This manual (@value{UPDATED}) is for @acronym{GNU} Bison (version
@value{VERSION}), the @acronym{GNU} parser generator.
-Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
-1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free
+Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998, 1999,
+2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free
Software Foundation, Inc.
@quotation
Permission is granted to copy, distribute and/or modify this document
under the terms of the @acronym{GNU} Free Documentation License,
-Version 1.2 or any later version published by the Free Software
+Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, with the Front-Cover texts
being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
(a) below. A copy of the license is included in the section entitled
* Mid-Rule Actions:: Most actions go at the end of a rule.
This says when, why and how to use the exceptional
action in the middle of a rule.
+* Named References:: Using named references in actions.
Tracking Locations
@cindex introduction
@dfn{Bison} is a general-purpose parser generator that converts an
-annotated context-free grammar into a deterministic or @acronym{GLR}
-parser employing @acronym{LALR}(1), @acronym{IELR}(1), or canonical
-@acronym{LR}(1) parser tables.
+annotated context-free grammar into a deterministic @acronym{LR} or
+generalized @acronym{LR} (@acronym{GLR}) parser employing
+@acronym{LALR}(1), @acronym{IELR}(1), or canonical @acronym{LR}(1)
+parser tables.
Once you are proficient with Bison, you can use it to develop a wide
range of language parsers, from those used in simple desk calculators to
complex programming languages.
* Mid-Rule Actions:: Most actions go at the end of a rule.
This says when, why and how to use the exceptional
action in the middle of a rule.
+* Named References:: Using named references in actions.
@end menu
@node Value Type
@cindex action
@vindex $$
@vindex $@var{n}
+@vindex $@var{name}
+@vindex $[@var{name}]
An action accompanies a syntactic rule and contains C code to be executed
each time an instance of that rule is recognized. The task of most actions
The C code in an action can refer to the semantic values of the components
matched by the rule with the construct @code{$@var{n}}, which stands for
the value of the @var{n}th component. The semantic value for the grouping
-being constructed is @code{$$}. Bison translates both of these
+being constructed is @code{$$}. In addition, the semantic values of
+symbols can be accessed with the named references construct
+@code{$@var{name}} or @code{$[@var{name}]}. Bison translates both of these
constructs into expressions of the appropriate type when it copies the
-actions into the parser file. @code{$$} is translated to a modifiable
+actions into the parser file. @code{$$} (or @code{$@var{name}}, when it
+stands for the current grouping) is translated to a modifiable
lvalue, so it can be assigned to.
Here is a typical example:
@end group
@end example
+Or, in terms of named references:
+
+@example
+@group
+exp[result]: @dots{}
+ | exp[left] '+' exp[right]
+ @{ $result = $left + $right; @}
+@end group
+@end example
+
@noindent
This rule constructs an @code{exp} from two smaller @code{exp} groupings
connected by a plus-sign token. In the action, @code{$1} and @code{$3}
+(@code{$left} and @code{$right})
refer to the semantic values of the two component @code{exp} groupings,
which are the first and third symbols on the right hand side of the rule.
-The sum is stored into @code{$$} so that it becomes the semantic value of
+The sum is stored into @code{$$} (@code{$result}) so that it becomes the
+semantic value of
the addition-expression just recognized by the rule. If there were a
useful semantic value associated with the @samp{+} token, it could be
referred to as @code{$2}.
+@xref{Named References,,Using Named References}, for more information
+about using the named references construct.
+
Note that the vertical-bar character @samp{|} is really a rule
separator, and actions are attached to a single rule. This is a
difference with tools like Flex, for which @samp{|} stands for either
Now Bison can execute the action in the rule for @code{subroutine} without
deciding which rule for @code{compound} it will eventually use.
+@node Named References
+@subsection Using Named References
+@cindex named references
+
+While every semantic value can be accessed with positional references
+@code{$@var{n}} and @code{$$}, it's often much more convenient to refer to
+them by name. First of all, original symbol names may be used as named
+references. For example:
+
+@example
+@group
+invocation: op '(' args ')'
+ @{ $invocation = new_invocation ($op, $args, @@invocation); @}
+@end group
+@end example
+
+@noindent
+The positional @code{$$}, @code{@@$}, @code{$n}, and @code{@@n} can be
+mixed with @code{$name} and @code{@@name} arbitrarily. For example:
+
+@example
+@group
+invocation: op '(' args ')'
+ @{ $$ = new_invocation ($op, $args, @@$); @}
+@end group
+@end example
+
+@noindent
+However, sometimes regular symbol names are not sufficient due to
+ambiguities:
+
+@example
+@group
+exp: exp '/' exp
+ @{ $exp = $exp / $exp; @} // $exp is ambiguous.
