]> git.saurik.com Git - bison.git/blobdiff - src/LR0.c
maint: more syntax-checks
[bison.git] / src / LR0.c
index d1d703ffef7fe82dcd722add9bb70349cb6f26fe..a757f006faa1db66d63d76ad66d0cf507174253e 100644 (file)
--- a/src/LR0.c
+++ b/src/LR0.c
-/* Generate the nondeterministic finite state machine for bison,
-   Copyright 1984, 1986, 1989, 2000, 2001  Free Software Foundation, Inc.
+/* Generate the LR(0) parser states for Bison.
+
+   Copyright (C) 1984, 1986, 1989, 2000-2002, 2004-2012 Free Software
+   Foundation, Inc.
 
    This file is part of Bison, the GNU Compiler Compiler.
 
 
    This file is part of Bison, the GNU Compiler Compiler.
 
-   Bison is free software; you can redistribute it and/or modify
+   This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    it under the terms of the GNU General Public License as published by
-   the Free Software Foundation; either version 2, or (at your option)
-   any later version.
+   the Free Software Foundation, either version 3 of the License, or
+   (at your option) any later version.
 
 
-   Bison is distributed in the hope that it will be useful,
+   This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
 
    You should have received a copy of the GNU General Public License
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
 
    You should have received a copy of the GNU General Public License
-   along with Bison; see the file COPYING.  If not, write to
-   the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
-   Boston, MA 02111-1307, USA.  */
+   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
 /* See comments in state.h for the data structures that represent it.
    The entry point is generate_states.  */
 
 
 
 /* See comments in state.h for the data structures that represent it.
    The entry point is generate_states.  */
 
+#include <config.h>
 #include "system.h"
 #include "system.h"
+
+#include <bitset.h>
+
+#include "LR0.h"
+#include "closure.h"
+#include "complain.h"
+#include "getargs.h"
 #include "gram.h"
 #include "gram.h"
+#include "lalr.h"
+#include "reader.h"
+#include "reduce.h"
 #include "state.h"
 #include "state.h"
-#include "complain.h"
-#include "closure.h"
-#include "LR0.h"
+#include "symtab.h"
 
 
+typedef struct state_list
+{
+  struct state_list *next;
+  state *state;
+} state_list;
 
 
-int nstates;
-int final_state;
-core *first_state = NULL;
-shifts *first_shift = NULL;
-reductions *first_reduction = NULL;
+static state_list *first_state = NULL;
+static state_list *last_state = NULL;
 
 
-static core *this_state = NULL;
-static core *last_state = NULL;
-static shifts *last_shift = NULL;
-static reductions *last_reduction = NULL;
 
 
-static int nshifts;
-static short *shift_symbol = NULL;
+/*------------------------------------------------------------------.
+| A state was just discovered from another state.  Queue it for     |
+| later examination, in order to find its transitions.  Return it.  |
+`------------------------------------------------------------------*/
 
 
-static short *redset = NULL;
-static short *shiftset = NULL;
+static state *
+state_list_append (symbol_number sym, size_t core_size, item_number *core)
+{
+  state_list *node = xmalloc (sizeof *node);
+  state *s = state_new (sym, core_size, core);
 
 
-static short **kernel_base = NULL;
-static short **kernel_end = NULL;
-static short *kernel_items = NULL;
+  if (trace_flag & trace_automaton)
+    fprintf (stderr, "state_list_append (state = %d, symbol = %d (%s))\n",
+             nstates, sym, symbols[sym]->tag);
 
 
-/* hash table for states, to recognize equivalent ones.  */
+  node->next = NULL;
+  node->state = s;
 
 
-#define        STATE_TABLE_SIZE        1009
-static core **state_table = NULL;
+  if (!first_state)
+    first_state = node;
+  if (last_state)
+    last_state->next = node;
+  last_state = node;
+
+  return s;
+}
+
+static int nshifts;
+static symbol_number *shift_symbol;
+
+static rule **redset;
+static state **shiftset;
+
+static item_number **kernel_base;
+static int *kernel_size;
+static item_number *kernel_items;
 
