/* Generate the nondeterministic finite state machine for bison,
- Copyright (C) 1984, 1986, 1989 Free Software Foundation, Inc.
+ Copyright 1984, 1986, 1989, 2000, 2001 Free Software Foundation, Inc.
-This file is part of Bison, the GNU Compiler Compiler.
+ This file is part of Bison, the GNU Compiler Compiler.
-Bison is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
+ Bison is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2, or (at your option)
+ any later version.
-Bison is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
+ Bison is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
-You should have received a copy of the GNU General Public License
-along with Bison; see the file COPYING. If not, write to
-the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
+ You should have received a copy of the GNU General Public License
+ along with Bison; see the file COPYING. If not, write to
+ the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
/* See comments in state.h for the data structures that represent it.
The entry point is generate_states. */
-#include <stdio.h>
#include "system.h"
-#include "machine.h"
-#include "alloc.h"
+#include "getargs.h"
+#include "reader.h"
#include "gram.h"
#include "state.h"
#include "complain.h"
-
-
-extern char *nullable;
-extern short *itemset;
-extern short *itemsetend;
+#include "closure.h"
+#include "LR0.h"
int nstates;
int final_state;
-core *first_state;
-shifts *first_shift;
-reductions *first_reduction;
-
-int get_state PARAMS((int));
-core *new_state PARAMS((int));
-
-void allocate_itemsets PARAMS((void));
-void allocate_storage PARAMS((void));
-void free_storage PARAMS((void));
-void generate_states PARAMS((void));
-void new_itemsets PARAMS((void));
-void append_states PARAMS((void));
-void initialize_states PARAMS((void));
-void save_shifts PARAMS((void));
-void save_reductions PARAMS((void));
-void augment_automaton PARAMS((void));
-void insert_start_shift PARAMS((void));
-extern void initialize_closure PARAMS((int));
-extern void closure PARAMS((short *, int));
-extern void finalize_closure PARAMS((void));
-
-static core *this_state;
-static core *last_state;
-static shifts *last_shift;
-static reductions *last_reduction;
+core *first_state = NULL;
+shifts *first_shift = NULL;
+reductions *first_reduction = NULL;
+
+static core *this_state = NULL;
+static core *last_state = NULL;
+static shifts *last_shift = NULL;
+static reductions *last_reduction = NULL;
static int nshifts;
-static short *shift_symbol;
+static short *shift_symbol = NULL;
-static short *redset;
-static short *shiftset;
+static short *redset = NULL;
+static short *shiftset = NULL;
-static short **kernel_base;
-static short **kernel_end;
-static short *kernel_items;
+static short **kernel_base = NULL;
+static int *kernel_size = NULL;
+static short *kernel_items = NULL;
/* hash table for states, to recognize equivalent ones. */
#define STATE_TABLE_SIZE 1009
-static core **state_table;
-
+static core **state_table = NULL;
-
-void
+\f
+static void
allocate_itemsets (void)
{
- register short *itemp;
- register int symbol;
- register int i;
- register int count;
- register short *symbol_count;
+ int i;
+ int count;
+ short *symbol_count = NULL;
count = 0;
- symbol_count = NEW2(nsyms, short);
+ symbol_count = XCALLOC (short, nsyms);
- itemp = ritem;
- symbol = *itemp++;
- while (symbol)
- {
- if (symbol > 0)
- {
- count++;
- symbol_count[symbol]++;
- }
- symbol = *itemp++;
- }
+ for (i = 0; ritem[i]; ++i)
+ if (ritem[i] > 0)
+ {
+ count++;
+ symbol_count[ritem[i]]++;
+ }
- /* see comments before new_itemsets. All the vectors of items
- live inside kernel_items. The number of active items after
+ /* See comments before new_itemsets. All the vectors of items
+ live inside KERNEL_ITEMS. The number of active items after
some symbol cannot be more than the number of times that symbol
appears as an item, which is symbol_count[symbol].
