]> git.saurik.com Git - redis.git/blame - src/dict.c
Merge remote-tracking branch 'origin/unstable' into unstable
[redis.git] / src / dict.c
CommitLineData
ed9b544e 1/* Hash Tables Implementation.
2 *
3 * This file implements in memory hash tables with insert/del/replace/find/
4 * get-random-element operations. Hash tables will auto resize if needed
5 * tables of power of two in size are used, collisions are handled by
6 * chaining. See the source code for more information... :)
7 *
12d090d2 8 * Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com>
ed9b544e 9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions are met:
13 *
14 * * Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * * Neither the name of Redis nor the names of its contributors may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
23d4709d 36#include "fmacros.h"
37
ed9b544e 38#include <stdio.h>
39#include <stdlib.h>
40#include <string.h>
41#include <stdarg.h>
42#include <assert.h>
f2923bec 43#include <limits.h>
8ca3e9d1 44#include <sys/time.h>
1b1f47c9 45#include <ctype.h>
ed9b544e 46
47#include "dict.h"
48#include "zmalloc.h"
49
884d4b39 50/* Using dictEnableResize() / dictDisableResize() we make possible to
51 * enable/disable resizing of the hash table as needed. This is very important
52 * for Redis, as we use copy-on-write and don't want to move too much memory
3856f147 53 * around when there is a child performing saving operations.
54 *
55 * Note that even when dict_can_resize is set to 0, not all resizes are
56 * prevented: an hash table is still allowed to grow if the ratio between
57 * the number of elements and the buckets > dict_force_resize_ratio. */
884d4b39 58static int dict_can_resize = 1;
3856f147 59static unsigned int dict_force_resize_ratio = 5;
884d4b39 60
ed9b544e 61/* -------------------------- private prototypes ---------------------------- */
62
63static int _dictExpandIfNeeded(dict *ht);
f2923bec 64static unsigned long _dictNextPower(unsigned long size);
ed9b544e 65static int _dictKeyIndex(dict *ht, const void *key);
66static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
67
68/* -------------------------- hash functions -------------------------------- */
69
70/* Thomas Wang's 32 bit Mix Function */
71unsigned int dictIntHashFunction(unsigned int key)
72{
73 key += ~(key << 15);
74 key ^= (key >> 10);
75 key += (key << 3);
76 key ^= (key >> 6);
77 key += ~(key << 11);
78 key ^= (key >> 16);
79 return key;
80}
81
82/* Identity hash function for integer keys */
83unsigned int dictIdentityHashFunction(unsigned int key)
84{
85 return key;
86}
87
88/* Generic hash function (a popular one from Bernstein).
89 * I tested a few and this was the best. */
90unsigned int dictGenHashFunction(const unsigned char *buf, int len) {
91 unsigned int hash = 5381;
92
93 while (len--)
94 hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */
95 return hash;
96}
97
1b1f47c9 98/* And a case insensitive version */
99unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len) {
100 unsigned int hash = 5381;
101
102 while (len--)
103 hash = ((hash << 5) + hash) + (tolower(*buf++)); /* hash * 33 + c */
104 return hash;
105}
106
ed9b544e 107/* ----------------------------- API implementation ------------------------- */
108
109/* Reset an hashtable already initialized with ht_init().