 \f
 static void
 allocate_itemsets (void)
 {
 
 \f
 static void
 allocate_itemsets (void)
 {
-  short *itemp = NULL;
-  int symbol;
-  int i;
-  int count;
-  short *symbol_count = NULL;
-
-  count = 0;
-  symbol_count = XCALLOC (short, nsyms);
-
-  itemp = ritem;
-  symbol = *itemp++;
-  while (symbol)
-    {
-      if (symbol > 0)
-       {
-         count++;
-         symbol_count[symbol]++;
-       }
-      symbol = *itemp++;
-    }
+  symbol_number i;
+  rule_number r;
+  item_number *rhsp;
+
+  /* Count the number of occurrences of all the symbols in RITEMS.
+     Note that useless productions (hence useless nonterminals) are
+     browsed too, hence we need to allocate room for _all_ the
+     symbols.  */
+  size_t count = 0;
+  size_t *symbol_count = xcalloc (nsyms + nuseless_nonterminals,
+                                  sizeof *symbol_count);
+
+  for (r = 0; r < nrules; ++r)
+    for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp)
+      {
+        count++;
+        symbol_count[*rhsp]++;
+      }
 
   /* See comments before new_itemsets.  All the vectors of items
      live inside KERNEL_ITEMS.  The number of active items after
 
   /* See comments before new_itemsets.  All the vectors of items
      live inside KERNEL_ITEMS.  The number of active items after
-     some symbol cannot be more than the number of times that symbol
-     appears as an item, which is symbol_count[symbol].
+     some symbol S cannot be more than the number of times that S
+     appears as an item, which is SYMBOL_COUNT[S].
      We allocate that much space for each symbol.  */
 
      We allocate that much space for each symbol.  */
 
-  kernel_base = XCALLOC (short *, nsyms);
-  if (count)
-    kernel_items = XCALLOC (short, count);
+  kernel_base = xnmalloc (nsyms, sizeof *kernel_base);
+  kernel_items = xnmalloc (count, sizeof *kernel_items);
 
   count = 0;
   for (i = 0; i < nsyms; i++)
 
   count = 0;
   for (i = 0; i < nsyms; i++)
@@ -98,8 +124,8 @@ allocate_itemsets (void)
       count += symbol_count[i];
     }
 
       count += symbol_count[i];
     }
 
-  shift_symbol = symbol_count;
-  kernel_end = XCALLOC (short *, nsyms);
+  free (symbol_count);
+  kernel_size = xnmalloc (nsyms, sizeof *kernel_size);
 }
 
 
 }
 
 
@@ -108,444 +134,128 @@ allocate_storage (void)
 {
   allocate_itemsets ();
 
 {
   allocate_itemsets ();
 
-  shiftset = XCALLOC (short, nsyms);
-  redset = XCALLOC (short, nrules + 1);
-  state_table = XCALLOC (core *, STATE_TABLE_SIZE);
+  shiftset = xnmalloc (nsyms, sizeof *shiftset);
+  redset = xnmalloc (nrules, sizeof *redset);
+  state_hash_new ();
+  shift_symbol = xnmalloc (nsyms, sizeof *shift_symbol);
 }
 
 
 static void
 free_storage (void)
 {
 }
 
 
 static void
 free_storage (void)
 {
-  XFREE (shift_symbol);
-  XFREE (redset);
-  XFREE (shiftset);
-  XFREE (kernel_base);
-  XFREE (kernel_end);
-  XFREE (kernel_items);
-  XFREE (state_table);
+  free (shift_symbol);
+  free (redset);
+  free (shiftset);
+  free (kernel_base);
+  free (kernel_size);
+  free (kernel_items);
+  state_hash_free ();
 }
 
 
 
 
 }
 
 
 
