Use @kbd to denote user input.
(Language and Grammar): ANSIfy the example.
Adjust its layout for info/notinfo.
(Location Tracking Calc): Output error messages to stderr.
Output locations in a more GNUtically correct way.
Fix a couple of Englishos.
Adjust @group/@end group pairs.
+2001-11-12 Akim Demaille <akim@epita.fr>
+
+ * doc/bison.texinfo: Use `$' as shell prompt, not `%'.
+ Use @kbd to denote user input.
+ (Language and Grammar): ANSIfy the example.
+ Adjust its layout for info/notinfo.
+ (Location Tracking Calc): Output error messages to stderr.
+ Output locations in a more GNUtically correct way.
+ Fix a couple of Englishos.
+ Adjust @group/@end group pairs.
+
2001-11-12 Akim Demaille <akim@epita.fr>
%expext was not functioning at all.
2001-11-12 Akim Demaille <akim@epita.fr>
%expext was not functioning at all.
# This is necessary so that .o files in LIBOBJS are also built via
# the ANSI2KNR-filtering rules.
# This is necessary so that .o files in LIBOBJS are also built via
# the ANSI2KNR-filtering rules.
-LIBOBJS=`echo $LIBOBJS|sed 's/\.o /\$U.o /g;s/\.o$/\$U.o/'`
-AC_SUBST(LIBOBJS)
+LIB@&t@OBJS=`echo $LIB@&t@OBJS|sed 's/\.o /\$U.o /g;s/\.o$/\$U.o/'`
+AC_SUBST(LIB@&t@OBJS)
AC_OUTPUT([Makefile
config/Makefile
AC_OUTPUT([Makefile
config/Makefile
Here is a simple C function subdivided into tokens:
Here is a simple C function subdivided into tokens:
@example
int /* @r{keyword `int'} */
@example
int /* @r{keyword `int'} */
-square (x) /* @r{identifier, open-paren,} */
- /* @r{identifier, close-paren} */
- int x; /* @r{keyword `int', identifier, semicolon} */
+square (int x) /* @r{identifier, open-paren, identifier,}
+ @r{identifier, close-paren} */
- return x * x; /* @r{keyword `return', identifier,} */
- /* @r{asterisk, identifier, semicolon} */
+ return x * x; /* @r{keyword `return', identifier, asterisk,
+ identifier, semicolon} */
@} /* @r{close-brace} */
@end example
@} /* @r{close-brace} */
@end example
+@end ifinfo
+@ifnotinfo
+@example
+int /* @r{keyword `int'} */
+square (int x) /* @r{identifier, open-paren, identifier, identifier, close-paren} */
+@{ /* @r{open-brace} */
+ return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
+@} /* @r{close-brace} */
+@end example
+@end ifnotinfo
The syntactic groupings of C include the expression, the statement, the
declaration, and the function definition. These are represented in the
The syntactic groupings of C include the expression, the statement, the
declaration, and the function definition. These are represented in the
@example
@group
# @r{List files in current directory.}
@example
@group
# @r{List files in current directory.}
rpcalc.tab.c rpcalc.y
@end group
@group
# @r{Compile the Bison parser.}
# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
rpcalc.tab.c rpcalc.y
@end group
@group
# @r{Compile the Bison parser.}
# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
-% cc rpcalc.tab.c -lm -o rpcalc
+$ @kbd{cc rpcalc.tab.c -lm -o rpcalc}
@end group
@group
# @r{List files again.}
@end group
@group
# @r{List files again.}
rpcalc rpcalc.tab.c rpcalc.y
@end group
@end example
rpcalc rpcalc.tab.c rpcalc.y
@end group
@end example
example session using @code{rpcalc}.
@example
example session using @code{rpcalc}.
@example
+$ @kbd{rpcalc}
+@kbd{4 9 +}
-3 7 + 3 4 5 * + - n @r{Note the unary minus, @samp{n}}
+@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
-3 4 ^ @r{Exponentiation}
+@kbd{3 4 ^} @r{Exponentiation}
-^D @r{End-of-file indicator}
-%
+@kbd{^D} @r{End-of-file indicator}
+$
@end example
@node Infix Calc
@end example
@node Infix Calc
-% calc
-4 + 4.5 - (34/(8*3+-3))
+$ @kbd{calc}
+@kbd{4 + 4.5 - (34/(8*3+-3))}
@cindex @code{ltcalc}
@cindex calculator, location tracking
@cindex @code{ltcalc}
@cindex calculator, location tracking
-This example extends the infix notation calculator with location tracking.
-This feature will be used to improve error reporting, and provide better
-error messages.
-
-For the sake of clarity, we will switch for this example to an integer
-calculator, since most of the work needed to use locations will be done
-in the lexical analyser.
+This example extends the infix notation calculator with location
+tracking. This feature will be used to improve the error messages. For
+the sake of clarity, this example is a simple integer calculator, since
+most of the work needed to use locations will be done in the lexical
+analyser.
@menu
* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
@menu
* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
@node Ltcalc Decls
@subsection Declarations for @code{ltcalc}
@node Ltcalc Decls
@subsection Declarations for @code{ltcalc}
-The C and Bison declarations for the location tracking calculator are the same
-as the declarations for the infix notation calculator.
+The C and Bison declarations for the location tracking calculator are
+the same as the declarations for the infix notation calculator.
@example
/* Location tracking calculator. */
@example
/* Location tracking calculator. */
%% /* Grammar follows */
@end example
%% /* Grammar follows */
@end example
-In the code above, there are no declarations specific to locations. Defining
-a data type for storing locations is not needed: we will use the type provided
-by default (@pxref{Location Type, ,Data Types of Locations}), which is a four
-member structure with the following integer fields: @code{first_line},
-@code{first_column}, @code{last_line} and @code{last_column}.