110 * NOTE: This function should only called by ht_destroy(). */
5413c40d 111static void _dictReset(dictht *ht)
ed9b544e 112{
113 ht->table = NULL;
114 ht->size = 0;
115 ht->sizemask = 0;
116 ht->used = 0;
117}
118
119/* Create a new hash table */
120dict *dictCreate(dictType *type,
121 void *privDataPtr)
122{
d9dd352b 123 dict *d = zmalloc(sizeof(*d));
ed9b544e 124
5413c40d 125 _dictInit(d,type,privDataPtr);
126 return d;
ed9b544e 127}
128
129/* Initialize the hash table */
5413c40d 130int _dictInit(dict *d, dictType *type,
ed9b544e 131 void *privDataPtr)
132{
5413c40d 133 _dictReset(&d->ht[0]);
134 _dictReset(&d->ht[1]);
135 d->type = type;
136 d->privdata = privDataPtr;
137 d->rehashidx = -1;
138 d->iterators = 0;
ed9b544e 139 return DICT_OK;
140}
141
142/* Resize the table to the minimal size that contains all the elements,
3856f147 143 * but with the invariant of a USER/BUCKETS ratio near to <= 1 */
5413c40d 144int dictResize(dict *d)
ed9b544e 145{
5413c40d 146 int minimal;
ed9b544e 147
5413c40d 148 if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
149 minimal = d->ht[0].used;
ed9b544e 150 if (minimal < DICT_HT_INITIAL_SIZE)
151 minimal = DICT_HT_INITIAL_SIZE;
5413c40d 152 return dictExpand(d, minimal);
ed9b544e 153}
154
155/* Expand or create the hashtable */
5413c40d 156int dictExpand(dict *d, unsigned long size)
ed9b544e 157{
5413c40d 158 dictht n; /* the new hashtable */
159 unsigned long realsize = _dictNextPower(size);
ed9b544e 160
161 /* the size is invalid if it is smaller than the number of
162 * elements already inside the hashtable */
5413c40d 163 if (dictIsRehashing(d) || d->ht[0].used > size)
ed9b544e 164 return DICT_ERR;
165
399f2f40 166 /* Allocate the new hashtable and initialize all pointers to NULL */
ed9b544e 167 n.size = realsize;
168 n.sizemask = realsize-1;
399f2f40 169 n.table = zcalloc(realsize*sizeof(dictEntry*));
5413c40d 170 n.used = 0;
ed9b544e 171
5413c40d 172 /* Is this the first initialization? If so it's not really a rehashing
173 * we just set the first hash table so that it can accept keys. */
174 if (d->ht[0].table == NULL) {
175 d->ht[0] = n;
176 return DICT_OK;
177 }
ed9b544e 178
5413c40d 179 /* Prepare a second hash table for incremental rehashing */
180 d->ht[1] = n;
181 d->rehashidx = 0;
182 return DICT_OK;
183}
184
185/* Performs N steps of incremental rehashing. Returns 1 if there are still
186 * keys to move from the old to the new hash table, otherwise 0 is returned.
187 * Note that a rehashing step consists in moving a bucket (that may have more
188 * thank one key as we use chaining) from the old to the new hash table. */
189int dictRehash(dict *d, int n) {
190 if (!dictIsRehashing(d)) return 0;
191
192 while(n--) {
193 dictEntry *de, *nextde;
194
195 /* Check if we already rehashed the whole table... */
196 if (d->ht[0].used == 0) {
d9dd352b 197 zfree(d->ht[0].table);
5413c40d 198 d->ht[0] = d->ht[1];
199 _dictReset(&d->ht[1]);
200 d->rehashidx = -1;
201 return 0;
202 }
203
204 /* Note that rehashidx can't overflow as we are sure there are more
205 * elements because ht[0].used != 0 */
05600eb8 206 assert(d->ht[0].size > (unsigned)d->rehashidx);
5413c40d 207 while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++;
208 de = d->ht[0].table[d->rehashidx];
209 /* Move all the keys in this bucket from the old to the new hash HT */
210 while(de) {
ed9b544e 211 unsigned int h;
212
5413c40d 213 nextde = de->next;
214 /* Get the index in the new hash table */
215 h = dictHashKey(d, de->key) & d->ht[1].sizemask;
216 de->next = d->ht[1].table[h];
217 d->ht[1].table[h] = de;
218 d->ht[0].used--;
219 d->ht[1].used++;
220 de = nextde;
ed9b544e 221 }
5413c40d 222 d->ht[0].table[d->rehashidx] = NULL;
223 d->rehashidx++;
ed9b544e 224 }
5413c40d 225 return 1;
226}
ed9b544e 227
8ca3e9d1 228long long timeInMilliseconds(void) {
229 struct timeval tv;
230
231 gettimeofday(&tv,NULL);
232 return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
233}
234
235/* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
236int dictRehashMilliseconds(dict *d, int ms) {
237 long long start = timeInMilliseconds();
238 int rehashes = 0;
239
240 while(dictRehash(d,100)) {
241 rehashes += 100;
242 if (timeInMilliseconds()-start > ms) break;
243 }
244 return rehashes;
245}
246
5413c40d 247/* This function performs just a step of rehashing, and only if there are
4b53e736 248 * no safe iterators bound to our hash table. When we have iterators in the
249 * middle of a rehashing we can't mess with the two hash tables otherwise
250 * some element can be missed or duplicated.