 
-/*----------------------------------------------------------------.
-| Find which symbols can be shifted in the current state, and for |
-| each one record which items would be active after that shift.   |
-| Uses the contents of itemset.                                   |
-|                                                                 |
-| shift_symbol is set to a vector of the symbols that can be      |
-| shifted.  For each symbol in the grammar, kernel_base[symbol]   |
-| points to a vector of item numbers activated if that symbol is  |
-| shifted, and kernel_end[symbol] points after the end of that    |
-| vector.                                                         |
-`----------------------------------------------------------------*/
+/*---------------------------------------------------------------.
+| Find which symbols can be shifted in S, and for each one       |
+| record which items would be active after that shift.  Uses the |
+| contents of itemset.                                           |
+|                                                                |
+| shift_symbol is set to a vector of the symbols that can be     |
+| shifted.  For each symbol in the grammar, kernel_base[symbol]  |
+| points to a vector of item numbers activated if that symbol is |
+| shifted, and kernel_size[symbol] is their numbers.             |
+|                                                                |
+| itemset is sorted on item index in ritem, which is sorted on   |
+| rule number.  Compute each kernel_base[symbol] with the same   |
+| sort.                                                          |
+`---------------------------------------------------------------*/
 
 static void
 
 static void
-new_itemsets (void)
+new_itemsets (state *s)
 {
 {
-  int i;
-  int shiftcount;
+  size_t i;
 
 
-#if TRACE
-  fprintf (stderr, "Entering new_itemsets, state = %d\n",
-          this_state->number);
-#endif
+  if (trace_flag & trace_automaton)
+    fprintf (stderr, "Entering new_itemsets, state = %d\n", s->number);
 
 
-  for (i = 0; i < nsyms; i++)
-    kernel_end[i] = NULL;
+  memset (kernel_size, 0, nsyms * sizeof *kernel_size);
 
 
-  shiftcount = 0;
+  nshifts = 0;
 
 
-  for (i = 0; i < itemsetend - itemset; ++i)
-    {
-      int symbol = ritem[itemset[i]];
-      if (symbol > 0)
-       {
-         short *ksp = kernel_end[symbol];
-
-         if (!ksp)
-           {
-             shift_symbol[shiftcount] = symbol;
-             ksp = kernel_base[symbol];
-             shiftcount++;
-           }
-
-         *ksp++ = itemset[i] + 1;
-         kernel_end[symbol] = ksp;
-       }
-    }
+  for (i = 0; i < nitemset; ++i)
+    if (item_number_is_symbol_number (ritem[itemset[i]]))
+      {
+        symbol_number sym = item_number_as_symbol_number (ritem[itemset[i]]);
+        if (!kernel_size[sym])
+          {
+            shift_symbol[nshifts] = sym;
+            nshifts++;
+          }
 
 
-  nshifts = shiftcount;
+        kernel_base[sym][kernel_size[sym]] = itemset[i] + 1;
+        kernel_size[sym]++;
+      }
 }
 
 
 
 }
 
 
 
-/*-----------------------------------------------------------------.
-| Subroutine of get_state.  Create a new state for those items, if |
-| necessary.                                                       |
-`-----------------------------------------------------------------*/
-
-static core *
-new_state (int symbol)
-{
-  int n;
-  core *p;
-
-#if TRACE
-  fprintf (stderr, "Entering new_state, state = %d, symbol = %d\n",
-          nstates, symbol);
-#endif
-
-  if (nstates >= MAXSHORT)
-    fatal (_("too many states (max %d)"), MAXSHORT);
-
-  n = kernel_end[symbol] - kernel_base[symbol];
-
-  p = CORE_ALLOC (n);
-  p->accessing_symbol = symbol;
-  p->number = nstates;
-  p->nitems = n;
-
-  shortcpy (p->items, kernel_base[symbol], n);
-
-  last_state->next = p;
-  last_state = p;
-  nstates++;
-
-  return p;
-}
-
-
 /*--------------------------------------------------------------.
 /*--------------------------------------------------------------.
-| Find the state number for the state we would get to (from the |
-| current state) by shifting symbol.  Create a new state if no  |
-| equivalent one exists already.  Used by append_states.        |
+| Find the state we would get to (from the current state) by    |
+| shifting SYM.  Create a new state if no equivalent one exists |
+| already.  Used by append_states.                              |
 `--------------------------------------------------------------*/
 
