/* Output the generated parsing program for Bison.
- Copyright (C) 1984, 1986, 1989, 1992, 2000, 2001, 2002, 2003, 2004,
- 2005 Free Software Foundation, Inc.
+ Copyright (C) 1984, 1986, 1989, 1992, 2000-2006, 2009-2012 Free
+ Software Foundation, Inc.
This file is part of Bison, the GNU Compiler Compiler.
- Bison is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
- Bison is distributed in the hope that it will be useful, but
- WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- General Public License for more details.
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
You should have received a copy of the GNU General Public License
- along with Bison; see the file COPYING. If not, write to the Free
- Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
- 02111-1307, USA. */
-
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */
+#include <config.h>
#include "system.h"
#include <bitsetv.h>
-#include <quotearg.h>
#include "complain.h"
#include "conflicts.h"
#include "getargs.h"
#include "gram.h"
#include "lalr.h"
+#include "muscle-tab.h"
#include "reader.h"
#include "symtab.h"
#include "tables.h"
base_number *table;
base_number *check;
/* The value used in TABLE to denote explicit syntax errors
- (%nonassoc), a negative infinite. First defaults to ACTION_NUMBER_MININUM,
+ (%nonassoc), a negative infinite. First defaults to ACTION_NUMBER_MINIMUM,
but in order to keep small tables, renumbered as TABLE_ERROR, which
is the smallest (non error) value minus 1. */
base_number table_ninf = 0;
if (trace_flag & trace_resource)
fprintf (stderr, "growing table and check from: %d to %d\n",
- old_size, table_size);
+ old_size, table_size);
table = xnrealloc (table, table_size, sizeof *table);
conflict_table = xnrealloc (conflict_table, table_size,
- sizeof *conflict_table);
+ sizeof *conflict_table);
check = xnrealloc (check, table_size, sizeof *check);
for (/* Nothing. */; old_size < table_size; ++old_size)
/*-------------------------------------------------------------------.
| For GLR parsers, for each conflicted token in S, as indicated |
-| by non-zero entries in CONFLROW, create a list of possible |
-| reductions that are alternatives to the shift or reduction |
+| by non-zero entries in CONFLROW, create a list of possible |
+| reductions that are alternatives to the shift or reduction |
| currently recorded for that token in S. Store the alternative |
-| reductions followed by a 0 in CONFLICT_LIST, updating |
+| reductions followed by a 0 in CONFLICT_LIST, updating |
| CONFLICT_LIST_CNT, and storing an index to the start of the list |
-| back into CONFLROW. |
+| back into CONFLROW. |
`-------------------------------------------------------------------*/
static void
for (j = 0; j < ntokens; j += 1)
if (conflrow[j])
{
- conflrow[j] = conflict_list_cnt;
-
- /* Find all reductions for token J, and record all that do not
- match ACTROW[J]. */
- for (i = 0; i < reds->num; i += 1)
- if (bitset_test (reds->look_ahead_tokens[i], j)
- && (actrow[j]
- != rule_number_as_item_number (reds->rules[i]->number)))
- {
- if (conflict_list_free <= 0)
- abort ();
- conflict_list[conflict_list_cnt] = reds->rules[i]->number + 1;
- conflict_list_cnt += 1;
- conflict_list_free -= 1;
- }
-
- /* Leave a 0 at the end. */
- if (conflict_list_free <= 0)
- abort ();
- conflict_list[conflict_list_cnt] = 0;
- conflict_list_cnt += 1;
- conflict_list_free -= 1;
+ conflrow[j] = conflict_list_cnt;
+
+ /* Find all reductions for token J, and record all that do not
+ match ACTROW[J]. */
+ for (i = 0; i < reds->num; i += 1)
+ if (bitset_test (reds->lookahead_tokens[i], j)
+ && (actrow[j]
+ != rule_number_as_item_number (reds->rules[i]->number)))
+ {
+ aver (0 < conflict_list_free);
+ conflict_list[conflict_list_cnt] = reds->rules[i]->number + 1;
+ conflict_list_cnt += 1;
+ conflict_list_free -= 1;
+ }
+
+ /* Leave a 0 at the end. */
+ aver (0 < conflict_list_free);
+ conflict_list[conflict_list_cnt] = 0;
+ conflict_list_cnt += 1;
+ conflict_list_free -= 1;
}
}
/*------------------------------------------------------------------.