5413c40d 251 *
252 * This function is called by common lookup or update operations in the
253 * dictionary so that the hash table automatically migrates from H1 to H2
254 * while it is actively used. */
255static void _dictRehashStep(dict *d) {
256 if (d->iterators == 0) dictRehash(d,1);
ed9b544e 257}
258
259/* Add an element to the target hash table */
5413c40d 260int dictAdd(dict *d, void *key, void *val)
71a50956 261{
262 dictEntry *entry = dictAddRaw(d,key);
263
264 if (!entry) return DICT_ERR;
c0ba9ebe 265 dictSetVal(d, entry, val);
71a50956 266 return DICT_OK;
267}
268
269/* Low level add. This function adds the entry but instead of setting
270 * a value returns the dictEntry structure to the user, that will make
271 * sure to fill the value field as he wishes.
272 *
273 * This function is also directly expoed to user API to be called
274 * mainly in order to store non-pointers inside the hash value, example:
275 *
276 * entry = dictAddRaw(dict,mykey);
aa9a61cc 277 * if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
71a50956 278 *
279 * Return values:
280 *
281 * If key already exists NULL is returned.
282 * If key was added, the hash entry is returned to be manipulated by the caller.
283 */
284dictEntry *dictAddRaw(dict *d, void *key)
ed9b544e 285{
286 int index;
287 dictEntry *entry;
5413c40d 288 dictht *ht;
289
290 if (dictIsRehashing(d)) _dictRehashStep(d);
ed9b544e 291
292 /* Get the index of the new element, or -1 if
293 * the element already exists. */
5413c40d 294 if ((index = _dictKeyIndex(d, key)) == -1)
71a50956 295 return NULL;
ed9b544e 296
6a7841eb 297 /* Allocate the memory and store the new entry */
5413c40d 298 ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
d9dd352b 299 entry = zmalloc(sizeof(*entry));
ed9b544e 300 entry->next = ht->table[index];
301 ht->table[index] = entry;
5413c40d 302 ht->used++;
ed9b544e 303
304 /* Set the hash entry fields. */
c0ba9ebe 305 dictSetKey(d, entry, key);
71a50956 306 return entry;
ed9b544e 307}
308
121796f7 309/* Add an element, discarding the old if the key already exists.
310 * Return 1 if the key was added from scratch, 0 if there was already an
311 * element with such key and dictReplace() just performed a value update
312 * operation. */
5413c40d 313int dictReplace(dict *d, void *key, void *val)
ed9b544e 314{
2069d06a 315 dictEntry *entry, auxentry;
ed9b544e 316
317 /* Try to add the element. If the key
318 * does not exists dictAdd will suceed. */
5413c40d 319 if (dictAdd(d, key, val) == DICT_OK)
121796f7 320 return 1;
ed9b544e 321 /* It already exists, get the entry */
5413c40d 322 entry = dictFind(d, key);
2069d06a 323 /* Set the new value and free the old one. Note that it is important
324 * to do that in this order, as the value may just be exactly the same
325 * as the previous one. In this context, think to reference counting,
326 * you want to increment (set), and then decrement (free), and not the
327 * reverse. */
328 auxentry = *entry;
c0ba9ebe 329 dictSetVal(d, entry, val);
330 dictFreeVal(d, &auxentry);
121796f7 331 return 0;
ed9b544e 332}
333
71a50956 334/* dictReplaceRaw() is simply a version of dictAddRaw() that always
335 * returns the hash entry of the specified key, even if the key already
336 * exists and can't be added (in that case the entry of the already
337 * existing key is returned.)
