-/* Generate the nondeterministic finite state machine for bison,
+/* Generate the nondeterministic finite state machine for Bison.
- Copyright (C) 1984, 1986, 1989, 2000, 2001, 2002 Free Software
- Foundation, Inc.
+ Copyright (C) 1984, 1986, 1989, 2000, 2001, 2002, 2004, 2005, 2006, 2007
+ Free Software Foundation, Inc.
This file is part of Bison, the GNU Compiler Compiler.
- Bison is free software; you can redistribute it and/or modify
+ This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
- Bison is distributed in the hope that it will be useful,
+ This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
- along with Bison; see the file COPYING. If not, write to
- the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* See comments in state.h for the data structures that represent it.
The entry point is generate_states. */
+#include <config.h>
#include "system.h"
#include <bitset.h>
static state *
state_list_append (symbol_number sym, size_t core_size, item_number *core)
{
- state_list *node = XMALLOC (state_list, 1);
+ state_list *node = xmalloc (sizeof *node);
state *s = state_new (sym, core_size, core);
if (trace_flag & trace_automaton)
fprintf (stderr, "state_list_append (state = %d, symbol = %d (%s))\n",
nstates, sym, symbols[sym]->tag);
- /* If this is the endtoken, and this is not the initial state, then
- this is the final state. */
- if (sym == 0 && first_state)
- final_state = s;
-
node->next = NULL;
node->state = s;
}
static int nshifts;
-static symbol_number *shift_symbol = NULL;
+static symbol_number *shift_symbol;
-static rule **redset = NULL;
-static state **shiftset = NULL;
+static rule **redset;
+static state **shiftset;
-static item_number **kernel_base = NULL;
-static int *kernel_size = NULL;
-static item_number *kernel_items = NULL;
+static item_number **kernel_base;
+static int *kernel_size;
+static item_number *kernel_items;
\f
static void
Note that useless productions (hence useless nonterminals) are
browsed too, hence we need to allocate room for _all_ the
symbols. */
- int count = 0;
- short *symbol_count = XCALLOC (short, nsyms + nuseless_nonterminals);
+ size_t count = 0;
+ size_t *symbol_count = xcalloc (nsyms + nuseless_nonterminals,
+ sizeof *symbol_count);
for (r = 0; r < nrules; ++r)
for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp)
appears as an item, which is SYMBOL_COUNT[S].
We allocate that much space for each symbol. */
- kernel_base = XCALLOC (item_number *, nsyms);
- if (count)
- kernel_items = XCALLOC (item_number, count);
+ kernel_base = xnmalloc (nsyms, sizeof *kernel_base);
+ kernel_items = xnmalloc (count, sizeof *kernel_items);
count = 0;
for (i = 0; i < nsyms; i++)
}
free (symbol_count);
- kernel_size = XCALLOC (int, nsyms);
+ kernel_size = xnmalloc (nsyms, sizeof *kernel_size);
}
{
allocate_itemsets ();
- shiftset = XCALLOC (state *, nsyms);
- redset = XCALLOC (rule *, nrules);
+ shiftset = xnmalloc (nsyms, sizeof *shiftset);
+ redset = xnmalloc (nrules, sizeof *redset);
state_hash_new ();
- shift_symbol = XCALLOC (symbol_number, nsyms);
+ shift_symbol = xnmalloc (nsyms, sizeof *shift_symbol);
}
free (shiftset);
free (kernel_base);
free (kernel_size);
- XFREE (kernel_items);
+ free (kernel_items);
state_hash_free ();
}
| shifted. For each symbol in the grammar, kernel_base[symbol] |
| points to a vector of item numbers activated if that symbol is |
| shifted, and kernel_size[symbol] is their numbers. |
+| |
+| itemset is sorted on item index in ritem, which is sorted on |
+| rule number. Compute each kernel_base[symbol] with the same |
+| sort. |
`---------------------------------------------------------------*/
static void
