+m4_ifdef([m4_PACKAGE_VERSION],
+[[m4_if(m4_version_compare(]m4_dquote(m4_defn([m4_PACKAGE_VERSION]))[, [$1]),
+ [-1],
+ [m4_default([$3],
+ [m4_fatal([Autoconf version $1 or higher is required],
+ [63])])],
+ [$2])]],
+[[m4_fatal([m4sugar/version.m4 not found])]]))
+
+
+## ------------------ ##
+## 15. Set handling. ##
+## ------------------ ##
+
+# Autoconf likes to create arbitrarily large sets; for example, as of
+# this writing, the configure.ac for coreutils tracks a set of more
+# than 400 AC_SUBST. How do we track all of these set members,
+# without introducing duplicates? We could use m4_append_uniq, with
+# the set NAME residing in the contents of the macro NAME.
+# Unfortunately, m4_append_uniq is quadratic for set creation, because
+# it costs O(n) to search the string for each of O(n) insertions; not
+# to mention that with m4 1.4.x, even using m4_append is slow, costing
+# O(n) rather than O(1) per insertion. Other set operations, not used
+# by Autoconf but still possible by manipulation of the definition
+# tracked in macro NAME, include O(n) deletion of one element and O(n)
+# computation of set size. Because the set is exposed to the user via
+# the definition of a single macro, we cannot cache any data about the
+# set without risking the cache being invalidated by the user
+# redefining NAME.
+#
+# Can we do better? Yes, because m4 gives us an O(1) search function
+# for free: ifdef. Additionally, even m4 1.4.x gives us an O(1)
+# insert operation for free: pushdef. But to use these, we must
+# represent the set via a group of macros; to keep the set consistent,
+# we must hide the set so that the user can only manipulate it through
+# accessor macros. The contents of the set are maintained through two
+# access points; _m4_set([name]) is a pushdef stack of values in the
+# set, useful for O(n) traversal of the set contents; while the
+# existence of _m4_set([name],value) with no particular value is
+# useful for O(1) querying of set membership. And since the user
+# cannot externally manipulate the set, we are free to add additional
+# caching macros for other performance improvements. Deletion can be
+# O(1) per element rather than O(n), by reworking the definition of
+# _m4_set([name],value) to be 0 or 1 based on current membership, and
+# adding _m4_set_cleanup(name) to defer the O(n) cleanup of
+# _m4_set([name]) until we have another reason to do an O(n)
+# traversal. The existence of _m4_set_cleanup(name) can then be used
+# elsewhere to determine if we must dereference _m4_set([name],value),
+# or assume that definition implies set membership. Finally, size can
+# be tracked in an O(1) fashion with _m4_set_size(name).
+#
+# The quoting in _m4_set([name],value) is chosen so that there is no
+# ambiguity with a set whose name contains a comma, and so that we can
+# supply the value via _m4_defn([_m4_set([name])]) without needing any
+# quote manipulation.
+
+# m4_set_add(SET, VALUE, [IF-UNIQ], [IF-DUP])
+# -------------------------------------------
+# Add VALUE as an element of SET. Expand IF-UNIQ on the first
+# addition, and IF-DUP if it is already in the set. Addition of one
+# element is O(1), such that overall set creation is O(n).
+#
+# We do not want to add a duplicate for a previously deleted but
+# unpruned element, but it is just as easy to check existence directly
+# as it is to query _m4_set_cleanup($1).
+m4_define([m4_set_add],
+[m4_ifdef([_m4_set([$1],$2)],
+ [m4_if(m4_indir([_m4_set([$1],$2)]), [0],
+ [m4_define([_m4_set([$1],$2)],
+ [1])_m4_set_size([$1], [m4_incr])$3], [$4])],
+ [m4_define([_m4_set([$1],$2)],
+ [1])m4_pushdef([_m4_set([$1])],
+ [$2])_m4_set_size([$1], [m4_incr])$3])])
+
+# m4_set_add_all(SET, VALUE...)
+# -----------------------------
+# Add each VALUE into SET. This is O(n) in the number of VALUEs, and
+# can be faster than calling m4_set_add for each VALUE.
+#
+# Implement two recursion helpers; the check variant is slower but
+# handles the case where an element has previously been removed but
+# not pruned. The recursion helpers ignore their second argument, so
+# that we can use the faster m4_shift2 and 2 arguments, rather than
+# _m4_shift2 and one argument, as the signal to end recursion.