We allocate that much space for each symbol. */
- kernel_base = NEW2(nsyms, short *);
- kernel_items = NEW2(count, short);
+ kernel_base = XCALLOC (short *, nsyms);
+ if (count)
+ kernel_items = XCALLOC (short, count);
count = 0;
for (i = 0; i < nsyms; i++)
}
shift_symbol = symbol_count;
- kernel_end = NEW2(nsyms, short *);
+ kernel_size = XCALLOC (int, nsyms);
}
-void
+static void
allocate_storage (void)
{
- allocate_itemsets();
+ allocate_itemsets ();
- shiftset = NEW2(nsyms, short);
- redset = NEW2(nrules + 1, short);
- state_table = NEW2(STATE_TABLE_SIZE, core *);
+ shiftset = XCALLOC (short, nsyms);
+ redset = XCALLOC (short, nrules + 1);
+ state_table = XCALLOC (core *, STATE_TABLE_SIZE);
}
-void
+static void
free_storage (void)
{
- FREE(shift_symbol);
- FREE(redset);
- FREE(shiftset);
- FREE(kernel_base);
- FREE(kernel_end);
- FREE(kernel_items);
- FREE(state_table);
+ XFREE (shift_symbol);
+ XFREE (redset);
+ XFREE (shiftset);
+ XFREE (kernel_base);
+ XFREE (kernel_size);
+ XFREE (kernel_items);
+ XFREE (state_table);
}
-/* compute the nondeterministic finite state machine (see state.h for details)
-from the grammar. */
-void
-generate_states (void)
-{
- allocate_storage();
- initialize_closure(nitems);
- initialize_states();
- while (this_state)
- {
- /* Set up ruleset and itemset for the transitions out of this state.
- ruleset gets a 1 bit for each rule that could reduce now.
- itemset gets a vector of all the items that could be accepted next. */
- closure(this_state->items, this_state->nitems);
- /* record the reductions allowed out of this state */
- save_reductions();
- /* find the itemsets of the states that shifts can reach */
- new_itemsets();
- /* find or create the core structures for those states */
- append_states();
-
- /* create the shifts structures for the shifts to those states,
- now that the state numbers transitioning to are known */
- if (nshifts > 0)
- save_shifts();
+/*----------------------------------------------------------------.
+| Find which symbols can be shifted in the current state, and for |
+| each one record which items would be active after that shift. |
+| Uses the contents of itemset. |
+| |
+| shift_symbol is set to a vector of the symbols that can be |
+| shifted. For each symbol in the grammar, kernel_base[symbol] |
+| points to a vector of item numbers activated if that symbol is |
+| shifted, and kernel_size[symbol] is their numbers. |
+`----------------------------------------------------------------*/
- /* states are queued when they are created; process them all */
- this_state = this_state->next;
- }
-
- /* discard various storage */
- finalize_closure();
- free_storage();
-
- /* set up initial and final states as parser wants them */
- augment_automaton();
-}
-
-
-
-/* Find which symbols can be shifted in the current state,
- and for each one record which items would be active after that shift.
- Uses the contents of itemset.
- shift_symbol is set to a vector of the symbols that can be shifted.
- For each symbol in the grammar, kernel_base[symbol] points to
- a vector of item numbers activated if that symbol is shifted,
- and kernel_end[symbol] points after the end of that vector. */
-void
+static void
new_itemsets (void)
{
- register int i;
- register int shiftcount;
- register short *isp;
- register short *ksp;
- register int symbol;
+ int i;
+ int shiftcount;
-#ifdef TRACE
- fprintf(stderr, "Entering new_itemsets\n");
-#endif
+ if (trace_flag)
+ fprintf (stderr, "Entering new_itemsets, state = %d\n",
+ this_state->number);
for (i = 0; i < nsyms; i++)
- kernel_end[i] = NULL;
+ kernel_size[i] = 0;
shiftcount = 0;
- isp = itemset;
-
- while (isp < itemsetend)
+ for (i = 0; i < itemsetsize; ++i)
{
- i = *isp++;
- symbol = ritem[i];
+ int symbol = ritem[itemset[i]];
if (symbol > 0)
{
- ksp = kernel_end[symbol];
-
- if (!ksp)
+ if (!kernel_size[symbol])
{
- shift_symbol[shiftcount++] = symbol;
- ksp = kernel_base[symbol];
+ shift_symbol[shiftcount] = symbol;
+ shiftcount++;
}
- *ksp++ = i + 1;
- kernel_end[symbol] = ksp;
+ kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
+ kernel_size[symbol]++;
}
}
-/* Use the information computed by new_itemsets to find the state numbers
- reached by each shift transition from the current state.
+/*-----------------------------------------------------------------.
