-/* Output the generated parsing program for bison,
+/* Output the generated parsing program for Bison.
Copyright (C) 1984, 1986, 1989, 1992, 2000, 2001, 2002
Free Software Foundation, Inc.
#include "conflicts.h"
#include "tables.h"
-/* Several tables will be indexed both by state and nonterminal
- numbers. We call `vector' such a thing (= either a state or a
- symbol number.
+/* Several tables are indexed both by state and nonterminal numbers.
+ We call such an index a `vector'; i.e., a vector is either a state
+ or a nonterminal number.
Of course vector_number_t ought to be wide enough to contain
state_number_t and symbol_number_t. */
/* For a given state, N = ACTROW[SYMBOL]:
If N = 0, stands for `run the default action'.
- If N = MIN, stands for `raise a parse error'.
+ If N = MIN, stands for `raise a syntax error'.
If N > 0, stands for `shift SYMBOL and go to n'.
If N < 0, stands for `reduce -N'. */
typedef short action_t;
static size_t table_size = 32768;
base_t *table = NULL;
base_t *check = NULL;
-/* The value used in TABLE to denote explicit parse errors
+/* The value used in TABLE to denote explicit syntax errors
(%nonassoc), a negative infinite. First defaults to ACTION_MIN,
but in order to keep small tables, renumbered as TABLE_ERROR, which
is the smallest (non error) value minus 1. */
&& (actrow[j]
!= rule_number_as_item_number (reds->rules[i]->number)))
{
- assert (conflict_list_free > 0);
+ if (conflict_list_free <= 0)
+ abort ();
conflict_list[conflict_list_cnt] = reds->rules[i]->number + 1;
conflict_list_cnt += 1;
conflict_list_free -= 1;
}
/* Leave a 0 at the end. */
- assert (conflict_list_free > 0);
+ if (conflict_list_free <= 0)
+ abort ();
conflict_list_cnt += 1;
conflict_list_free -= 1;
}
base_t *to = tos[i];
unsigned int *conflict_to = conflict_tos[i];
- assert (t);
+ if (! t)
+ abort ();
- for (j = lowzero - from[0]; j < (int) table_size; j++)
+ for (j = lowzero - from[0]; ; j++)
{
int k;
int ok = 1;
+ if ((int) table_size <= j)
+ abort ();
+
for (k = 0; ok && k < t; k++)
{
loc = j + state_number_as_int (from[k]);
if (loc > high)
high = loc;
- assert (BASE_MIN <= j && j <= BASE_MAX);
+ if (! (BASE_MIN <= j && j <= BASE_MAX))
+ abort ();
return j;
}
}
-#define pack_vector_succeeded 0
- assert (pack_vector_succeeded);
- return 0;
}
{
int i;
- /* That's a poor way to make sure the sizes are properly corelated,
- in particular the signedness is not taking into account, but it's
- not useless. */
- assert (sizeof (nvectors) >= sizeof (nstates));
- assert (sizeof (nvectors) >= sizeof (nvars));
+ /* This is a poor way to make sure the sizes are properly
+ correlated. In particular the signedness is not taken into
+ account. But it's not useless. */
+ verify (sizes_are_properly_correlated,
+ (sizeof nstates <= sizeof nvectors
+ && sizeof nvars <= sizeof nvectors));
nvectors = state_number_as_int (nstates) + nvars;