| Decide what to do for each type of token if seen as the |
-| look-ahead in specified state. The value returned is used as the |
+| lookahead in specified state. The value returned is used as the |
| default action (yydefact) for the state. In addition, ACTROW is |
| filled with what to do for each kind of token, index by symbol |
| number, with zero meaning do the default action. The value |
-| ACTION_NUMBER_MINIMUM, a very negative number, means this |
-| situation is an error. The parser recognizes this value |
-| specially. |
+| ACTION_NUMBER_MINIMUM, a very negative number, means this |
+| situation is an error. The parser recognizes this value |
+| specially. |
| |
-| This is where conflicts are resolved. The loop over look-ahead |
+| This is where conflicts are resolved. The loop over lookahead |
| rules considered lower-numbered rules last, and the last rule |
| considered that likes a token gets to handle it. |
| |
action_row (state *s)
{
int i;
- rule *default_rule = NULL;
+ rule *default_reduction = NULL;
reductions *reds = s->reductions;
transitions *trans = s->transitions;
errs *errp = s->errs;
for (i = 0; i < ntokens; i++)
actrow[i] = conflrow[i] = 0;
- if (reds->look_ahead_tokens)
+ if (reds->lookahead_tokens)
{
int j;
bitset_iterator biter;
/* loop over all the rules available here which require
- look-ahead (in reverse order to give precedence to the first
- rule) */
+ lookahead (in reverse order to give precedence to the first
+ rule) */
for (i = reds->num - 1; i >= 0; --i)
- /* and find each token which the rule finds acceptable
- to come next */
- BITSET_FOR_EACH (biter, reds->look_ahead_tokens[i], j, 0)
- {
- /* and record this rule as the rule to use if that
- token follows. */
- if (actrow[j] != 0)
- {
- conflicted = true;
- conflrow[j] = 1;
- }
- actrow[j] = rule_number_as_item_number (reds->rules[i]->number);
- }
+ /* and find each token which the rule finds acceptable
+ to come next */
+ BITSET_FOR_EACH (biter, reds->lookahead_tokens[i], j, 0)
+ {
+ /* and record this rule as the rule to use if that
+ token follows. */
+ if (actrow[j] != 0)
+ {
+ conflicted = true;
+ conflrow[j] = 1;
+ }
+ actrow[j] = rule_number_as_item_number (reds->rules[i]->number);
+ }
}
/* Now see which tokens are allowed for shifts in this state. For
state *shift_state = trans->states[i];
if (actrow[sym] != 0)
- {
- conflicted = true;
- conflrow[sym] = 1;
- }
+ {
+ conflicted = true;
+ conflrow[sym] = 1;
+ }
actrow[sym] = state_number_as_int (shift_state->number);
/* Do not use any default reduction if there is a shift for
- error */
+ error */
if (sym == errtoken->number)
- nodefault = true;
+ nodefault = true;
}
/* See which tokens are an explicit error in this state (due to
actrow[sym->number] = ACTION_NUMBER_MINIMUM;
}
+ /* Turn off default reductions where requested by the user. See
+ state_lookahead_tokens_count in lalr.c to understand when states are
+ labeled as consistent. */
+ {
+ char *default_reductions =
+ muscle_percent_define_get ("lr.default-reductions");
+ if (STRNEQ (default_reductions, "most") && !s->consistent)
+ nodefault = true;
+ free (default_reductions);
+ }
+
/* Now find the most common reduction and make it the default action
for this state. */
if (reds->num >= 1 && !nodefault)
{
if (s->consistent)
- default_rule = reds->rules[0];
+ default_reduction = reds->rules[0];
else
- {
- int max = 0;
- for (i = 0; i < reds->num; i++)
- {
- int count = 0;
- rule *r = reds->rules[i];
- symbol_number j;
-
- for (j = 0; j < ntokens; j++)
- if (actrow[j] == rule_number_as_item_number (r->number))
- count++;
-
- if (count > max)
- {
- max = count;
- default_rule = r;
- }
- }
-
- /* GLR parsers need space for conflict lists, so we can't
- default conflicted entries. For non-conflicted entries
- or as long as we are not building a GLR parser,
- actions that match the default are replaced with zero,
- which means "use the default". */
-
- if (max > 0)
- {
- int j;
- for (j = 0; j < ntokens; j++)
- if (actrow[j] == rule_number_as_item_number (default_rule->number)
- && ! (nondeterministic_parser && conflrow[j]))
- actrow[j] = 0;
- }
- }
+ {
+ int max = 0;
+ for (i = 0; i < reds->num; i++)
+ {
+ int count = 0;
+ rule *r = reds->rules[i];
+ symbol_number j;
+
+ for (j = 0; j < ntokens; j++)
+ if (actrow[j] == rule_number_as_item_number (r->number))
+ count++;
+
+ if (count > max)
+ {
+ max = count;
+ default_reduction = r;
+ }
+ }
+
+ /* GLR parsers need space for conflict lists, so we can't
+ default conflicted entries. For non-conflicted entries
+ or as long as we are not building a GLR parser,
+ actions that match the default are replaced with zero,
+ which means "use the default". */
+
+ if (max > 0)
+ {
+ int j;
+ for (j = 0; j < ntokens; j++)
+ if (actrow[j]
+ == rule_number_as_item_number (default_reduction->number)
+ && ! (nondeterministic_parser && conflrow[j]))
+ actrow[j] = 0;
+ }
+ }
}
- /* If have no default rule, the default is an error.