+| Subroutine of get_state. Create a new state for those items, if |
+| necessary. |
+`-----------------------------------------------------------------*/
- shiftset is set up as a vector of state numbers of those states. */
-void
-append_states (void)
+static core *
+new_state (int symbol)
{
- register int i;
- register int j;
- register int symbol;
+ core *p;
-#ifdef TRACE
- fprintf(stderr, "Entering append_states\n");
-#endif
+ if (trace_flag)
+ fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n",
+ this_state->number, symbol, tags[symbol]);
- /* first sort shift_symbol into increasing order */
+ if (nstates >= MAXSHORT)
+ fatal (_("too many states (max %d)"), MAXSHORT);
- for (i = 1; i < nshifts; i++)
- {
- symbol = shift_symbol[i];
- j = i;
- while (j > 0 && shift_symbol[j - 1] > symbol)
- {
- shift_symbol[j] = shift_symbol[j - 1];
- j--;
- }
- shift_symbol[j] = symbol;
- }
+ p = CORE_ALLOC (kernel_size[symbol]);
+ p->accessing_symbol = symbol;
+ p->number = nstates;
+ p->nitems = kernel_size[symbol];
- for (i = 0; i < nshifts; i++)
- {
- symbol = shift_symbol[i];
- shiftset[i] = get_state(symbol);
- }
-}
+ shortcpy (p->items, kernel_base[symbol], kernel_size[symbol]);
+ last_state->next = p;
+ last_state = p;
+ nstates++;
+
+ return p;
+}
-/* find the state number for the state we would get to
-(from the current state) by shifting symbol.
-Create a new state if no equivalent one exists already.
-Used by append_states */
+/*--------------------------------------------------------------.
+| Find the state number for the state we would get to (from the |
+| current state) by shifting symbol. Create a new state if no |
+| equivalent one exists already. Used by append_states. |
+`--------------------------------------------------------------*/
-int
+static int
get_state (int symbol)
{
- register int key;
- register short *isp1;
- register short *isp2;
- register short *iend;
- register core *sp;
- register int found;
-
- int n;
+ int key;
+ int i;
+ core *sp;
-#ifdef TRACE
- fprintf(stderr, "Entering get_state, symbol = %d\n", symbol);
-#endif
+ if (trace_flag)
+ fprintf (stderr, "Entering get_state, state = %d, symbol = %d (%s)\n",
+ this_state->number, symbol, tags[symbol]);
- isp1 = kernel_base[symbol];
- iend = kernel_end[symbol];
- n = iend - isp1;
-
- /* add up the target state's active item numbers to get a hash key */
+ /* Add up the target state's active item numbers to get a hash key.
+ */
key = 0;
- while (isp1 < iend)
- key += *isp1++;
-
+ for (i = 0; i < kernel_size[symbol]; ++i)
+ key += kernel_base[symbol][i];
key = key % STATE_TABLE_SIZE;
-
sp = state_table[key];
if (sp)
{
- found = 0;
+ int found = 0;
while (!found)
{
- if (sp->nitems == n)
+ if (sp->nitems == kernel_size[symbol])
{
found = 1;
- isp1 = kernel_base[symbol];
- isp2 = sp->items;
-
- while (found && isp1 < iend)
- {
- if (*isp1++ != *isp2++)
- found = 0;
- }
+ for (i = 0; i < kernel_size[symbol]; ++i)
+ if (kernel_base[symbol][i] != sp->items[i])
+ found = 0;
}
if (!found)
{
sp = sp->link;
}
- else /* bucket exhausted and no match */
+ else /* bucket exhausted and no match */
{
- sp = sp->link = new_state(symbol);
+ sp = sp->link = new_state (symbol);
found = 1;
}
}
}
}
- else /* bucket is empty */
+ else /* bucket is empty */
{
- state_table[key] = sp = new_state(symbol);
+ state_table[key] = sp = new_state (symbol);
}
- return (sp->number);
-}
-
+ if (trace_flag)
+ fprintf (stderr, "Exiting get_state => %d\n", sp->number);
+ return sp->number;
+}
-/* subroutine of get_state. create a new state for those items, if necessary. */
+/*------------------------------------------------------------------.