338 *
339 * See dictAddRaw() for more information. */
340dictEntry *dictReplaceRaw(dict *d, void *key) {
341 dictEntry *entry = dictFind(d,key);
342
343 return entry ? entry : dictAddRaw(d,key);
344}
345
ed9b544e 346/* Search and remove an element */
5413c40d 347static int dictGenericDelete(dict *d, const void *key, int nofree)
ed9b544e 348{
5413c40d 349 unsigned int h, idx;
ed9b544e 350 dictEntry *he, *prevHe;
5413c40d 351 int table;
ed9b544e 352
5413c40d 353 if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */
354 if (dictIsRehashing(d)) _dictRehashStep(d);
355 h = dictHashKey(d, key);
ed9b544e 356
5413c40d 357 for (table = 0; table <= 1; table++) {
358 idx = h & d->ht[table].sizemask;
359 he = d->ht[table].table[idx];
360 prevHe = NULL;
361 while(he) {
c0ba9ebe 362 if (dictCompareKeys(d, key, he->key)) {
5413c40d 363 /* Unlink the element from the list */
364 if (prevHe)
365 prevHe->next = he->next;
366 else
367 d->ht[table].table[idx] = he->next;
368 if (!nofree) {
c0ba9ebe 369 dictFreeKey(d, he);
370 dictFreeVal(d, he);
5413c40d 371 }
d9dd352b 372 zfree(he);
5413c40d 373 d->ht[table].used--;
374 return DICT_OK;
ed9b544e 375 }
5413c40d 376 prevHe = he;
377 he = he->next;
ed9b544e 378 }
5413c40d 379 if (!dictIsRehashing(d)) break;
ed9b544e 380 }
381 return DICT_ERR; /* not found */
382}
383
384int dictDelete(dict *ht, const void *key) {
385 return dictGenericDelete(ht,key,0);
386}
387
388int dictDeleteNoFree(dict *ht, const void *key) {
389 return dictGenericDelete(ht,key,1);
390}
391
5413c40d 392/* Destroy an entire dictionary */
393int _dictClear(dict *d, dictht *ht)
ed9b544e 394{
f2923bec 395 unsigned long i;
ed9b544e 396
397 /* Free all the elements */
398 for (i = 0; i < ht->size && ht->used > 0; i++) {
399 dictEntry *he, *nextHe;
400
401 if ((he = ht->table[i]) == NULL) continue;
402 while(he) {
403 nextHe = he->next;
c0ba9ebe 404 dictFreeKey(d, he);
405 dictFreeVal(d, he);
d9dd352b 406 zfree(he);
ed9b544e 407 ht->used--;
408 he = nextHe;
409 }
410 }
411 /* Free the table and the allocated cache structure */
d9dd352b 412 zfree(ht->table);
ed9b544e 413 /* Re-initialize the table */
414 _dictReset(ht);
415 return DICT_OK; /* never fails */
416}
417
418/* Clear & Release the hash table */
5413c40d 419void dictRelease(dict *d)
ed9b544e 420{
5413c40d 421 _dictClear(d,&d->ht[0]);
422 _dictClear(d,&d->ht[1]);
d9dd352b 423 zfree(d);
ed9b544e 424}
425
5413c40d 426dictEntry *dictFind(dict *d, const void *key)
ed9b544e 427{
428 dictEntry *he;
5413c40d 429 unsigned int h, idx, table;
430
431 if (d->ht[0].size == 0) return NULL; /* We don't have a table at all */
432 if (dictIsRehashing(d)) _dictRehashStep(d);
433 h = dictHashKey(d, key);
434 for (table = 0; table <= 1; table++) {