+ /* If have no default reduction, the default is an error.
So replace any action which says "error" with "use default". */
- if (!default_rule)
+ if (!default_reduction)
for (i = 0; i < ntokens; i++)
if (actrow[i] == ACTION_NUMBER_MINIMUM)
- actrow[i] = 0;
+ actrow[i] = 0;
if (conflicted)
conflict_row (s);
- return default_rule;
+ return default_reduction;
}
for (i = 0; i < ntokens; i++)
if (actrow[i] != 0)
{
- *sp1++ = i;
- *sp2++ = actrow[i];
- if (nondeterministic_parser)
- *sp3++ = conflrow[i];
+ *sp1++ = i;
+ *sp2++ = actrow[i];
+ if (nondeterministic_parser)
+ *sp3++ = conflrow[i];
}
tally[s] = count;
/*------------------------------------------------------------------.
| Figure out the actions for the specified state, indexed by |
-| look-ahead token type. |
+| lookahead token type. |
| |
| The YYDEFACT table is output now. The detailed info is saved for |
| putting into YYTABLE later. |
for (i = 0; i < nstates; ++i)
{
- rule *default_rule = action_row (states[i]);
- yydefact[i] = default_rule ? default_rule->number + 1 : 0;
+ rule *default_reduction = action_row (states[i]);
+ yydefact[i] = default_reduction ? default_reduction->number + 1 : 0;
save_row (i);
/* Now that the parser was computed, we can find which rules are
- really reduced, and which are not because of SR or RR
- conflicts. */
+ really reduced, and which are not because of SR or RR
+ conflicts. */
if (!nondeterministic_parser)
- {
- for (j = 0; j < ntokens; ++j)
- if (actrow[j] < 0 && actrow[j] != ACTION_NUMBER_MINIMUM)
- rules[item_number_as_rule_number (actrow[j])].useful = true;
- if (yydefact[i])
- rules[yydefact[i] - 1].useful = true;
- }
+ {
+ for (j = 0; j < ntokens; ++j)
+ if (actrow[j] < 0 && actrow[j] != ACTION_NUMBER_MINIMUM)
+ rules[item_number_as_rule_number (actrow[j])].useful = true;
+ if (yydefact[i])
+ rules[yydefact[i] - 1].useful = true;
+ }
}
free (actrow);
for (i = begin; i < end; i++)
if (to_state[i] != default_state)
{
- *sp1++ = from_state[i];
- *sp2++ = to_state[i];
+ *sp1++ = from_state[i];
+ *sp2++ = to_state[i];
}
tally[symno] = count;
for (s = 0; s < nstates; s++)
if (state_count[s] > max)
{
- max = state_count[s];
- default_state = s;
+ max = state_count[s];
+ default_state = s;
}
return default_state;
for (i = 0; i < nvectors; i++)
if (tally[i] > 0)
{
- int k;
- int t = tally[i];
- int w = width[i];
- int j = nentries - 1;
+ int k;
+ int t = tally[i];
+ int w = width[i];
+ int j = nentries - 1;
- while (j >= 0 && (width[order[j]] < w))
- j--;
+ while (j >= 0 && (width[order[j]] < w))
+ j--;
- while (j >= 0 && (width[order[j]] == w) && (tally[order[j]] < t))
- j--;
+ while (j >= 0 && (width[order[j]] == w) && (tally[order[j]] < t))
+ j--;
- for (k = nentries - 1; k > j; k--)
- order[k + 1] = order[k];
+ for (k = nentries - 1; k > j; k--)
+ order[k + 1] = order[k];
- order[j + 1] = i;
- nentries++;
+ order[j + 1] = i;