+
+exp: exp '/' exp
+ @{ $$ = $1 / $exp; @} // One usage is ambiguous.
+
+exp: exp '/' exp
+ @{ $$ = $1 / $3; @} // No error.
+@end group
+@end example
+
+@noindent
+When ambiguity occurs, explicitly declared names may be used for values and
+locations. Explicit names are declared as a bracketed name after a symbol
+appearance in rule definitions. For example:
+@example
+@group
+exp[result]: exp[left] '/' exp[right]
+ @{ $result = $left / $right; @}
+@end group
+@end example
+
+@noindent
+Explicit names may be declared for RHS and for LHS symbols as well. In order
+to access a semantic value generated by a mid-rule action, an explicit name
+may also be declared by putting a bracketed name after the closing brace of
+the mid-rule action code:
+@example
+@group
+exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
+ @{ $res = $left + $right; @}
+@end group
+@end example
+
+@noindent
+
+In references, in order to specify names containing dots and dashes, an explicit
+bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
+@example
+@group
+if-stmt: IF '(' expr ')' THEN then.stmt ';'
+ @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
+@end group
+@end example
+
+It often happens that named references are followed by a dot, dash or other
+C punctuation marks and operators. By default, Bison will read
+@code{$name.suffix} as a reference to symbol value @code{$name} followed by
+@samp{.suffix}, i.e., an access to the @samp{suffix} field of the semantic
+value. In order to force Bison to recognize @code{name.suffix} in its entirety
+as the name of a semantic value, bracketed syntax @code{$[name.suffix]}
+must be used.
+
+
@node Locations
@section Tracking Locations
@cindex location
@cindex actions, location
@vindex @@$
@vindex @@@var{n}
+@vindex @@@var{name}
+@vindex @@[@var{name}]
Actions are not only useful for defining language semantics, but also for
describing the behavior of the output parser with locations.
@code{@@@var{n}}, while the location of the left hand side grouping is
@code{@@$}.
+In addition, the named references construct @code{@@@var{name}} and
+@code{@@[@var{name}]} may also be used to address the symbol locations.
+@xref{Named References,,Using Named References}, for more information
+about using the named references construct.
+
Here is a basic example using the default data type for locations:
@example
@code{%expect-rr} declaration as well.
@end itemize
-Now Bison will warn you if you introduce an unexpected conflict, but
-will keep silent otherwise.
+Now Bison will report an error if you introduce an unexpected conflict,
+but will keep silent otherwise.
@node Start Decl
@subsection The Start-Symbol
@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
where Bison should generate it.
-Not all values of @var{qualifier} are available for all target languages:
+Not all @var{qualifier}s are accepted for all target languages.
+Unaccepted @var{qualifier}s produce an error.
+Some of the accepted @var{qualifier}s are:
@itemize @bullet
@item requires
@deffnx {Directive} %define @var{variable} @var{value}
@deffnx {Directive} %define @var{variable} "@var{value}"
Define a variable to adjust Bison's behavior.
-The possible choices for @var{variable}, as well as their meanings, depend on
-the selected target language and/or the parser skeleton (@pxref{Decl
-Summary,,%language}, @pxref{Decl Summary,,%skeleton}).
It is an error if a @var{variable} is defined by @code{%define} multiple
times, but see @ref{Bison Options,,-D @var{name}[=@var{value}]}.
Omitting @code{"@var{value}"} entirely is always equivalent to specifying
@code{""}.
-Some @var{variable}s may be used as Booleans.
+Some @var{variable}s take Boolean values.
In this case, Bison will complain if the variable definition does not meet one
of the following four conditions:
@item @code{@var{value}} is @code{false}.
@item @var{variable} is never defined.
-In this case, Bison selects a default value, which may depend on the selected
-target language and/or parser skeleton.
+In this case, Bison selects a default value.
@end enumerate
+What @var{variable}s are accepted, as well as their meanings and default
+values, depend on the selected target language and/or the parser
+skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
+Summary,,%skeleton}).
+Unaccepted @var{variable}s produce an error.