+#
+# Please keep foreach.m4 in sync with any adjustments made here.
+m4_define([m4_set_add_all],
+[m4_define([_m4_set_size($1)], m4_eval(m4_set_size([$1])
+ + m4_len(m4_ifdef([_m4_set_cleanup($1)], [_$0_check], [_$0])([$1], $@))))])
+
+m4_define([_m4_set_add_all],
+[m4_if([$#], [2], [],
+ [m4_ifdef([_m4_set([$1],$3)], [],
+ [m4_define([_m4_set([$1],$3)], [1])m4_pushdef([_m4_set([$1])],
+ [$3])-])$0([$1], m4_shift2($@))])])
+
+m4_define([_m4_set_add_all_check],
+[m4_if([$#], [2], [],
+ [m4_set_add([$1], [$3])$0([$1], m4_shift2($@))])])
+
+# m4_set_contains(SET, VALUE, [IF-PRESENT], [IF-ABSENT])
+# ------------------------------------------------------
+# Expand IF-PRESENT if SET contains VALUE, otherwise expand IF-ABSENT.
+# This is always O(1).
+m4_define([m4_set_contains],
+[m4_ifdef([_m4_set_cleanup($1)],
+ [m4_if(m4_ifdef([_m4_set([$1],$2)],
+ [m4_indir([_m4_set([$1],$2)])], [0]), [1], [$3], [$4])],
+ [m4_ifdef([_m4_set([$1],$2)], [$3], [$4])])])
+
+# m4_set_contents(SET, [SEP])
+# ---------------------------
+# Expand to a single string containing all the elements in SET,
+# separated by SEP, without modifying SET. No provision is made for
+# disambiguating set elements that contain non-empty SEP as a
+# sub-string, or for recognizing a set that contains only the empty
+# string. Order of the output is not guaranteed. If any elements
+# have been previously removed from the set, this action will prune
+# the unused memory. This is O(n) in the size of the set before
+# pruning.
+#
+# Use _m4_popdef for speed. The existence of _m4_set_cleanup($1)
+# determines which version of _1 helper we use.
+m4_define([m4_set_contents],
+[m4_ifdef([_m4_set_cleanup($1)], [_$0_1c], [_$0_1])([$1])_$0_2([$1],
+ [_m4_defn([_m4_set_($1)])], [[$2]])])
+
+# _m4_set_contents_1(SET)
+# _m4_set_contents_1c(SET)
+# _m4_set_contents_2(SET, SEP, PREP)
+# ----------------------------------
+# Expand to a list of quoted elements currently in the set, separated
+# by SEP, and moving PREP in front of SEP on recursion. To avoid
+# nesting limit restrictions, the algorithm must be broken into two
+# parts; _1 destructively copies the stack in reverse into
+# _m4_set_($1), producing no output; then _2 destructively copies
+# _m4_set_($1) back into the stack in reverse. SEP is expanded while
+# _m4_set_($1) contains the current element, so a SEP containing
+# _m4_defn([_m4_set_($1)]) can produce output in the order the set was
+# created. Behavior is undefined if SEP tries to recursively list or
+# modify SET in any way other than calling m4_set_remove on the
+# current element. Use _1 if all entries in the stack are guaranteed
+# to be in the set, and _1c to prune removed entries. Uses _m4_defn
+# and _m4_popdef for speed.
+m4_define([_m4_set_contents_1],
+[m4_ifdef([_m4_set([$1])], [m4_pushdef([_m4_set_($1)],
+ _m4_defn([_m4_set([$1])]))_m4_popdef([_m4_set([$1])])$0([$1])])])
+
+m4_define([_m4_set_contents_1c],
+[m4_ifdef([_m4_set([$1])],
+ [m4_set_contains([$1], _m4_defn([_m4_set([$1])]),
+ [m4_pushdef([_m4_set_($1)], _m4_defn([_m4_set([$1])]))],
+ [_m4_popdef([_m4_set([$1],]_m4_defn(
+ [_m4_set([$1])])[)])])_m4_popdef([_m4_set([$1])])$0([$1])],
+ [_m4_popdef([_m4_set_cleanup($1)])])])
+
+m4_define([_m4_set_contents_2],
+[m4_ifdef([_m4_set_($1)], [m4_pushdef([_m4_set([$1])],
+ _m4_defn([_m4_set_($1)]))$2[]_m4_popdef([_m4_set_($1)])$0([$1], [$3$2])])])
+
+# m4_set_delete(SET)
+# ------------------
+# Delete all elements in SET, and reclaim any memory occupied by the
+# set. This is O(n) in the set size.