+| Use the information computed by new_itemsets to find the state |
+| numbers reached by each shift transition from the current state. |
+| |
+| shiftset is set up as a vector of state numbers of those states. |
+`------------------------------------------------------------------*/
-core *
-new_state (int symbol)
+static void
+append_states (void)
{
- register int n;
- register core *p;
- register short *isp1;
- register short *isp2;
- register short *iend;
+ int i;
+ int j;
+ int symbol;
-#ifdef TRACE
- fprintf(stderr, "Entering new_state, symbol = %d\n", symbol);
-#endif
+ if (trace_flag)
+ fprintf (stderr, "Entering append_states, state = %d\n",
+ this_state->number);
- if (nstates >= MAXSHORT)
- fatal (_("too many states (max %d)"), MAXSHORT);
-
- isp1 = kernel_base[symbol];
- iend = kernel_end[symbol];
- n = iend - isp1;
-
- p = (core *) xmalloc((unsigned) (sizeof(core) + (n - 1) * sizeof(short)));
- p->accessing_symbol = symbol;
- p->number = nstates;
- p->nitems = n;
+ /* first sort shift_symbol into increasing order */
- isp2 = p->items;
- while (isp1 < iend)
- *isp2++ = *isp1++;
+ for (i = 1; i < nshifts; i++)
+ {
+ symbol = shift_symbol[i];
+ j = i;
+ while (j > 0 && shift_symbol[j - 1] > symbol)
+ {
+ shift_symbol[j] = shift_symbol[j - 1];
+ j--;
+ }
+ shift_symbol[j] = symbol;
+ }
- last_state->next = p;
- last_state = p;
+ for (i = 0; i < nshifts; i++)
+ shiftset[i] = get_state (shift_symbol[i]);
+}
- nstates++;
- return (p);
+static void
+new_states (void)
+{
+ first_state = last_state = this_state = CORE_ALLOC (0);
+ nstates = 1;
}
-void
-initialize_states (void)
-{
- register core *p;
-/* register unsigned *rp1; JF unused */
-/* register unsigned *rp2; JF unused */
-/* register unsigned *rend; JF unused */
+/*---------------------------------.
+| Create a new array of N shitfs. |
+`---------------------------------*/
- p = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short)));
- first_state = last_state = this_state = p;
- nstates = 1;
+static shifts *
+shifts_new (int n)
+{
+ shifts *res = SHIFTS_ALLOC (n);
+ res->nshifts = n;
+ return res;
}
-void
+/*------------------------------------------------------------.
+| Save the NSHIFTS of SHIFTSET into the current linked list. |
+`------------------------------------------------------------*/
+
+static void
save_shifts (void)
{
- register shifts *p;
- register short *sp1;
- register short *sp2;
- register short *send;
-
- p = (shifts *) xmalloc((unsigned) (sizeof(shifts) +
- (nshifts - 1) * sizeof(short)));
+ shifts *p = shifts_new (nshifts);
p->number = this_state->number;
- p->nshifts = nshifts;
-
- sp1 = shiftset;
- sp2 = p->shifts;
- send = shiftset + nshifts;
- while (sp1 < send)
- *sp2++ = *sp1++;
+ shortcpy (p->shifts, shiftset, nshifts);
if (last_shift)
- {
- last_shift->next = p;
- last_shift = p;
- }
+ last_shift->next = p;
else
- {
- first_shift = p;
- last_shift = p;
- }
+ first_shift = p;
+ last_shift = p;
}
+/*------------------------------------------------------------------.
