break;
for (k = 0; k < size; ++k)
- F (i)[k] = F (j)[k];
+ F (j)[k] = F (i)[k];
}
}
{
shifts *sp;
for (sp = first_shift; sp; sp = sp->next)
- state_table[sp->number].shift_table = sp;
+ state_table[sp->number].shifts = sp;
}
{
reductions *rp;
for (rp = first_reduction; rp; rp = rp->next)
- state_table[rp->number].reduction_table = rp;
+ state_table[rp->number].reductions = rp;
+ }
+
+ /* Pessimization, but simplification of the code: make sense all the
+ states have a shifts, even if reduced to 0 shifts. */
+ {
+ int i;
+ for (i = 0; i < nstates; i++)
+ if (!state_table[i].shifts)
+ state_table[i].shifts = shifts_new (0);
}
/* Initializing the lookaheads members. Please note that it must be
for (i = 0; i < nstates; i++)
{
int k;
- reductions *rp = state_table[i].reduction_table;
- shifts *sp = state_table[i].shift_table;
+ reductions *rp = state_table[i].reductions;
+ shifts *sp = state_table[i].shifts;
state_table[i].lookaheads = count;
if (rp
- && (rp->nreds > 1 || (sp && SHIFT_IS_SHIFT (sp, 0))))
+ && (rp->nreds > 1 || (sp->nshifts && SHIFT_IS_SHIFT (sp, 0))))
count += rp->nreds;
else
state_table[i].consistent = 1;
- if (sp)
- for (k = 0; k < sp->nshifts; k++)
- if (SHIFT_IS_ERROR (sp, k))
- {
- state_table[i].consistent = 0;
- break;
- }
+ for (k = 0; k < sp->nshifts; k++)
+ if (SHIFT_IS_ERROR (sp, k))
+ {
+ state_table[i].consistent = 0;
+ break;
+ }
}
state_table[nstates].lookaheads = count;
}
np = LAruleno;
for (i = 0; i < nstates; i++)
if (!state_table[i].consistent)
- if ((rp = state_table[i].reduction_table))
+ if ((rp = state_table[i].reductions))
for (j = 0; j < rp->nreds; j++)
*np++ = rp->rules[j];
}
ngotos = 0;
for (sp = first_shift; sp; sp = sp->next)
- {
+ if (sp->nshifts)
for (i = sp->nshifts - 1; i >= 0 && SHIFT_IS_GOTO (sp, i); --i)
{
symbol = state_table[sp->shifts[i]].accessing_symbol;
ngotos++;
goto_map[symbol]++;
}
- }
k = 0;
for (i = ntokens; i < nsyms; i++)
for (sp = first_shift; sp; sp = sp->next)
{
state1 = sp->number;
- for (i = sp->nshifts - 1; i >= 0 && SHIFT_IS_GOTO (sp, i); --i)
- {
- state2 = sp->shifts[i];
- symbol = state_table[state2].accessing_symbol;
-
- k = temp_map[symbol]++;
- from_state[k] = state1;
- to_state[k] = state2;
- }
+ if (sp->nshifts)
+ for (i = sp->nshifts - 1; i >= 0 && SHIFT_IS_GOTO (sp, i); --i)
+ {
+ state2 = sp->shifts[i];
+ symbol = state_table[state2].accessing_symbol;
+
+ k = temp_map[symbol]++;
+ from_state[k] = state1;
+ to_state[k] = state2;
+ }
}
XFREE (temp_map + ntokens);
for (i = 0; i < ngotos; i++)
{
int stateno = to_state[i];
- shifts *sp = state_table[stateno].shift_table;
+ shifts *sp = state_table[stateno].shifts;
- if (sp)
+ int j;
+ for (j = 0; j < sp->nshifts && SHIFT_IS_SHIFT (sp, j); j++)
{
- int j;
- for (j = 0; j < sp->nshifts && SHIFT_IS_SHIFT (sp, j); j++)
- {
- int symbol = state_table[sp->shifts[j]].accessing_symbol;
- SETBIT (F + i * tokensetsize, symbol);
- }
+ int symbol = state_table[sp->shifts[j]].accessing_symbol;
+ SETBIT (F (i), symbol);
+ }
- for (; j < sp->nshifts; j++)
- {
- int symbol = state_table[sp->shifts[j]].accessing_symbol;
- if (nullable[symbol])
- edge[nedges++] = map_goto (stateno, symbol);
- }
+ for (; j < sp->nshifts; j++)
+ {
+ int symbol = state_table[sp->shifts[j]].accessing_symbol;
+ if (nullable[symbol])
+ edge[nedges++] = map_goto (stateno, symbol);
+ }
- if (nedges)
- {
- reads[i] = XCALLOC (short, nedges + 1);
- shortcpy (reads[i], edge, nedges);
- reads[i][nedges] = -1;
- nedges = 0;
- }
+ if (nedges)
+ {
+ reads[i] = XCALLOC (short, nedges + 1);
+ shortcpy (reads[i], edge, nedges);
+ reads[i][nedges] = -1;
+ nedges = 0;
}
}
for (rp = ritem + rule_table[*rulep].rhs; *rp > 0; rp++)
{
- shifts *sp = state_table[stateno].shift_table;
+ shifts *sp = state_table[stateno].shifts;
int j;
for (j = 0; j < sp->nshifts; j++)
{