 `--------------------------------------------------------------*/
 
-static int
-get_state (int symbol)
+static state *
+get_state (symbol_number sym, size_t core_size, item_number *core)
 {
 {
-  int key;
-  short *isp2;
-  int i;
-  core *sp;
+  state *s;
 
 
-  int n = kernel_end[symbol] - kernel_base[symbol];
+  if (trace_flag & trace_automaton)
+    fprintf (stderr, "Entering get_state, symbol = %d (%s)\n",
+             sym, symbols[sym]->tag);
 
 
-#if TRACE
-  fprintf (stderr, "Entering get_state, state = %d, symbol = %d\n",
-          nstates, symbol);
-#endif
+  s = state_hash_lookup (core_size, core);
+  if (!s)
+    s = state_list_append (sym, core_size, core);
 
 
-  /* Add up the target state's active item numbers to get a hash key.
-     */
-  key = 0;
-  for (i = 0; i < n; ++i)
-    key += kernel_base[symbol][i];
-  key = key % STATE_TABLE_SIZE;
-  sp = state_table[key];
+  if (trace_flag & trace_automaton)
+    fprintf (stderr, "Exiting get_state => %d\n", s->number);
 
 
-  if (sp)
-    {
-      int found = 0;
-      while (!found)
-       {
-         if (sp->nitems == n)
-           {
-             int i;
-             found = 1;
-             for (i = 0; i < n; ++i)
-               if (kernel_base[symbol][i] != sp->items[i])
-                 found = 0;
-           }
-
-         if (!found)
-           {
-             if (sp->link)
-               {
-                 sp = sp->link;
-               }
-             else              /* bucket exhausted and no match */
-               {
-                 sp = sp->link = new_state (symbol);
-                 found = 1;
-               }
-           }
-       }
-    }
-  else                         /* bucket is empty */
-    {
-      state_table[key] = sp = new_state (symbol);
-    }
-
-  return sp->number;
+  return s;
 }
 
 }
 
-/*------------------------------------------------------------------.
-| Use the information computed by new_itemsets to find the state    |
-| numbers reached by each shift transition from the current state.  |
-|                                                                   |
-| shiftset is set up as a vector of state numbers of those states.  |
-`------------------------------------------------------------------*/
+/*---------------------------------------------------------------.
+| Use the information computed by new_itemsets to find the state |
+| numbers reached by each shift transition from S.               |
+|                                                                |
+| SHIFTSET is set up as a vector of those states.                |
+`---------------------------------------------------------------*/
 
 static void
 
 static void
-append_states (void)
+append_states (state *s)
 {
   int i;
 {
   int i;
-  int j;
-  int symbol;
 
 
-#if TRACE
-  fprintf (stderr, "Entering append_states\n");
-#endif
+  if (trace_flag & trace_automaton)
+    fprintf (stderr, "Entering append_states, state = %d\n", s->number);
 
 
-  /* first sort shift_symbol into increasing order */
+  /* First sort shift_symbol into increasing order.  */
 
   for (i = 1; i < nshifts; i++)
     {
 
   for (i = 1; i < nshifts; i++)
     {
-      symbol = shift_symbol[i];
-      j = i;
-      while (j > 0 && shift_symbol[j - 1] > symbol)
-       {
-         shift_symbol[j] = shift_symbol[j - 1];
-         j--;
-       }
-      shift_symbol[j] = symbol;
+      symbol_number sym = shift_symbol[i];
+      int j;
+      for (j = i; 0 < j && sym < shift_symbol[j - 1]; j--)
+        shift_symbol[j] = shift_symbol[j - 1];
+      shift_symbol[j] = sym;
     }
 