+| Subroutine of augment_automaton. Create the next-to-final state, |
+| to which a shift has already been made in the initial state. |
+`------------------------------------------------------------------*/
-/* find which rules can be used for reduction transitions from the current state
- and make a reductions structure for the state to record their rule numbers. */
-void
-save_reductions (void)
+static void
+insert_start_shift (void)
{
- register short *isp;
- register short *rp1;
- register short *rp2;
- register int item;
- register int count;
- register reductions *p;
+ core *statep;
+ shifts *sp;
- short *rend;
-
- /* find and count the active items that represent ends of rules */
-
- count = 0;
- for (isp = itemset; isp < itemsetend; isp++)
- {
- item = ritem[*isp];
- if (item < 0)
- {
- redset[count++] = -item;
- }
- }
-
- /* make a reductions structure and copy the data into it. */
-
- if (count)
- {
- p = (reductions *) xmalloc((unsigned) (sizeof(reductions) +
- (count - 1) * sizeof(short)));
-
- p->number = this_state->number;
- p->nreds = count;
+ statep = CORE_ALLOC (0);
+ statep->number = nstates;
+ statep->accessing_symbol = start_symbol;
- rp1 = redset;
- rp2 = p->rules;
- rend = rp1 + count;
+ last_state->next = statep;
+ last_state = statep;
- while (rp1 < rend)
- *rp2++ = *rp1++;
+ /* Make a shift from this state to (what will be) the final state. */
+ sp = shifts_new (1);
+ sp->number = nstates++;
+ sp->shifts[0] = nstates;
- if (last_reduction)
- {
- last_reduction->next = p;
- last_reduction = p;
- }
- else
- {
- first_reduction = p;
- last_reduction = p;
- }
- }
+ last_shift->next = sp;
+ last_shift = sp;
}
+/*------------------------------------------------------------------.
+| Make sure that the initial state has a shift that accepts the |
+| grammar's start symbol and goes to the next-to-final state, which |
+| has a shift going to the final state, which has a shift to the |
+| termination state. Create such states and shifts if they don't |
+| happen to exist already. |
+`------------------------------------------------------------------*/
-/* Make sure that the initial state has a shift that accepts the
-grammar's start symbol and goes to the next-to-final state,
-which has a shift going to the final state, which has a shift
-to the termination state.
-Create such states and shifts if they don't happen to exist already. */
-void
+static void
augment_automaton (void)
{
- register int i;
- register int k;
-/* register int found; JF unused */
- register core *statep;
- register shifts *sp;
- register shifts *sp2;
- register shifts *sp1 = NULL;
+ int i;
+ int k;
+ core *statep;
+ shifts *sp;
+ shifts *sp2;
+ shifts *sp1 = NULL;
sp = first_shift;
/* The states reached by shifts from first_state are numbered 1...K.
Look for one reached by start_symbol. */
while (statep->accessing_symbol < start_symbol
- && statep->number < k)
+ && statep->number < k)
statep = statep->next;
if (statep->accessing_symbol == start_symbol)
{
/* We already have a next-to-final state.
- Make sure it has a shift to what will be the final state. */
+ Make sure it has a shift to what will be the final state. */
k = statep->number;
while (sp && sp->number < k)
if (sp && sp->number == k)
{
- sp2 = (shifts *) xmalloc((unsigned) (sizeof(shifts)
- + sp->nshifts * sizeof(short)));
+ sp2 = shifts_new (sp->nshifts + 1);
sp2->number = k;
- sp2->nshifts = sp->nshifts + 1;
sp2->shifts[0] = nstates;
for (i = sp->nshifts; i > 0; i--)
sp2->shifts[i] = sp->shifts[i - 1];
sp1->next = sp2;
if (sp == last_shift)
last_shift = sp2;
- FREE(sp);
+ XFREE (sp);
}
else
{
- sp2 = NEW(shifts);
+ sp2 = shifts_new (1);
sp2->number = k;
- sp2->nshifts = 1;
sp2->shifts[0] = nstates;
/* Patch sp2 into the chain of shifts between sp1 and sp. */
{
/* There is no next-to-final state as yet. */
/* Add one more shift in first_shift,
- going to the next-to-final state (yet to be made). */
+ going to the next-to-final state (yet to be made). */
sp = first_shift;
- sp2 = (shifts *) xmalloc(sizeof(shifts)
- + sp->nshifts * sizeof(short));
- sp2->nshifts = sp->nshifts + 1;
+ sp2 = shifts_new (sp->nshifts + 1);
/* Stick this shift into the vector at the proper place. */
statep = first_state->next;
sp2->shifts[k++] = nstates;
/* Patch sp2 into the chain of shifts
- in place of sp, at the beginning. */
+ in place of sp, at the beginning. */
sp2->next = sp->next;
first_shift = sp2;
if (last_shift == sp)
last_shift = sp2;
- FREE(sp);
+ XFREE (sp);
/* Create the next-to-final state, with shift to
- what will be the final state. */
- insert_start_shift();
+ what will be the final state. */
+ insert_start_shift ();
}
}
else
{
/* The initial state didn't even have any shifts.