Some of the accepted @var{variable}s are:
@itemize @bullet
@item Default Value: @code{pull}
@end itemize
+@c ================================================== lr.default-reductions
+
@item lr.default-reductions
@cindex default reductions
@findex %define lr.default-reductions
@cindex delayed syntax errors
@cindex syntax errors delayed
+@cindex @acronym{LAC}
+@findex %nonassoc
@itemize @bullet
@item Language(s): all
-@item Purpose: Specifies the kind of states that are permitted to
+@item Purpose: Specify the kind of states that are permitted to
contain default reductions.
-That is, in such a state, Bison declares the reduction with the largest
-lookahead set to be the default reduction and then removes that
+That is, in such a state, Bison selects the reduction with the largest
+lookahead set to be the default parser action and then removes that
lookahead set.
-The advantages of default reductions are discussed below.
-The disadvantage is that, when the generated parser encounters a
-syntactically unacceptable token, the parser might then perform
-unnecessary default reductions before it can detect the syntax error.
-
-(This feature is experimental.
+(The ability to specify where default reductions should be used is
+experimental.
More user feedback will help to stabilize it.)
@item Accepted Values:
@itemize
@item @code{all}.
-For @acronym{LALR} and @acronym{IELR} parsers (@pxref{Decl
-Summary,,lr.type}) by default, all states are permitted to contain
-default reductions.
-The advantage is that parser table sizes can be significantly reduced.
-The reason Bison does not by default attempt to address the disadvantage
-of delayed syntax error detection is that this disadvantage is already
-inherent in @acronym{LALR} and @acronym{IELR} parser tables.
-That is, unlike in a canonical @acronym{LR} state, the lookahead sets of
-reductions in an @acronym{LALR} or @acronym{IELR} state can contain
-tokens that are syntactically incorrect for some left contexts.
+This is the traditional Bison behavior.
+The main advantage is a significant decrease in the size of the parser
+tables.
+The disadvantage is that, when the generated parser encounters a
+syntactically unacceptable token, the parser might then perform
+unnecessary default reductions before it can detect the syntax error.
+Such delayed syntax error detection is usually inherent in
+@acronym{LALR} and @acronym{IELR} parser tables anyway due to
+@acronym{LR} state merging (@pxref{Decl Summary,,lr.type}).
+Furthermore, the use of @code{%nonassoc} can contribute to delayed
+syntax error detection even in the case of canonical @acronym{LR}.
+As an experimental feature, delayed syntax error detection can be
+overcome in all cases by enabling @acronym{LAC} (@pxref{Decl
+Summary,,parse.lac}, for details, including a discussion of the effects
+of delayed syntax error detection).
@item @code{consistent}.
@cindex consistent states
A consistent state is a state that has only one possible action.
If that action is a reduction, then the parser does not need to request
a lookahead token from the scanner before performing that action.
-However, the parser only recognizes the ability to ignore the lookahead
-token when such a reduction is encoded as a default reduction.
-Thus, if default reductions are permitted in and only in consistent
-states, then a canonical @acronym{LR} parser reports a syntax error as
-soon as it @emph{needs} the syntactically unacceptable token from the
-scanner.
+However, the parser recognizes the ability to ignore the lookahead token
+in this way only when such a reduction is encoded as a default
+reduction.
+Thus, if default reductions are permitted only in consistent states,
+then a canonical @acronym{LR} parser that does not employ
+@code{%nonassoc} detects a syntax error as soon as it @emph{needs} the
+syntactically unacceptable token from the scanner.
@item @code{accepting}.
@cindex accepting state
-By default, the only default reduction permitted in a canonical
-@acronym{LR} parser is the accept action in the accepting state, which
-the parser reaches only after reading all tokens from the input.
-Thus, the default canonical @acronym{LR} parser reports a syntax error
-as soon as it @emph{reaches} the syntactically unacceptable token
-without performing any extra reductions.
+In the accepting state, the default reduction is actually the accept
+action.
+In this case, a canonical @acronym{LR} parser that does not employ
+@code{%nonassoc} detects a syntax error as soon as it @emph{reaches} the
+syntactically unacceptable token in the input.
+That is, it does not perform any extra reductions.
@end itemize
@item Default Value:
@end itemize
@end itemize
+@c ============================================ lr.keep-unreachable-states
+
@item lr.keep-unreachable-states
@findex %define lr.keep-unreachable-states
@end itemize
@end itemize
+@c ================================================== lr.type
+
@item lr.type
@findex %define lr.type
@cindex @acronym{LALR}
@item @code{canonical-lr}.
