#include "system.h"
#include "bitset.h"
+#include "quotearg.h"
#include "symtab.h"
+#include "gram.h"
#include "getargs.h"
#include "reader.h"
#include "gram.h"
#include "lalr.h"
#include "reduce.h"
-unsigned int nstates = 0;
-/* Initialize the final state to -1, otherwise, it might be set to 0
- by default, and since we don't compute the reductions of the final
- state, we end up not computing the reductions of the initial state,
- which is of course needed.
-
- FINAL_STATE is properly set by new_state when it recognizes the
- accessing symbol: EOF. */
-int final_state = -1;
static state_t *first_state = NULL;
static state_t *this_state = NULL;
static state_t *last_state = NULL;
static int nshifts;
-static short *shift_symbol = NULL;
+static symbol_number_t *shift_symbol = NULL;
static short *redset = NULL;
-static short *shiftset = NULL;
+static state_number_t *shiftset = NULL;
-static short **kernel_base = NULL;
+static item_number_t **kernel_base = NULL;
static int *kernel_size = NULL;
-static short *kernel_items = NULL;
+static item_number_t *kernel_items = NULL;
/* hash table for states, to recognize equivalent ones. */
allocate_itemsets (void)
{
int i, r;
- short *rhsp;
+ item_number_t *rhsp;
/* Count the number of occurrences of all the symbols in RITEMS.
Note that useless productions (hence useless nonterminals) are
appears as an item, which is symbol_count[symbol].
We allocate that much space for each symbol. */
- kernel_base = XCALLOC (short *, nsyms);
+ kernel_base = XCALLOC (item_number_t *, nsyms);
if (count)
- kernel_items = XCALLOC (short, count);
+ kernel_items = XCALLOC (item_number_t, count);
count = 0;
for (i = 0; i < nsyms; i++)
{
allocate_itemsets ();
- shiftset = XCALLOC (short, nsyms);
+ shiftset = XCALLOC (state_number_t, nsyms);
redset = XCALLOC (short, nrules + 1);
state_hash = XCALLOC (state_t *, STATE_HASH_SIZE);
- shift_symbol = XCALLOC (short, nsyms);
+ shift_symbol = XCALLOC (symbol_number_t, nsyms);
}
nshifts = 0;
- for (i = 0; i < nitemset; ++i)
- {
- int symbol = ritem[itemset[i]];
- if (symbol >= 0)
- {
- if (!kernel_size[symbol])
- {
- shift_symbol[nshifts] = symbol;
- nshifts++;
- }
-
- kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
- kernel_size[symbol]++;
- }
- }
+ for (i = 0; i < nritemset; ++i)
+ if (ritem[itemset[i]] >= 0)
+ {
+ symbol_number_t symbol
+ = item_number_as_symbol_number (ritem[itemset[i]]);
+ if (!kernel_size[symbol])
+ {
+ shift_symbol[nshifts] = symbol;
+ nshifts++;
+ }
+
+ kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
+ kernel_size[symbol]++;
+ }
}
`-----------------------------------------------------------------*/
static state_t *
-new_state (int symbol)
+new_state (symbol_number_t symbol, size_t core_size, item_number_t *core)
{
- state_t *p;
+ state_t *res;
if (trace_flag)
fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n",
- nstates, symbol, symbols[symbol]->tag);
-
- if (nstates >= MAXSHORT)
- fatal (_("too many states (max %d)"), MAXSHORT);
+ nstates, symbol, symbol_tag_get (symbols[symbol]));
- p = STATE_ALLOC (kernel_size[symbol]);
- p->accessing_symbol = symbol;
- p->number = nstates;
- p->nitems = kernel_size[symbol];
-
- shortcpy (p->items, kernel_base[symbol], kernel_size[symbol]);
+ res = state_new (symbol, core_size, core);
/* If this is the eoftoken, and this is not the initial state, then
this is the final state. */
if (symbol == 0 && first_state)
- final_state = p->number;
+ final_state = res;
if (!first_state)
- first_state = p;
+ first_state = res;
if (last_state)
- last_state->next = p;
- last_state = p;
-
- nstates++;
+ last_state->next = res;
+ last_state = res;
- return p;
+ return res;
}
| equivalent one exists already. Used by append_states. |
`--------------------------------------------------------------*/
-static int
-get_state (int symbol)
+static state_number_t
+get_state (symbol_number_t symbol, size_t core_size, item_number_t *core)
{
int key;
- int i;
+ size_t i;
state_t *sp;
if (trace_flag)
fprintf (stderr, "Entering get_state, state = %d, symbol = %d (%s)\n",
- this_state->number, symbol, symbols[symbol]->tag);
+ this_state->number, symbol,
+ symbol_tag_get (symbols[symbol]));
/* Add up the target state's active item numbers to get a hash key.