   for (i = 0; i < nshifts; i++)
     }
 
   for (i = 0; i < nshifts; i++)
-    shiftset[i] = get_state (shift_symbol[i]);
-}
-
-
-static void
-new_states (void)
-{
-  first_state = last_state = this_state = CORE_ALLOC (0);
-  nstates = 1;
-}
-
-
-static void
-save_shifts (void)
-{
-  shifts *p = SHIFTS_ALLOC (nshifts);
-
-  p->number = this_state->number;
-  p->nshifts = nshifts;
-
-  shortcpy (p->shifts, shiftset, nshifts);
-
-  if (last_shift)
-    last_shift->next = p;
-  else
-    first_shift = p;
-  last_shift = p;
-}
-
-
-/*------------------------------------------------------------------.
-| Subroutine of augment_automaton.  Create the next-to-final state, |
-| to which a shift has already been made in the initial state.      |
-`------------------------------------------------------------------*/
-
-static void
-insert_start_shift (void)
-{
-  core *statep;
-  shifts *sp;
-
-  statep = CORE_ALLOC (0);
-  statep->number = nstates;
-  statep->accessing_symbol = start_symbol;
-
-  last_state->next = statep;
-  last_state = statep;
-
-  /* Make a shift from this state to (what will be) the final state.  */
-  sp = SHIFTS_ALLOC (1);
-  sp->number = nstates++;
-  sp->nshifts = 1;
-  sp->shifts[0] = nstates;
-
-  last_shift->next = sp;
-  last_shift = sp;
-}
-
-
-/*------------------------------------------------------------------.
-| Make sure that the initial state has a shift that accepts the     |
-| grammar's start symbol and goes to the next-to-final state, which |
-| has a shift going to the final state, which has a shift to the    |
-| termination state.  Create such states and shifts if they don't   |
-| happen to exist already.                                          |
-`------------------------------------------------------------------*/
-
-static void
-augment_automaton (void)
-{
-  int i;
-  int k;
-  core *statep;
-  shifts *sp;
-  shifts *sp2;
-  shifts *sp1 = NULL;
-
-  sp = first_shift;
-
-  if (sp)
     {
     {
-      if (sp->number == 0)
-       {
-         k = sp->nshifts;
-         statep = first_state->next;
-
-         /* The states reached by shifts from first_state are numbered 1...K.
-            Look for one reached by start_symbol.  */
-         while (statep->accessing_symbol < start_symbol
-                && statep->number < k)
-           statep = statep->next;
-
-         if (statep->accessing_symbol == start_symbol)
-           {
-             /* We already have a next-to-final state.
-                Make sure it has a shift to what will be the final state.  */
-             k = statep->number;
-
-             while (sp && sp->number < k)
-               {
-                 sp1 = sp;
-                 sp = sp->next;
-               }
-
-             if (sp && sp->number == k)
-               {
-                 sp2 = SHIFTS_ALLOC (sp->nshifts + 1);
-                 sp2->number = k;
-                 sp2->nshifts = sp->nshifts + 1;
-                 sp2->shifts[0] = nstates;
-                 for (i = sp->nshifts; i > 0; i--)
-                   sp2->shifts[i] = sp->shifts[i - 1];
-
-                 /* Patch sp2 into the chain of shifts in place of sp,
-                    following sp1.  */
-                 sp2->next = sp->next;
-                 sp1->next = sp2;
-                 if (sp == last_shift)
-                   last_shift = sp2;
-                 XFREE (sp);
-               }
-             else
-               {
-                 sp2 = SHIFTS_ALLOC (1);
-                 sp2->number = k;
