/* Generate the nondeterministic finite state machine for bison,
- Copyright 1984, 1986, 1989, 2000, 2001 Free Software Foundation, Inc.
+ Copyright 1984, 1986, 1989, 2000, 2001, 2002 Free Software Foundation, Inc.
This file is part of Bison, the GNU Compiler Compiler.
The entry point is generate_states. */
#include "system.h"
+#include "bitset.h"
+#include "quotearg.h"
#include "symtab.h"
+#include "gram.h"
#include "getargs.h"
#include "reader.h"
#include "gram.h"
#include "lalr.h"
#include "reduce.h"
-int nstates;
+unsigned int nstates = 0;
/* Initialize the final state to -1, otherwise, it might be set to 0
by default, and since we don't compute the reductions of the final
state, we end up not computing the reductions of the initial state,
static state_t *last_state = NULL;
static int nshifts;
-static short *shift_symbol = NULL;
+static token_number_t *shift_symbol = NULL;
static short *redset = NULL;
static short *shiftset = NULL;
-static short **kernel_base = NULL;
+static item_number_t **kernel_base = NULL;
static int *kernel_size = NULL;
-static short *kernel_items = NULL;
+static item_number_t *kernel_items = NULL;
/* hash table for states, to recognize equivalent ones. */
static void
allocate_itemsets (void)
{
- int i;
+ int i, r;
+ item_number_t *rhsp;
/* Count the number of occurrences of all the symbols in RITEMS.
Note that useless productions (hence useless nonterminals) are
int count = 0;
short *symbol_count = XCALLOC (short, nsyms + nuseless_nonterminals);
- for (i = 0; i < nritems; ++i)
- if (ritem[i] >= 0)
+ for (r = 1; r < nrules + 1; ++r)
+ for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp)
{
count++;
- symbol_count[ritem[i]]++;
+ symbol_count[*rhsp]++;
}
/* See comments before new_itemsets. All the vectors of items
appears as an item, which is symbol_count[symbol].
We allocate that much space for each symbol. */
- kernel_base = XCALLOC (short *, nsyms);
+ kernel_base = XCALLOC (item_number_t *, nsyms);
if (count)
- kernel_items = XCALLOC (short, count);
+ kernel_items = XCALLOC (item_number_t, count);
count = 0;
for (i = 0; i < nsyms; i++)
shiftset = XCALLOC (short, nsyms);
redset = XCALLOC (short, nrules + 1);
state_hash = XCALLOC (state_t *, STATE_HASH_SIZE);
- shift_symbol = XCALLOC (short, nsyms);
+ shift_symbol = XCALLOC (token_number_t, nsyms);
}
nshifts = 0;
- for (i = 0; i < nitemset; ++i)
- {
- int symbol = ritem[itemset[i]];
- if (symbol >= 0)
- {
- if (!kernel_size[symbol])
- {
- shift_symbol[nshifts] = symbol;
- nshifts++;
- }
-
- kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
- kernel_size[symbol]++;
- }
- }
+ for (i = 0; i < nritemset; ++i)
+ if (ritem[itemset[i]] >= 0)
+ {
+ token_number_t symbol
+ = item_number_as_token_number (ritem[itemset[i]]);
+ if (!kernel_size[symbol])
+ {
+ shift_symbol[nshifts] = symbol;
+ nshifts++;
+ }
+
+ kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
+ kernel_size[symbol]++;
+ }
}
`-----------------------------------------------------------------*/
static state_t *
-new_state (int symbol)
+new_state (token_number_t symbol)
{
state_t *p;
if (trace_flag)
fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n",
- this_state->number, symbol, symbols[symbol]->tag);
+ nstates, symbol, quotearg_style (escape_quoting_style,
+ symbols[symbol]->tag));
- if (nstates >= MAXSHORT)
- fatal (_("too many states (max %d)"), MAXSHORT);
+ if (nstates >= SHRT_MAX)
+ fatal (_("too many states (max %d)"), SHRT_MAX);
p = STATE_ALLOC (kernel_size[symbol]);
p->accessing_symbol = symbol;
p->number = nstates;
p->nitems = kernel_size[symbol];
- shortcpy (p->items, kernel_base[symbol], kernel_size[symbol]);
+ memcpy (p->items, kernel_base[symbol],
+ kernel_size[symbol] * sizeof (kernel_base[symbol][0]));
+
+ /* If this is the eoftoken, and this is not the initial state, then
+ this is the final state. */
+ if (symbol == 0 && first_state)
+ final_state = p->number;
- last_state->next = p;
+ if (!first_state)
+ first_state = p;
+ if (last_state)
+ last_state->next = p;
last_state = p;
- nstates++;
- /* If this is the eoftoken, then this is the final state. */
- if (symbol == 0)
- final_state = p->number;
+ nstates++;
return p;
}
`--------------------------------------------------------------*/
static int
-get_state (int symbol)
+get_state (token_number_t symbol)
{
int key;
int i;
if (trace_flag)
fprintf (stderr, "Entering get_state, state = %d, symbol = %d (%s)\n",
- this_state->number, symbol, symbols[symbol]->tag);
+ this_state->number, symbol, quotearg_style (escape_quoting_style,
+ symbols[symbol]->tag));
/* Add up the target state's active item numbers to get a hash key.
*/
{
int i;
int j;
- int symbol;
+ token_number_t symbol;
if (trace_flag)
fprintf (stderr, "Entering append_states, state = %d\n",
static void
new_states (void)
{
- first_state = last_state = this_state = STATE_ALLOC (0);
- nstates = 1;
+ /* The 0 at the lhs is the index of the item of this initial rule. */
+ kernel_base[0][0] = 0;
+ kernel_size[0] = 1;
+ this_state = new_state (0);
}
save_shifts (void)
{
shifts *p = shifts_new (nshifts);
- shortcpy (p->shifts, shiftset, nshifts);
+ memcpy (p->shifts, shiftset, nshifts * sizeof (shiftset[0]));
this_state->shifts = p;
}
return;
/* Find and count the active items that represent ends of rules. */
- for (i = 0; i < nitemset; ++i)
+ for (i = 0; i < nritemset; ++i)
{
int item = ritem[itemset[i]];
if (item < 0)
/* Make a reductions structure and copy the data into it. */
this_state->reductions = reductions_new (count);
- shortcpy (this_state->reductions->rules, redset, count);
+ memcpy (this_state->reductions->rules, redset, count * sizeof (redset[0]));
}
\f
if (trace_flag)
fprintf (stderr, "Processing state %d (reached by %s)\n",
this_state->number,
- symbols[this_state->accessing_symbol]->tag);
+ quotearg_style (escape_quoting_style,
+ symbols[this_state->accessing_symbol]->tag));
/* Set up ruleset and itemset for the transitions out of this
state. ruleset gets a 1 bit for each rule that could reduce
now. itemset gets a vector of all the items that could be