@cindex delayed syntax errors
@cindex syntax errors delayed
-The only advantage of canonical @acronym{LR} over @acronym{IELR} is
-that, for every left context of every canonical @acronym{LR} state, the
-set of tokens accepted by that state is the exact set of tokens that is
-syntactically acceptable in that left context.
-Thus, the only difference in parsing behavior is that the canonical
-@acronym{LR} parser can report a syntax error as soon as possible
-without performing any unnecessary reductions.
-@xref{Decl Summary,,lr.default-reductions}, for further details.
-Even when canonical @acronym{LR} behavior is ultimately desired,
-@acronym{IELR}'s elimination of duplicate conflicts should still
-facilitate the development of a grammar.
+@cindex @acronym{LAC}
+@findex %nonassoc
+While inefficient, canonical @acronym{LR} parser tables can be an
+interesting means to explore a grammar because they have a property that
+@acronym{IELR} and @acronym{LALR} tables do not.
+That is, if @code{%nonassoc} is not used and default reductions are left
+disabled (@pxref{Decl Summary,,lr.default-reductions}), then, for every
+left context of every canonical @acronym{LR} state, the set of tokens
+accepted by that state is guaranteed to be the exact set of tokens that
+is syntactically acceptable in that left context.
+It might then seem that an advantage of canonical @acronym{LR} parsers
+in production is that, under the above constraints, they are guaranteed
+to detect a syntax error as soon as possible without performing any
+unnecessary reductions.
+However, @acronym{IELR} parsers using @acronym{LAC} (@pxref{Decl
+Summary,,parse.lac}) are also able to achieve this behavior without
+sacrificing @code{%nonassoc} or default reductions.
@end itemize
@item Default Value: @code{lalr}
The parser namespace is @code{foo} and @code{yylex} is referenced as
@code{bar::lex}.
@end itemize
+
+@c ================================================== parse.lac
+@item parse.lac
+@findex %define parse.lac
+@cindex @acronym{LAC}
+@cindex lookahead correction
+
+@itemize
+@item Languages(s): C
+
+@item Purpose: Enable @acronym{LAC} (lookahead correction) to improve
+syntax error handling.
+
+Canonical @acronym{LR}, @acronym{IELR}, and @acronym{LALR} can suffer
+from a couple of problems upon encountering a syntax error. First, the
+parser might perform additional parser stack reductions before
+discovering the syntax error. Such reductions perform user semantic
+actions that are unexpected because they are based on an invalid token,
+and they cause error recovery to begin in a different syntactic context
+than the one in which the invalid token was encountered. Second, when
+verbose error messages are enabled (with @code{%error-verbose} or
+@code{#define YYERROR_VERBOSE}), the expected token list in the syntax
+error message can both contain invalid tokens and omit valid tokens.
+
+The culprits for the above problems are @code{%nonassoc}, default
+reductions in inconsistent states, and parser state merging. Thus,
+@acronym{IELR} and @acronym{LALR} suffer the most. Canonical
+@acronym{LR} can suffer only if @code{%nonassoc} is used or if default
+reductions are enabled for inconsistent states.
+
+@acronym{LAC} is a new mechanism within the parsing algorithm that
+completely solves these problems for canonical @acronym{LR},
+@acronym{IELR}, and @acronym{LALR} without sacrificing @code{%nonassoc},
+default reductions, or state mering. Conceptually, the mechanism is
+straight-forward. Whenever the parser fetches a new token from the
+scanner so that it can determine the next parser action, it immediately
+suspends normal parsing and performs an exploratory parse using a
+temporary copy of the normal parser state stack. During this
+exploratory parse, the parser does not perform user semantic actions.
+If the exploratory parse reaches a shift action, normal parsing then
+resumes on the normal parser stacks. If the exploratory parse reaches
+an error instead, the parser reports a syntax error. If verbose syntax
+error messages are enabled, the parser must then discover the list of
+expected tokens, so it performs a separate exploratory parse for each
+token in the grammar.
+
+There is one subtlety about the use of @acronym{LAC}. That is, when in
+a consistent parser state with a default reduction, the parser will not
+attempt to fetch a token from the scanner because no lookahead is needed
+to determine the next parser action. Thus, whether default reductions
+are enabled in consistent states (@pxref{Decl
+Summary,,lr.default-reductions}) affects how soon the parser detects a
+syntax error: when it @emph{reaches} an erroneous token or when it
+eventually @emph{needs} that token as a lookahead. The latter behavior
+is probably more intuitive, so Bison currently provides no way to
+achieve the former behavior while default reductions are fully enabled.