435 idx = h & d->ht[table].sizemask;
436 he = d->ht[table].table[idx];
437 while(he) {
c0ba9ebe 438 if (dictCompareKeys(d, key, he->key))
5413c40d 439 return he;
440 he = he->next;
441 }
442 if (!dictIsRehashing(d)) return NULL;
ed9b544e 443 }
444 return NULL;
445}
446
58e1c9c1 447void *dictFetchValue(dict *d, const void *key) {
448 dictEntry *he;
449
450 he = dictFind(d,key);
c0ba9ebe 451 return he ? dictGetVal(he) : NULL;
58e1c9c1 452}
453
5413c40d 454dictIterator *dictGetIterator(dict *d)
ed9b544e 455{
d9dd352b 456 dictIterator *iter = zmalloc(sizeof(*iter));
ed9b544e 457
5413c40d 458 iter->d = d;
459 iter->table = 0;
ed9b544e 460 iter->index = -1;
4b53e736 461 iter->safe = 0;
ed9b544e 462 iter->entry = NULL;
463 iter->nextEntry = NULL;
464 return iter;
465}
466
4b53e736 467dictIterator *dictGetSafeIterator(dict *d) {
468 dictIterator *i = dictGetIterator(d);
469
470 i->safe = 1;
471 return i;
472}
473
ed9b544e 474dictEntry *dictNext(dictIterator *iter)
475{
476 while (1) {
477 if (iter->entry == NULL) {
5413c40d 478 dictht *ht = &iter->d->ht[iter->table];
4b53e736 479 if (iter->safe && iter->index == -1 && iter->table == 0)
480 iter->d->iterators++;
ed9b544e 481 iter->index++;
5413c40d 482 if (iter->index >= (signed) ht->size) {
483 if (dictIsRehashing(iter->d) && iter->table == 0) {
484 iter->table++;
485 iter->index = 0;
486 ht = &iter->d->ht[1];
487 } else {
488 break;
489 }
490 }
491 iter->entry = ht->table[iter->index];
ed9b544e 492 } else {
493 iter->entry = iter->nextEntry;
494 }
495 if (iter->entry) {
496 /* We need to save the 'next' here, the iterator user
497 * may delete the entry we are returning. */
498 iter->nextEntry = iter->entry->next;
499 return iter->entry;
500 }
501 }
502 return NULL;
503}
504
505void dictReleaseIterator(dictIterator *iter)
506{
4b53e736 507 if (iter->safe && !(iter->index == -1 && iter->table == 0))
508 iter->d->iterators--;
d9dd352b 509 zfree(iter);
ed9b544e 510}
511
512/* Return a random entry from the hash table. Useful to
513 * implement randomized algorithms */
5413c40d 514dictEntry *dictGetRandomKey(dict *d)
ed9b544e 515{
5413c40d 516 dictEntry *he, *orighe;
ed9b544e 517 unsigned int h;
518 int listlen, listele;
519
5413c40d 520 if (dictSize(d) == 0) return NULL;
521 if (dictIsRehashing(d)) _dictRehashStep(d);
522 if (dictIsRehashing(d)) {
523 do {
524 h = random() % (d->ht[0].size+d->ht[1].size);
525 he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :
526 d->ht[0].table[h];
527 } while(he == NULL);
528 } else {
529 do {
530 h = random() & d->ht[0].sizemask;
531 he = d->ht[0].table[h];
532 } while(he == NULL);
533 }
ed9b544e 534
535 /* Now we found a non empty bucket, but it is a linked
536 * list and we need to get a random element from the list.