*/
key = 0;
- for (i = 0; i < kernel_size[symbol]; ++i)
- key += kernel_base[symbol][i];
+ for (i = 0; i < core_size; ++i)
+ key += core[i];
key = key % STATE_HASH_SIZE;
sp = state_hash[key];
int found = 0;
while (!found)
{
- if (sp->nitems == kernel_size[symbol])
+ if (sp->nitems == core_size)
{
found = 1;
- for (i = 0; i < kernel_size[symbol]; ++i)
- if (kernel_base[symbol][i] != sp->items[i])
+ for (i = 0; i < core_size; ++i)
+ if (core[i] != sp->items[i])
found = 0;
}
}
else /* bucket exhausted and no match */
{
- sp = sp->link = new_state (symbol);
+ sp = sp->link = new_state (symbol, core_size, core);
found = 1;
}
}
}
else /* bucket is empty */
{
- state_hash[key] = sp = new_state (symbol);
+ state_hash[key] = sp = new_state (symbol, core_size, core);
}
if (trace_flag)
{
int i;
int j;
- int symbol;
+ symbol_number_t symbol;
if (trace_flag)
fprintf (stderr, "Entering append_states, state = %d\n",
}
for (i = 0; i < nshifts; i++)
- shiftset[i] = get_state (shift_symbol[i]);
+ {
+ symbol = shift_symbol[i];
+ shiftset[i] = get_state (symbol,
+ kernel_size[symbol], kernel_base[symbol]);
+ }
}
/* The 0 at the lhs is the index of the item of this initial rule. */
kernel_base[0][0] = 0;
kernel_size[0] = 1;
- this_state = new_state (0);
+ this_state = new_state (0, kernel_size[0], kernel_base[0]);
}
save_shifts (void)
{
shifts *p = shifts_new (nshifts);
- shortcpy (p->shifts, shiftset, nshifts);
+ memcpy (p->shifts, shiftset, nshifts * sizeof (shiftset[0]));
this_state->shifts = p;
}
/* If this is the final state, we want it to have no reductions at
all, although it has one for `START_SYMBOL EOF .'. */
- if (this_state->number == final_state)
+ if (final_state && this_state->number == final_state->number)
return;
/* Find and count the active items that represent ends of rules. */
- for (i = 0; i < nitemset; ++i)
+ for (i = 0; i < nritemset; ++i)
{
int item = ritem[itemset[i]];
if (item < 0)
/* Make a reductions structure and copy the data into it. */
this_state->reductions = reductions_new (count);
- shortcpy (this_state->reductions->rules, redset, count);
+ memcpy (this_state->reductions->rules, redset, count * sizeof (redset[0]));
}
\f
if (trace_flag)
fprintf (stderr, "Processing state %d (reached by %s)\n",
this_state->number,
- symbols[this_state->accessing_symbol]->tag);
+ symbol_tag_get (symbols[this_state->accessing_symbol]));
/* Set up ruleset and itemset for the transitions out of this
state. ruleset gets a 1 bit for each rule that could reduce
now. itemset gets a vector of all the items that could be