+
+Thus, when @acronym{LAC} is in use, for some fixed decision of whether
+to enable default reductions in consistent states, canonical
+@acronym{LR} and @acronym{IELR} behave exactly the same for both
+syntactically acceptable and syntactically unacceptable input. While
+@acronym{LALR} still does not support the full language-recognition
+power of canonical @acronym{LR} and @acronym{IELR}, @acronym{LAC} at
+least enables @acronym{LALR}'s syntax error handling to correctly
+reflect @acronym{LALR}'s language-recognition power.
+
+Because @acronym{LAC} requires many parse actions to be performed twice,
+it can have a performance penalty. However, not all parse actions must
+be performed twice. Specifically, during a series of default reductions
+in consistent states and shift actions, the parser never has to initiate
+an exploratory parse. Moreover, the most time-consuming tasks in a
+parse are often the file I/O, the lexical analysis performed by the
+scanner, and the user's semantic actions, but none of these are
+performed during the exploratory parse. Finally, the base of the
+temporary stack used during an exploratory parse is a pointer into the
+normal parser state stack so that the stack is never physically copied.
+In our experience, the performance penalty of @acronym{LAC} has proven
+insignificant for practical grammars.
+
+@item Accepted Values: @code{none}, @code{full}
+
+@item Default Value: @code{none}
+@end itemize
@end itemize
@end deffn
@xref{Push Decl, ,A Push Parser}.
@deftypefun yypstate *yypstate_new (void)
-The fuction will return a valid parser instance if there was memory available
+The function will return a valid parser instance if there was memory available
or 0 if no memory was available.
In impure mode, it will also return 0 if a parser instance is currently
allocated.
Algol 60 and is called the ``dangling @code{else}'' ambiguity.
To avoid warnings from Bison about predictable, legitimate shift/reduce
-conflicts, use the @code{%expect @var{n}} declaration. There will be no
-warning as long as the number of shift/reduce conflicts is exactly @var{n}.
+conflicts, use the @code{%expect @var{n}} declaration.
+There will be no warning as long as the number of shift/reduce conflicts
+is exactly @var{n}, and Bison will report an error if there is a
+different number.
@xref{Expect Decl, ,Suppressing Conflict Warnings}.
The definition of @code{if_stmt} above is solely to blame for the
Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
@c FIXME: C++ output.
-Because of semantical differences between C and C++, the deterministic
+Because of semantic differences between C and C++, the deterministic
parsers in C produced by Bison cannot grow when compiled
by C++ compilers. In this precise case (compiling a C parser as C++) you are
suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
@end table
A category can be turned off by prefixing its name with @samp{no-}. For
-instance, @option{-Wno-syntax} will hide the warnings about unused
-variables.
+instance, @option{-Wno-yacc} will hide the warnings about
+@acronym{POSIX} Yacc incompatibilities.
@end table
@noindent
@c - initial action
The C++ deterministic parser is selected using the skeleton directive,
-@samp{%skeleton "lalr1.c"}, or the synonymous command-line option
-@option{--skeleton=lalr1.c}.
+@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
+@option{--skeleton=lalr1.cc}.
@xref{Decl Summary}.
When run, @command{bison} will create several entities in the @samp{yy}
it describes an additional member of the parser class, and an
additional argument for its constructor.
-@defcv {Type} {parser} {semantic_value_type}
-@defcvx {Type} {parser} {location_value_type}
+@defcv {Type} {parser} {semantic_type}
+@defcvx {Type} {parser} {location_type}
The types for semantics value and locations.
@end defcv
+@defcv {Type} {parser} {token}
+A structure that contains (only) the definition of the tokens as the
+@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
+scanner should use @code{yy::parser::token::FOO}. The scanner can use
+@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
+(@pxref{Calc++ Scanner}).
+@end defcv
+
@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
Build a new parser object. There are no arguments by default, unless
@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
parsers, C++ parsers are always pure: there is no point in using the
@code{%define api.pure} directive. Therefore the interface is as follows.
