+/* A hash table contains many internal entries, each holding a pointer to
+ some user provided data (also called a user entry). An entry indistinctly
+ refers to both the internal entry and its associated user entry. A user
+ entry contents may be hashed by a randomization function (the hashing
+ function, or just `hasher' for short) into a number (or `slot') between 0
+ and the current table size. At each slot position in the hash table,
+ starts a linked chain of entries for which the user data all hash to this
+ slot. A bucket is the collection of all entries hashing to the same slot.
+
+ A good `hasher' function will distribute entries rather evenly in buckets.
+ In the ideal case, the length of each bucket is roughly the number of
+ entries divided by the table size. Finding the slot for a data is usually
+ done in constant time by the `hasher', and the later finding of a precise
+ entry is linear in time with the size of the bucket. Consequently, a
+ larger hash table size (that is, a larger number of buckets) is prone to
+ yielding shorter chains, *given* the `hasher' function behaves properly.
+
+ Long buckets slow down the lookup algorithm. One might use big hash table
+ sizes in hope to reduce the average length of buckets, but this might
+ become inordinate, as unused slots in the hash table take some space. The
+ best bet is to make sure you are using a good `hasher' function (beware
+ that those are not that easy to write! :-), and to use a table size
+ larger than the actual number of entries. */
+
+/* If an insertion makes the ratio of nonempty buckets to table size larger
+ than the growth threshold (a number between 0.0 and 1.0), then increase
+ the table size by multiplying by the growth factor (a number greater than
+ 1.0). The growth threshold defaults to 0.8, and the growth factor
+ defaults to 1.414, meaning that the table will have doubled its size
+ every second time 80% of the buckets get used. */
+#define DEFAULT_GROWTH_THRESHOLD 0.8
+#define DEFAULT_GROWTH_FACTOR 1.414
+
+/* If a deletion empties a bucket and causes the ratio of used buckets to
+ table size to become smaller than the shrink threshold (a number between
+ 0.0 and 1.0), then shrink the table by multiplying by the shrink factor (a
+ number greater than the shrink threshold but smaller than 1.0). The shrink
+ threshold and factor default to 0.0 and 1.0, meaning that the table never
+ shrinks. */
+#define DEFAULT_SHRINK_THRESHOLD 0.0
+#define DEFAULT_SHRINK_FACTOR 1.0
+
+/* Use this to initialize or reset a TUNING structure to
+ some sensible values. */
+static const Hash_tuning default_tuning =
+ {
+ DEFAULT_SHRINK_THRESHOLD,
+ DEFAULT_SHRINK_FACTOR,
+ DEFAULT_GROWTH_THRESHOLD,
+ DEFAULT_GROWTH_FACTOR,
+ false
+ };
+
+/* Information and lookup. */
+
+/* The following few functions provide information about the overall hash
+ table organization: the number of entries, number of buckets and maximum
+ length of buckets. */
+
+/* Return the number of buckets in the hash table. The table size, the total
+ number of buckets (used plus unused), or the maximum number of slots, are
+ the same quantity. */
+
+unsigned
+hash_get_n_buckets (const Hash_table *table)
+{
+ return table->n_buckets;
+}