Give it one shift, to the next-to-final state. */
- sp = NEW(shifts);
- sp->nshifts = 1;
+ sp = shifts_new (1);
sp->shifts[0] = nstates;
/* Patch sp into the chain of shifts at the beginning. */
/* Create the next-to-final state, with shift to
what will be the final state. */
- insert_start_shift();
+ insert_start_shift ();
}
}
else
{
/* There are no shifts for any state.
- Make one shift, from the initial state to the next-to-final state. */
+ Make one shift, from the initial state to the next-to-final state. */
- sp = NEW(shifts);
- sp->nshifts = 1;
+ sp = shifts_new (1);
sp->shifts[0] = nstates;
/* Initialize the chain of shifts with sp. */
last_shift = sp;
/* Create the next-to-final state, with shift to
- what will be the final state. */
- insert_start_shift();
+ what will be the final state. */
+ insert_start_shift ();
}
/* Make the final state--the one that follows a shift from the
next-to-final state.
The symbol for that shift is 0 (end-of-file). */
- statep = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short)));
+ statep = CORE_ALLOC (0);
statep->number = nstates;
last_state->next = statep;
last_state = statep;
/* Make the shift from the final state to the termination state. */
- sp = NEW(shifts);
+ sp = shifts_new (1);
sp->number = nstates++;
- sp->nshifts = 1;
sp->shifts[0] = nstates;
last_shift->next = sp;
last_shift = sp;
final_state = nstates;
/* Make the termination state. */
- statep = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short)));
+ statep = CORE_ALLOC (0);
statep->number = nstates++;
last_state->next = statep;
last_state = statep;
}
-/* subroutine of augment_automaton.
- Create the next-to-final state, to which a shift has already been made in
- the initial state. */
+/*----------------------------------------------------------------.
+| Find which rules can be used for reduction transitions from the |
+| current state and make a reductions structure for the state to |
+| record their rule numbers. |
+`----------------------------------------------------------------*/
+
+static void
+save_reductions (void)
+{
+ int count;
+ int i;
+
+ /* Find and count the active items that represent ends of rules. */
+
+ count = 0;
+ for (i = 0; i < itemsetsize; ++i)
+ {
+ int item = ritem[itemset[i]];
+ if (item < 0)
+ redset[count++] = -item;
+ }
+
+ /* Make a reductions structure and copy the data into it. */
+
+ if (count)
+ {
+ reductions *p = REDUCTIONS_ALLOC (count);
+
+ p->number = this_state->number;
+ p->nreds = count;
+
+ shortcpy (p->rules, redset, count);
+
+ if (last_reduction)
+ last_reduction->next = p;
+ else
+ first_reduction = p;
+ last_reduction = p;
+ }
+}
+
+\f
+/*-------------------------------------------------------------------.
+| Compute the nondeterministic finite state machine (see state.h for |
+| details) from the grammar. |
+`-------------------------------------------------------------------*/
+
void
-insert_start_shift (void)
+generate_states (void)
{
- register core *statep;
- register shifts *sp;
+ allocate_storage ();
+ new_closure (nitems);
+ new_states ();
- statep = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short)));
- statep->number = nstates;
- statep->accessing_symbol = start_symbol;
+ while (this_state)
+ {
+ /* Set up ruleset and itemset for the transitions out of this
+ state. ruleset gets a 1 bit for each rule that could reduce
+ now. itemset gets a vector of all the items that could be
+ accepted next. */
+ closure (this_state->items, this_state->nitems);
+ /* record the reductions allowed out of this state */
+ save_reductions ();
+ /* find the itemsets of the states that shifts can reach */
+ new_itemsets ();
+ /* find or create the core structures for those states */
+ append_states ();
- last_state->next = statep;
- last_state = statep;
+ /* create the shifts structures for the shifts to those states,
+ now that the state numbers transitioning to are known */
+ if (nshifts > 0)
+ save_shifts ();
- /* Make a shift from this state to (what will be) the final state. */
- sp = NEW(shifts);
- sp->number = nstates++;
- sp->nshifts = 1;
- sp->shifts[0] = nstates;
+ /* states are queued when they are created; process them all */
+ this_state = this_state->next;
+ }
- last_shift->next = sp;
- last_shift = sp;
+ /* discard various storage */
+ free_closure ();
+ free_storage ();
+
+ /* set up initial and final states as parser wants them */
+ augment_automaton ();
}