+@noindent
+Note there are no declarations specific to locations. Defining a data
+type for storing locations is not needed: we will use the type provided
+by default (@pxref{Location Type, ,Data Types of Locations}), which is a
+four member structure with the following integer fields:
+@code{first_line}, @code{first_column}, @code{last_line} and
+@code{last_column}.
@node Ltcalc Rules
@subsection Grammar Rules for @code{ltcalc}
@node Ltcalc Rules
@subsection Grammar Rules for @code{ltcalc}
-Whether you choose to handle locations or not has no effect on the syntax of
-your language. Therefore, grammar rules for this example will be very close to
-those of the previous example: we will only modify them to benefit from the new
-informations we will have.
+Whether handling locations or not has no effect on the syntax of your
+language. Therefore, grammar rules for this example will be very close
+to those of the previous example: we will only modify them to benefit
+from the new information.
-Here, we will use locations to report divisions by zero, and locate the wrong
-expressions or subexpressions.
+Here, we will use locations to report divisions by zero, and locate the
+wrong expressions or subexpressions.
| exp '-' exp @{ $$ = $1 - $3; @}
| exp '*' exp @{ $$ = $1 * $3; @}
@end group
| exp '-' exp @{ $$ = $1 - $3; @}
| exp '*' exp @{ $$ = $1 * $3; @}
@end group
@{
if ($3)
$$ = $1 / $3;
else
@{
$$ = 1;
@{
if ($3)
$$ = $1 / $3;
else
@{
$$ = 1;
- printf("Division by zero, l%d,c%d-l%d,c%d",
- @@3.first_line, @@3.first_column,
- @@3.last_line, @@3.last_column);
+ fprintf (stderr, "%d.%d-%d.%d: division by zero",
+ @@3.first_line, @@3.first_column,
+ @@3.last_line, @@3.last_column);
using the pseudo-variables @code{@@@var{n}} for rule components, and the
pseudo-variable @code{@@$} for groupings.
using the pseudo-variables @code{@@@var{n}} for rule components, and the
pseudo-variable @code{@@$} for groupings.
-In this example, we never assign a value to @code{@@$}, because the
-output parser can do this automatically. By default, before executing
-the C code of each action, @code{@@$} is set to range from the beginning
-of @code{@@1} to the end of @code{@@@var{n}}, for a rule with @var{n}
-components.
-
-Of course, this behavior can be redefined (@pxref{Location Default
-Action, , Default Action for Locations}), and for very specific rules,
-@code{@@$} can be computed by hand.
+We don't need to assign a value to @code{@@$}: the output parser does it
+automatically. By default, before executing the C code of each action,
+@code{@@$} is set to range from the beginning of @code{@@1} to the end
+of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
+can be redefined (@pxref{Location Default Action, , Default Action for
+Locations}), and for very specific rules, @code{@@$} can be computed by
+hand.
@node Ltcalc Lexer
@subsection The @code{ltcalc} Lexical Analyzer.
@node Ltcalc Lexer
@subsection The @code{ltcalc} Lexical Analyzer.
-Until now, we relied on Bison's defaults to enable location tracking. The next
-step is to rewrite the lexical analyser, and make it able to feed the parser
-with locations of tokens, as he already does for semantic values.
+Until now, we relied on Bison's defaults to enable location
+tracking. The next step is to rewrite the lexical analyser, and make it
+able to feed the parser with the token locations, as it already does for
+semantic values.
-To do so, we must take into account every single character of the input text,
-to avoid the computed locations of being fuzzy or wrong:
+To this end, we must take into account every single character of the
+input text, to avoid the computed locations of being fuzzy or wrong:
-Basically, the lexical analyzer does the same processing as before: it skips
-blanks and tabs, and reads numbers or single-character tokens. In addition
-to this, it updates the @code{yylloc} global variable (of type @code{YYLTYPE}),
-where the location of tokens is stored.
+Basically, the lexical analyzer performs the same processing as before:
+it skips blanks and tabs, and reads numbers or single-character tokens.
+In addition, it updates @code{yylloc}, the global variable (of type
+@code{YYLTYPE}) containing the token's location.
-Now, each time this function returns a token, the parser has it's number as
-well as it's semantic value, and it's position in the text. The last needed
-change is to initialize @code{yylloc}, for example in the controlling
-function:
+Now, each time this function returns a token, the parser has its number
+as well as its semantic value, and its location in the text. The last
+needed change is to initialize @code{yylloc}, for example in the
+controlling function:
yylloc.first_column = yylloc.last_column = 0;
return yyparse ();
@}
yylloc.first_column = yylloc.last_column = 0;
return yyparse ();
@}
-Remember that computing locations is not a matter of syntax. Every character
-must be associated to a location update, whether it is in valid input, in
-comments, in literal strings, and so on...
+Remember that computing locations is not a matter of syntax. Every
+character must be associated to a location update, whether it is in
+valid input, in comments, in literal strings, and so on.
@node Multi-function Calc
@section Multi-Function Calculator: @code{mfcalc}
@node Multi-function Calc
@section Multi-Function Calculator: @code{mfcalc}
Here is a sample session with the multi-function calculator:
@example
Here is a sample session with the multi-function calculator:
@example
-% mfcalc
-pi = 3.141592653589
+$ @kbd{mfcalc}
+@kbd{pi = 3.141592653589}
+@kbd{alpha = beta1 = 2.3}
@end example
Note that multiple assignment and nested function calls are permitted.
@end example
Note that multiple assignment and nested function calls are permitted.