-                 sp2->nshifts = 1;
-                 sp2->shifts[0] = nstates;
-
-                 /* Patch sp2 into the chain of shifts between sp1 and sp.  */
-                 sp2->next = sp;
-                 sp1->next = sp2;
-                 if (sp == 0)
-                   last_shift = sp2;
-               }
-           }
-         else
-           {
-             /* There is no next-to-final state as yet.  */
-             /* Add one more shift in first_shift,
-                going to the next-to-final state (yet to be made).  */
-             sp = first_shift;
-
-             sp2 = SHIFTS_ALLOC (sp->nshifts + 1);
-             sp2->nshifts = sp->nshifts + 1;
-
-             /* Stick this shift into the vector at the proper place.  */
-             statep = first_state->next;
-             for (k = 0, i = 0; i < sp->nshifts; k++, i++)
-               {
-                 if (statep->accessing_symbol > start_symbol && i == k)
-                   sp2->shifts[k++] = nstates;
-                 sp2->shifts[k] = sp->shifts[i];
-                 statep = statep->next;
-               }
-             if (i == k)
-               sp2->shifts[k++] = nstates;
-
-             /* Patch sp2 into the chain of shifts
-                in place of sp, at the beginning.  */
-             sp2->next = sp->next;
-             first_shift = sp2;
-             if (last_shift == sp)
-               last_shift = sp2;
-
-             XFREE (sp);
-
-             /* Create the next-to-final state, with shift to
-                what will be the final state.  */
-             insert_start_shift ();
-           }
-       }
-      else
-       {
-         /* The initial state didn't even have any shifts.
-            Give it one shift, to the next-to-final state.  */
-         sp = SHIFTS_ALLOC (1);
-         sp->nshifts = 1;
-         sp->shifts[0] = nstates;
-
-         /* Patch sp into the chain of shifts at the beginning.  */
-         sp->next = first_shift;
-         first_shift = sp;
-
-         /* Create the next-to-final state, with shift to
-            what will be the final state.  */
-         insert_start_shift ();
-       }
+      symbol_number sym = shift_symbol[i];
+      shiftset[i] = get_state (sym, kernel_size[sym], kernel_base[sym]);
     }
     }
-  else
-    {
-      /* There are no shifts for any state.
-         Make one shift, from the initial state to the next-to-final state.  */
-
-      sp = SHIFTS_ALLOC (1);
-      sp->nshifts = 1;
-      sp->shifts[0] = nstates;
-
-      /* Initialize the chain of shifts with sp.  */
-      first_shift = sp;
-      last_shift = sp;
-
-      /* Create the next-to-final state, with shift to
-         what will be the final state.  */
-      insert_start_shift ();
-    }
-
-  /* Make the final state--the one that follows a shift from the
-     next-to-final state.
-     The symbol for that shift is 0 (end-of-file).  */
-  statep = CORE_ALLOC (0);
-  statep->number = nstates;
-  last_state->next = statep;
-  last_state = statep;
-
-  /* Make the shift from the final state to the termination state.  */
-  sp = SHIFTS_ALLOC (1);
-  sp->number = nstates++;
-  sp->nshifts = 1;
-  sp->shifts[0] = nstates;
-  last_shift->next = sp;
-  last_shift = sp;
-
-  /* Note that the variable `final_state' refers to what we sometimes call
-     the termination state.  */
-  final_state = nstates;
-
-  /* Make the termination state.  */
-  statep = CORE_ALLOC (0);
-  statep->number = nstates++;
-  last_state->next = statep;
-  last_state = statep;
 }
 