5413c40d 537 * The only sane way to do so is counting the elements and
ed9b544e 538 * select a random index. */
539 listlen = 0;
5413c40d 540 orighe = he;
ed9b544e 541 while(he) {
542 he = he->next;
543 listlen++;
544 }
545 listele = random() % listlen;
5413c40d 546 he = orighe;
ed9b544e 547 while(listele--) he = he->next;
548 return he;
549}
550
551/* ------------------------- private functions ------------------------------ */
552
553/* Expand the hash table if needed */
5413c40d 554static int _dictExpandIfNeeded(dict *d)
ed9b544e 555{
3856f147 556 /* Incremental rehashing already in progress. Return. */
5413c40d 557 if (dictIsRehashing(d)) return DICT_OK;
3856f147 558
559 /* If the hash table is empty expand it to the intial size. */
560 if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);
561
562 /* If we reached the 1:1 ratio, and we are allowed to resize the hash
563 * table (global setting) or we should avoid it but the ratio between
564 * elements/buckets is over the "safe" threshold, we resize doubling
565 * the number of buckets. */
566 if (d->ht[0].used >= d->ht[0].size &&
567 (dict_can_resize ||
568 d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
569 {
5413c40d 570 return dictExpand(d, ((d->ht[0].size > d->ht[0].used) ?
571 d->ht[0].size : d->ht[0].used)*2);
3856f147 572 }
ed9b544e 573 return DICT_OK;
574}
575
576/* Our hash table capability is a power of two */
f2923bec 577static unsigned long _dictNextPower(unsigned long size)
ed9b544e 578{
f2923bec 579 unsigned long i = DICT_HT_INITIAL_SIZE;
ed9b544e 580
f2923bec 581 if (size >= LONG_MAX) return LONG_MAX;
ed9b544e 582 while(1) {
583 if (i >= size)
584 return i;
585 i *= 2;
586 }
587}
588
589/* Returns the index of a free slot that can be populated with
590 * an hash entry for the given 'key'.
5413c40d 591 * If the key already exists, -1 is returned.
592 *
593 * Note that if we are in the process of rehashing the hash table, the
594 * index is always returned in the context of the second (new) hash table. */
595static int _dictKeyIndex(dict *d, const void *key)
ed9b544e 596{
8ca3e9d1 597 unsigned int h, idx, table;
ed9b544e 598 dictEntry *he;
599
600 /* Expand the hashtable if needed */
5413c40d 601 if (_dictExpandIfNeeded(d) == DICT_ERR)
ed9b544e 602 return -1;
603 /* Compute the key hash value */
5413c40d 604 h = dictHashKey(d, key);
8ca3e9d1 605 for (table = 0; table <= 1; table++) {
606 idx = h & d->ht[table].sizemask;
607 /* Search if this slot does not already contain the given key */
608 he = d->ht[table].table[idx];
609 while(he) {
c0ba9ebe 610 if (dictCompareKeys(d, key, he->key))
8ca3e9d1 611 return -1;
612 he = he->next;
613 }
614 if (!dictIsRehashing(d)) break;
ed9b544e 615 }
8ca3e9d1 616 return idx;
ed9b544e 617}
618
5413c40d 619void dictEmpty(dict *d) {
620 _dictClear(d,&d->ht[0]);
621 _dictClear(d,&d->ht[1]);
622 d->rehashidx = -1;
623 d->iterators = 0;
ed9b544e 624}
625
626#define DICT_STATS_VECTLEN 50
5413c40d 627static void _dictPrintStatsHt(dictht *ht) {
f2923bec 628 unsigned long i, slots = 0, chainlen, maxchainlen = 0;
629 unsigned long totchainlen = 0;
630 unsigned long clvector[DICT_STATS_VECTLEN];
ed9b544e 631
632 if (ht->used == 0) {
633 printf("No stats available for empty dictionaries\n");
634 return;
635 }
636
637 for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
638 for (i = 0; i < ht->size; i++) {
639 dictEntry *he;
640
641 if (ht->table[i] == NULL) {
642 clvector[0]++;
643 continue;
644 }
645 slots++;