+ nentries++;
}
}
{
int j;
for (j = 0; j < t; j += 1)
- if (conflict_tos[i][j] != 0)
- return -1;
+ if (conflict_tos[i][j] != 0)
+ return -1;
}
for (prev = vector - 1; prev >= 0; prev--)
int match = 1;
/* Given how ORDER was computed, if the WIDTH or TALLY is
- different, there cannot be a matching state. */
+ different, there cannot be a matching state. */
if (width[j] != w || tally[j] != t)
- return -1;
+ return -1;
for (k = 0; match && k < t; k++)
- if (tos[j][k] != tos[i][k] || froms[j][k] != froms[i][k]
- || (conflict_tos[j] != NULL && conflict_tos[j][k] != 0))
- match = 0;
+ if (tos[j][k] != tos[i][k] || froms[j][k] != froms[i][k]
+ || (conflict_tos[j] != NULL && conflict_tos[j][k] != 0))
+ match = 0;
if (match)
- return j;
+ return j;
}
return -1;
base_number *to = tos[i];
unsigned int *conflict_to = conflict_tos[i];
- if (!t)
- abort ();
+ aver (t != 0);
for (j = lowzero - from[0]; ; j++)
{
int k;
bool ok = true;
- if (table_size <= j)
- abort ();
+ aver (j < table_size);
for (k = 0; ok && k < t; k++)
- {
- loc = j + state_number_as_int (from[k]);
- if (table_size <= loc)
- table_grow (loc);
+ {
+ loc = j + state_number_as_int (from[k]);
+ if (table_size <= loc)
+ table_grow (loc);
- if (table[loc] != 0)
- ok = false;
- }
+ if (table[loc] != 0)
+ ok = false;
+ }
for (k = 0; ok && k < vector; k++)
- if (pos[k] == j)
- ok = false;
+ if (pos[k] == j)
+ ok = false;
if (ok)
- {
- for (k = 0; k < t; k++)
- {
- loc = j + from[k];
- table[loc] = to[k];
- if (nondeterministic_parser && conflict_to != NULL)
- conflict_table[loc] = conflict_to[k];
- check[loc] = from[k];
- }
-
- while (table[lowzero] != 0)
- lowzero++;
-
- if (loc > high)
- high = loc;
-
- if (! (BASE_MINIMUM <= j && j <= BASE_MAXIMUM))
- abort ();
- return j;
- }
+ {
+ for (k = 0; k < t; k++)
+ {
+ loc = j + from[k];
+ table[loc] = to[k];
+ if (nondeterministic_parser && conflict_to != NULL)
+ conflict_table[loc] = conflict_to[k];
+ check[loc] = from[k];
+ }
+
+ while (table[lowzero] != 0)
+ lowzero++;
+
+ if (loc > high)
+ high = loc;
+
+ aver (BASE_MINIMUM <= j && j <= BASE_MAXIMUM);
+ return j;
+ }
}
}
base_number place;
if (s < 0)
- /* A new set of state actions, or a nonterminal. */
- place = pack_vector (i);
+ /* A new set of state actions, or a nonterminal. */
+ place = pack_vector (i);
else
- /* Action of I were already coded for S. */
- place = base[s];
+ /* Action of I were already coded for S. */
+ place = base[s];
pos[i] = place;
base[order[i]] = place;
/* This is a poor way to make sure the sizes are properly
correlated. In particular the signedness is not taken into
account. But it's not useless. */
- verify (sizes_are_properly_correlated,
- (sizeof nstates <= sizeof nvectors
- && sizeof nvars <= sizeof nvectors));
+ verify (sizeof nstates <= sizeof nvectors
+ && sizeof nvars <= sizeof nvectors);
nvectors = state_number_as_int (nstates) + nvars;