 
 }
 
 
@@ -556,84 +266,110 @@ augment_automaton (void)
 `----------------------------------------------------------------*/
 
 static void
 `----------------------------------------------------------------*/
 
 static void
-save_reductions (void)
+save_reductions (state *s)
 {
 {
-  short *isp;
-  int item;
-  int count;
-  reductions *p;
-
-  short *rend;
+  int count = 0;
+  size_t i;
 
   /* Find and count the active items that represent ends of rules. */
 
   /* Find and count the active items that represent ends of rules. */
-
-  count = 0;
-  for (isp = itemset; isp < itemsetend; isp++)
+  for (i = 0; i < nitemset; ++i)
     {
     {
-      item = ritem[*isp];
-      if (item < 0)
-       redset[count++] = -item;
+      item_number item = ritem[itemset[i]];
+      if (item_number_is_rule_number (item))
+        {
+          rule_number r = item_number_as_rule_number (item);
+          redset[count++] = &rules[r];
+          if (r == 0)
+            {
+              /* This is "reduce 0", i.e., accept. */
+              aver (!final_state);
+              final_state = s;
+            }
+        }
     }
 
   /* Make a reductions structure and copy the data into it.  */
     }
 
   /* Make a reductions structure and copy the data into it.  */
+  state_reductions_set (s, count, redset);
+}
 
 
-  if (count)
-    {
-      p = REDUCTIONS_ALLOC (count);
-
-      p->number = this_state->number;
-      p->nreds = count;
+\f
+/*---------------.
+| Build STATES.  |
+`---------------*/
 
 
-      shortcpy (p->rules, redset, count);
+static void
+set_states (void)
+{
+  states = xcalloc (nstates, sizeof *states);
 
 
-      if (last_reduction)
-       last_reduction->next = p;
-      else
-       first_reduction = p;
-      last_reduction = p;
+  while (first_state)
+    {
+      state_list *this = first_state;
+
+      /* Pessimization, but simplification of the code: make sure all
+         the states have valid transitions and reductions members,
+         even if reduced to 0.  It is too soon for errs, which are
+         computed later, but set_conflicts.  */
+      state *s = this->state;
+      if (!s->transitions)
+        state_transitions_set (s, 0, 0);
+      if (!s->reductions)
+        state_reductions_set (s, 0, 0);
+
+      states[s->number] = s;
+
+      first_state = this->next;
+      free (this);
     }
     }
+  first_state = NULL;
+  last_state = NULL;
 }
 
 }
 
-\f
+
 /*-------------------------------------------------------------------.
 /*-------------------------------------------------------------------.
-| Compute the nondeterministic finite state machine (see state.h for |
-| details) from the grammar.                                         |
+| Compute the LR(0) parser states (see state.h for details) from the |
+| grammar.                                                           |
 `-------------------------------------------------------------------*/
 
 void
 generate_states (void)
 {
 `-------------------------------------------------------------------*/
 
 void
 generate_states (void)
 {
+  item_number initial_core = 0;
+  state_list *list = NULL;
   allocate_storage ();
   allocate_storage ();
-  new_closure (nitems);
-  new_states ();
+  new_closure (nritems);
+
+  /* Create the initial state.  The 0 at the lhs is the index of the
+     item of this initial rule.  */
+  state_list_append (0, 1, &initial_core);
 
 
-  while (this_state)
+  /* States are queued when they are created; process them all.  */
+  for (list = first_state; list; list = list->next)
     {
     {
-      /* Set up ruleset and itemset for the transitions out of this
-         state.  ruleset gets a 1 bit for each rule that could reduce
-         now.  itemset gets a vector of all the items that could be
-         accepted next.  */
-      closure (this_state->items, this_state->nitems);
-      /* record the reductions allowed out of this state */
-      save_reductions ();
-      /* find the itemsets of the states that shifts can reach */
-      new_itemsets ();
-      /* find or create the core structures for those states */
-      append_states ();
-
-      /* create the shifts structures for the shifts to those states,
-         now that the state numbers transitioning to are known */
-      if (nshifts > 0)
-       save_shifts ();
-
-      /* states are queued when they are created; process them all */
-      this_state = this_state->next;
+      state *s = list->state;
+      if (trace_flag & trace_automaton)
+        fprintf (stderr, "Processing state %d (reached by %s)\n",
+                 s->number,
+                 symbols[s->accessing_symbol]->tag);
+      /* Set up itemset for the transitions out of this state.  itemset gets a
+         vector of all the items that could be accepted next.  */
+      closure (s->items, s->nitems);
+      /* Record the reductions allowed out of this state.  */
+      save_reductions (s);
+      /* Find the itemsets of the states that shifts can reach.  */
+      new_itemsets (s);
+      /* Find or create the core structures for those states.  */
+      append_states (s);
+
+      /* Create the shifts structures for the shifts to those states,
+         now that the state numbers transitioning to are known.  */
+      state_transitions_set (s, nshifts, shiftset);
     }
 
   /* discard various storage */
   free_closure ();
   free_storage ();
 
     }
 
   /* discard various storage */
   free_closure ();
   free_storage ();
 
-  /* set up initial and final states as parser wants them */
-  augment_automaton ();
+  /* Set up STATES. */
+  set_states ();
 }
 }