646 /* For each hash entry on this slot... */
647 chainlen = 0;
648 he = ht->table[i];
649 while(he) {
650 chainlen++;
651 he = he->next;
652 }
653 clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
654 if (chainlen > maxchainlen) maxchainlen = chainlen;
655 totchainlen += chainlen;
656 }
657 printf("Hash table stats:\n");
f2923bec 658 printf(" table size: %ld\n", ht->size);
659 printf(" number of elements: %ld\n", ht->used);
660 printf(" different slots: %ld\n", slots);
661 printf(" max chain length: %ld\n", maxchainlen);
ed9b544e 662 printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots);
663 printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots);
664 printf(" Chain length distribution:\n");
665 for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
666 if (clvector[i] == 0) continue;
f2923bec 667 printf(" %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100);
ed9b544e 668 }
669}
670
5413c40d 671void dictPrintStats(dict *d) {
672 _dictPrintStatsHt(&d->ht[0]);
673 if (dictIsRehashing(d)) {
674 printf("-- Rehashing into ht[1]:\n");
675 _dictPrintStatsHt(&d->ht[1]);
676 }
677}
678
884d4b39 679void dictEnableResize(void) {
680 dict_can_resize = 1;
681}
682
683void dictDisableResize(void) {
dae121d9 684 dict_can_resize = 0;
884d4b39 685}
686
e0be2289 687#if 0
688
689/* The following are just example hash table types implementations.
690 * Not useful for Redis so they are commented out.
691 */
692
ed9b544e 693/* ----------------------- StringCopy Hash Table Type ------------------------*/
694
695static unsigned int _dictStringCopyHTHashFunction(const void *key)
696{
697 return dictGenHashFunction(key, strlen(key));
698}
699
b1e0bd4b 700static void *_dictStringDup(void *privdata, const void *key)
ed9b544e 701{
702 int len = strlen(key);
d9dd352b 703 char *copy = zmalloc(len+1);
ed9b544e 704 DICT_NOTUSED(privdata);
705
706 memcpy(copy, key, len);
707 copy[len] = '\0';
708 return copy;
709}
710
ed9b544e 711static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1,
712 const void *key2)
713{
714 DICT_NOTUSED(privdata);
715
716 return strcmp(key1, key2) == 0;
717}
718
b1e0bd4b 719static void _dictStringDestructor(void *privdata, void *key)
ed9b544e 720{
721 DICT_NOTUSED(privdata);
722
d9dd352b 723 zfree(key);
ed9b544e 724}
725
726dictType dictTypeHeapStringCopyKey = {
b1e0bd4b
BK
727 _dictStringCopyHTHashFunction, /* hash function */
728 _dictStringDup, /* key dup */
729 NULL, /* val dup */
730 _dictStringCopyHTKeyCompare, /* key compare */
731 _dictStringDestructor, /* key destructor */
732 NULL /* val destructor */
ed9b544e 733};
734
735/* This is like StringCopy but does not auto-duplicate the key.
736 * It's used for intepreter's shared strings. */
737dictType dictTypeHeapStrings = {
b1e0bd4b
BK
738 _dictStringCopyHTHashFunction, /* hash function */
739 NULL, /* key dup */
740 NULL, /* val dup */
741 _dictStringCopyHTKeyCompare, /* key compare */
742 _dictStringDestructor, /* key destructor */
743 NULL /* val destructor */
ed9b544e 744};
745
746/* This is like StringCopy but also automatically handle dynamic
747 * allocated C strings as values. */
748dictType dictTypeHeapStringCopyKeyValue = {
b1e0bd4b
BK
749 _dictStringCopyHTHashFunction, /* hash function */
750 _dictStringDup, /* key dup */
751 _dictStringDup, /* val dup */
752 _dictStringCopyHTKeyCompare, /* key compare */
753 _dictStringDestructor, /* key destructor */
754 _dictStringDestructor, /* val destructor */
ed9b544e 755};
e0be2289 756#endif