-@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
+@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
Return the next token. Its type is the return value, its semantic
value and location being @var{yylval} and @var{yylloc}. Invocations of
@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
@noindent
Then we request the location tracking feature, and initialize the
-first location's file name. Afterwards new locations are computed
+first location's file name. Afterward new locations are computed
relatively to the previous locations: the file name will be
automatically propagated.
@deftypemethod {Lexer} {int} yylex ()
Return the next token. Its type is the return value, its semantic
-value and location are saved and returned by the ther methods in the
+value and location are saved and returned by the their methods in the
interface.
Use @code{%define lex_throws} to specify any uncaught exceptions.
@end deftypemethod
@deftypemethod {Lexer} {Object} getLVal ()
-Return the semantical value of the last token that yylex returned.
+Return the semantic value of the last token that yylex returned.
The return type can be changed using @code{%define stype
"@var{class-name}".}
@xref{Error Recovery}.
@end deffn
-@deffn {Statement} {return YYFAIL;}
-Print an error message and start error recovery.
-@xref{Error Recovery}.
-@end deffn
-
@deftypefn {Function} {boolean} recovering ()
Return whether error recovery is being done. In this state, the parser
reads token until it reaches a known state, and then restarts normal
@item
Java lacks unions, so @code{%union} has no effect. Instead, semantic
values have a common base type: @code{Object} or as specified by
-@code{%define stype}. Angle backets on @code{%token}, @code{type},
+@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
an union. The type of @code{$$}, even with angle brackets, is the base
type since Java casts are not allow on the left-hand side of assignments.
@pxref{Java Action Features}.
@item
-The prolog declarations have a different meaning than in C/C++ code.
+The prologue declarations have a different meaning than in C/C++ code.
@table @asis
@item @code{%code imports}
blocks are placed at the beginning of the Java source code. They may
side of the rule. @xref{Locations, , Locations Overview}.
@end deffn
+@deffn {Variable} @@@var{name}
+In an action, the location of a symbol addressed by name.
+@xref{Locations, , Locations Overview}.
+@end deffn
+
+@deffn {Variable} @@[@var{name}]
+In an action, the location of a symbol addressed by name.
+@xref{Locations, , Locations Overview}.
+@end deffn
+
@deffn {Variable} $$
In an action, the semantic value of the left-hand side of the rule.
@xref{Actions}.
right-hand side of the rule. @xref{Actions}.
@end deffn
+@deffn {Variable} $@var{name}
+In an action, the semantic value of a symbol addressed by name.
+@xref{Actions}.
+@end deffn
+
+@deffn {Variable} $[@var{name}]
+In an action, the semantic value of a symbol addressed by name.
+@xref{Actions}.
+@end deffn
+
@deffn {Delimiter} %%
Delimiter used to separate the grammar rule section from the
Bison declarations section or the epilogue.
@item Input stream
A continuous flow of data between devices or programs.
+@item @acronym{LAC} (Lookahead Correction)
+A parsing mechanism that fixes the problem of delayed syntax error
+detection, which is caused by LR state merging, default reductions, and
+the use of @code{%nonassoc}. Delayed syntax error detection results in
+unexpected semantic actions, initiation of error recovery in the wrong
+syntactic context, and an incorrect list of expected tokens in a verbose
+syntax error message. @xref{Decl Summary,,parse.lac}.
+
@item Language construct
One of the typical usage schemas of the language. For example, one of
the constructs of the C language is the @code{if} statement.
@c fill-column: 76
@c End:
-@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
-@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
-@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
-@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
-@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
-@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex
-@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
-@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
-@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
-@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
-@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
-@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
-@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
-@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
-@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
-@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
-@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
-@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
-@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
-@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
-@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
-@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
-@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
-@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
-@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
-@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
-@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
-@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
-@c LocalWords: YYSTACK DVI fdl printindex IELR
+@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
+@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
+@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
+@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
+@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
+@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
+@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
+@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
+@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
+@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
+@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
+@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
+@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
+@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
+@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
+@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
+@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
+@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
+@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
+@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
+@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
+@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
+@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
+@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
+@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
+@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
+@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
+@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
+@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
+@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
+@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
+@c LocalWords: yytokentype filename destructor multicharacter nonnull EBCDIC
+@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
+@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
+@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
+@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
+@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
+@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
+@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
+@c LocalWords: makefiles Graphviz multitable headitem hh basename Doxygen fno
+@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
+@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
+@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
+@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
+@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
+@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
+@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
+@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
+@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
+@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
+@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt
+@c LocalWords: subdirectory Solaris nonassociativity