 | } | |
499 | } | |
500 | ||
501 | /* ----------------------- StringCopy Hash Table Type ------------------------*/ | |
502 | ||
503 | static unsigned int _dictStringCopyHTHashFunction(const void *key) | |
504 | { | |
505 | return dictGenHashFunction(key, strlen(key)); | |
506 | } | |
507 | ||
508 | static void *_dictStringCopyHTKeyDup(void *privdata, const void *key) | |
509 | { | |
510 | int len = strlen(key); | |
511 | char *copy = _dictAlloc(len+1); | |
512 | DICT_NOTUSED(privdata); | |
513 | ||
514 | memcpy(copy, key, len); | |
515 | copy[len] = '\0'; | |
516 | return copy; | |
517 | } | |
518 | ||
519 | static void *_dictStringKeyValCopyHTValDup(void *privdata, const void *val) | |
520 | { | |
521 | int len = strlen(val); | |
522 | char *copy = _dictAlloc(len+1); | |
523 | DICT_NOTUSED(privdata); | |
524 | ||
525 | memcpy(copy, val, len); | |
526 | copy[len] = '\0'; | |
527 | return copy; | |
528 | } | |
529 | ||
530 | static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1, | |
531 | const void *key2) | |
532 | { | |
533 | DICT_NOTUSED(privdata); | |
534 | ||
535 | return strcmp(key1, key2) == 0; | |
536 | } | |
537 | ||
538 | static void _dictStringCopyHTKeyDestructor(void *privdata, void *key) | |
539 | { | |
540 | DICT_NOTUSED(privdata); | |
541 | ||
542 | _dictFree((void*)key); /* ATTENTION: const cast */ | |
543 | } | |
544 | ||
545 | static void _dictStringKeyValCopyHTValDestructor(void *privdata, void *val) | |
546 | { | |
547 | DICT_NOTUSED(privdata); | |
548 | ||
549 | _dictFree((void*)val); /* ATTENTION: const cast */ | |
550 | } | |
551 | ||
552 | dictType dictTypeHeapStringCopyKey = { | |
553 | _dictStringCopyHTHashFunction, /* hash function */ | |
554 | _dictStringCopyHTKeyDup, /* key dup */ | |
555 | NULL, /* val dup */ | |
556 | _dictStringCopyHTKeyCompare, /* key compare */ | |
557 | _dictStringCopyHTKeyDestructor, /* key destructor */ | |
558 | NULL /* val destructor */ | |
559 | }; | |
560 | ||
561 | /* This is like StringCopy but does not auto-duplicate the key. | |
562 | * It's used for intepreter's shared strings. */ | |
563 | dictType dictTypeHeapStrings = { | |
564 | _dictStringCopyHTHashFunction, /* hash function */ | |
565 | NULL, /* key dup */ | |
566 | NULL, /* val dup */ | |
567 | _dictStringCopyHTKeyCompare, /* key compare */ | |
568 | _dictStringCopyHTKeyDestructor, /* key destructor */ | |
569 | NULL /* val destructor */ | |
570 | }; | |
571 | ||
572 | /* This is like StringCopy but also automatically handle dynamic | |
573 | * allocated C strings as values. */ | |
574 | dictType dictTypeHeapStringCopyKeyValue = { | |
575 | _dictStringCopyHTHashFunction, /* hash function */ | |
576 | _dictStringCopyHTKeyDup, /* key dup */ | |
577 | _dictStringKeyValCopyHTValDup, /* val dup */ | |
578 | _dictStringCopyHTKeyCompare, /* key compare */ | |
579 | _dictStringCopyHTKeyDestructor, /* key destructor */ | |
580 | _dictStringKeyValCopyHTValDestructor, /* val destructor */ | |
581 | }; |