+precedence of @samp{/} with respect to @samp{+}, @samp{-}, and @samp{*}, but
+also because the associativity of @samp{/} is not specified.
+
+Bison may also produce an HTML version of this output, via an XML file and
+XSLT processing (@pxref{Xml,,Visualizing your parser in multiple formats}).
+
+@c ================================================= Graphical Representation
+
+@node Graphviz
+@section Visualizing Your Parser
+@cindex dot
+
+As another means to gain better understanding of the shift/reduce
+automaton corresponding to the Bison parser, a DOT file can be generated. Note
+that debugging a real grammar with this is tedious at best, and impractical
+most of the times, because the generated files are huge (the generation of
+a PDF or PNG file from it will take very long, and more often than not it will
+fail due to memory exhaustion). This option was rather designed for beginners,
+to help them understand LR parsers.
+
+This file is generated when the @option{--graph} option is specified
+(@pxref{Invocation, , Invoking Bison}). Its name is made by removing
+@samp{.tab.c} or @samp{.c} from the parser implementation file name, and
+adding @samp{.dot} instead. If the grammar file is @file{foo.y}, the
+Graphviz output file is called @file{foo.dot}. A DOT file may also be
+produced via an XML file and XSLT processing (@pxref{Xml,,Visualizing your
+parser in multiple formats}).
+
+
+The following grammar file, @file{rr.y}, will be used in the sequel:
+
+@example
+%%
+@group
+exp: a ";" | b ".";
+a: "0";
+b: "0";
+@end group
+@end example
+
+The graphical output
+@ifnotinfo
+(see @ref{fig:graph})
+@end ifnotinfo
+is very similar to the textual one, and as such it is easier understood by
+making direct comparisons between them. @xref{Debugging, , Debugging Your
+Parser}, for a detailled analysis of the textual report.
+
+@ifnotinfo
+@float Figure,fig:graph
+@image{figs/example, 430pt}
+@caption{A graphical rendering of the parser.}
+@end float
+@end ifnotinfo
+
+@subheading Graphical Representation of States
+
+The items (pointed rules) for each state are grouped together in graph nodes.
+Their numbering is the same as in the verbose file. See the following points,
+about transitions, for examples
+
+When invoked with @option{--report=lookaheads}, the lookahead tokens, when
+needed, are shown next to the relevant rule between square brackets as a
+comma separated list. This is the case in the figure for the representation of
+reductions, below.
+
+@sp 1
+
+The transitions are represented as directed edges between the current and
+the target states.
+
+@subheading Graphical Representation of Shifts
+
+Shifts are shown as solid arrows, labelled with the lookahead token for that
+shift. The following describes a reduction in the @file{rr.output} file:
+
+@example
+@group
+State 3
+
+ 1 exp: a . ";"
+
+ ";" shift, and go to state 6
+@end group
+@end example
+
+A Graphviz rendering of this portion of the graph could be:
+
+@center @image{figs/example-shift, 100pt}
+
+@subheading Graphical Representation of Reductions
+
+Reductions are shown as solid arrows, leading to a diamond-shaped node
+bearing the number of the reduction rule. The arrow is labelled with the
+appropriate comma separated lookahead tokens. If the reduction is the default
+action for the given state, there is no such label.
+
+This is how reductions are represented in the verbose file @file{rr.output}:
+@example
+State 1
+
+ 3 a: "0" . [";"]
+ 4 b: "0" . ["."]
+
+ "." reduce using rule 4 (b)
+ $default reduce using rule 3 (a)
+@end example
+
+A Graphviz rendering of this portion of the graph could be:
+
+@center @image{figs/example-reduce, 120pt}
+
+When unresolved conflicts are present, because in deterministic parsing
+a single decision can be made, Bison can arbitrarily choose to disable a
+reduction, see @ref{Shift/Reduce, , Shift/Reduce Conflicts}. Discarded actions
+are distinguished by a red filling color on these nodes, just like how they are
+reported between square brackets in the verbose file.
+
+The reduction corresponding to the rule number 0 is the acceptation
+state. It is shown as a blue diamond, labelled ``Acc''.
+
+@subheading Graphical representation of go tos
+
+The @samp{go to} jump transitions are represented as dotted lines bearing
+the name of the rule being jumped to.
+
+@c ================================================= XML
+
+@node Xml
+@section Visualizing your parser in multiple formats
+@cindex xml
+
+Bison supports two major report formats: textual output
+(@pxref{Understanding, ,Understanding Your Parser}) when invoked
+with option @option{--verbose}, and DOT
+(@pxref{Graphviz,, Visualizing Your Parser}) when invoked with
+option @option{--graph}. However,
+another alternative is to output an XML file that may then be, with
+@command{xsltproc}, rendered as either a raw text format equivalent to the
+verbose file, or as an HTML version of the same file, with clickable
+transitions, or even as a DOT. The @file{.output} and DOT files obtained via
+XSLT have no difference whatsoever with those obtained by invoking
+@command{bison} with options @option{--verbose} or @option{--graph}.
+
+The XML file is generated when the options @option{-x} or
+@option{--xml[=FILE]} are specified, see @ref{Invocation,,Invoking Bison}.
+If not specified, its name is made by removing @samp{.tab.c} or @samp{.c}
+from the parser implementation file name, and adding @samp{.xml} instead.
+For instance, if the grammar file is @file{foo.y}, the default XML output
+file is @file{foo.xml}.
+
+Bison ships with a @file{data/xslt} directory, containing XSL Transformation
+files to apply to the XML file. Their names are non-ambiguous:
+
+@table @file
+@item xml2dot.xsl
+Used to output a copy of the DOT visualization of the automaton.
+@item xml2text.xsl
+Used to output a copy of the @samp{.output} file.
+@item xml2xhtml.xsl
+Used to output an xhtml enhancement of the @samp{.output} file.
+@end table