new_itemsets (state *s)
{
- int i;
+ size_t i;
if (trace_flag & trace_automaton)
fprintf (stderr, "Entering new_itemsets, state = %d\n", s->number);
- for (i = 0; i < nsyms; i++)
- kernel_size[i] = 0;
+ memset (kernel_size, 0, nsyms * sizeof *kernel_size);
nshifts = 0;
- for (i = 0; i < nritemset; ++i)
- if (ritem[itemset[i]] >= 0)
+ for (i = 0; i < nitemset; ++i)
+ if (item_number_is_symbol_number (ritem[itemset[i]]))
{
symbol_number sym = item_number_as_symbol_number (ritem[itemset[i]]);
if (!kernel_size[sym])
static state *
get_state (symbol_number sym, size_t core_size, item_number *core)
{
- state *sp;
+ state *s;
if (trace_flag & trace_automaton)
fprintf (stderr, "Entering get_state, symbol = %d (%s)\n",
sym, symbols[sym]->tag);
- sp = state_hash_lookup (core_size, core);
- if (!sp)
- sp = state_list_append (sym, core_size, core);
+ s = state_hash_lookup (core_size, core);
+ if (!s)
+ s = state_list_append (sym, core_size, core);
if (trace_flag & trace_automaton)
- fprintf (stderr, "Exiting get_state => %d\n", sp->number);
+ fprintf (stderr, "Exiting get_state => %d\n", s->number);
- return sp;
+ return s;
}
/*---------------------------------------------------------------.
{
symbol_number sym = shift_symbol[i];
int j;
- for (j = i; 0 < j && sym < shift_symbol [j - 1]; j--)
+ for (j = i; 0 < j && sym < shift_symbol[j - 1]; j--)
shift_symbol[j] = shift_symbol[j - 1];
shift_symbol[j] = sym;
}
save_reductions (state *s)
{
int count = 0;
- int i;
+ size_t i;
/* Find and count the active items that represent ends of rules. */
- for (i = 0; i < nritemset; ++i)
+ for (i = 0; i < nitemset; ++i)
{
- int item = ritem[itemset[i]];
- if (item < 0)
- redset[count++] = &rules[item_number_as_rule_number (item)];
+ item_number item = ritem[itemset[i]];
+ if (item_number_is_rule_number (item))
+ {
+ rule_number r = item_number_as_rule_number (item);
+ redset[count++] = &rules[r];
+ if (r == 0)
+ {
+ /* This is "reduce 0", i.e., accept. */
+ aver (!final_state);
+ final_state = s;
+ }
+ }
}
/* Make a reductions structure and copy the data into it. */
static void
set_states (void)
{
- states = XCALLOC (state *, nstates);
+ states = xcalloc (nstates, sizeof *states);
while (first_state)
{
void
generate_states (void)
{
+ item_number initial_core = 0;
state_list *list = NULL;
allocate_storage ();
new_closure (nritems);
/* Create the initial state. The 0 at the lhs is the index of the
item of this initial rule. */
- kernel_base[0][0] = 0;
- kernel_size[0] = 1;
- state_list_append (0, kernel_size[0], kernel_base[0]);
+ state_list_append (0, 1, &initial_core);
- list = first_state;
-
- while (list)
+ /* States are queued when they are created; process them all. */
+ for (list = first_state; list; list = list->next)
{
state *s = list->state;
if (trace_flag & trace_automaton)
fprintf (stderr, "Processing state %d (reached by %s)\n",
s->number,
symbols[s->accessing_symbol]->tag);
- /* Set up ruleset and itemset for the transitions out of this
- state. ruleset gets a 1 bit for each rule that could reduce
- now. itemset gets a vector of all the items that could be
- accepted next. */
+ /* Set up itemset for the transitions out of this state. itemset gets a
+ vector of all the items that could be accepted next. */
closure (s->items, s->nitems);
/* Record the reductions allowed out of this state. */
save_reductions (s);
/* Create the shifts structures for the shifts to those states,
now that the state numbers transitioning to are known. */
state_transitions_set (s, nshifts, shiftset);
-
- /* states are queued when they are created; process them all.
- */
- list = list->next;
}
/* discard various storage */