+#
+# Use _m4_defn and _m4_popdef for speed.
+m4_define([m4_set_delete],
+[m4_ifdef([_m4_set([$1])],
+ [_m4_popdef([_m4_set([$1],]_m4_defn([_m4_set([$1])])[)],
+ [_m4_set([$1])])$0([$1])],
+ [m4_ifdef([_m4_set_cleanup($1)],
+ [_m4_popdef([_m4_set_cleanup($1)])])m4_ifdef(
+ [_m4_set_size($1)],
+ [_m4_popdef([_m4_set_size($1)])])])])
+
+# m4_set_difference(SET1, SET2)
+# -----------------------------
+# Produce a LIST of quoted elements that occur in SET1 but not SET2.
+# Output a comma prior to any elements, to distinguish the empty
+# string from no elements. This can be directly used as a series of
+# arguments, such as for m4_join, or wrapped inside quotes for use in
+# m4_foreach. Order of the output is not guaranteed.
+#
+# Short-circuit the idempotence relation. Use _m4_defn for speed.
+m4_define([m4_set_difference],
+[m4_if([$1], [$2], [],
+ [m4_set_foreach([$1], [_m4_element],
+ [m4_set_contains([$2], _m4_defn([_m4_element]), [],
+ [,_m4_defn([_m4_element])])])])])
+
+# m4_set_dump(SET, [SEP])
+# -----------------------
+# Expand to a single string containing all the elements in SET,
+# separated by SEP, then delete SET. In general, if you only need to
+# list the contents once, this is faster than m4_set_contents. No
+# provision is made for disambiguating set elements that contain
+# non-empty SEP as a sub-string. Order of the output is not
+# guaranteed. This is O(n) in the size of the set before pruning.
+#
+# Use _m4_popdef for speed. Use existence of _m4_set_cleanup($1) to
+# decide if more expensive recursion is needed.
+m4_define([m4_set_dump],
+[m4_ifdef([_m4_set_size($1)],
+ [_m4_popdef([_m4_set_size($1)])])m4_ifdef([_m4_set_cleanup($1)],
+ [_$0_check], [_$0])([$1], [], [$2])])
+
+# _m4_set_dump(SET, SEP, PREP)
+# _m4_set_dump_check(SET, SEP, PREP)
+# ----------------------------------
+# Print SEP and the current element, then delete the element and
+# recurse with empty SEP changed to PREP. The check variant checks
+# whether the element has been previously removed. Use _m4_defn and
+# _m4_popdef for speed.
+m4_define([_m4_set_dump],
+[m4_ifdef([_m4_set([$1])],
+ [[$2]_m4_defn([_m4_set([$1])])_m4_popdef([_m4_set([$1],]_m4_defn(
+ [_m4_set([$1])])[)], [_m4_set([$1])])$0([$1], [$2$3])])])
+
+m4_define([_m4_set_dump_check],
+[m4_ifdef([_m4_set([$1])],
+ [m4_set_contains([$1], _m4_defn([_m4_set([$1])]),
+ [[$2]_m4_defn([_m4_set([$1])])])_m4_popdef(
+ [_m4_set([$1],]_m4_defn([_m4_set([$1])])[)],
+ [_m4_set([$1])])$0([$1], [$2$3])],
+ [_m4_popdef([_m4_set_cleanup($1)])])])
+
+# m4_set_empty(SET, [IF-EMPTY], [IF-ELEMENTS])
+# --------------------------------------------
+# Expand IF-EMPTY if SET has no elements, otherwise IF-ELEMENTS.
+m4_define([m4_set_empty],
+[m4_ifdef([_m4_set_size($1)],
+ [m4_if(m4_indir([_m4_set_size($1)]), [0], [$2], [$3])], [$2])])
+
+# m4_set_foreach(SET, VAR, ACTION)
+# --------------------------------
+# For each element of SET, define VAR to the element and expand
+# ACTION. ACTION should not recursively list SET's contents, add
+# elements to SET, nor delete any element from SET except the one
+# currently in VAR. The order that the elements are visited in is not
+# guaranteed. This is faster than the corresponding m4_foreach([VAR],
+# m4_indir([m4_dquote]m4_set_listc([SET])), [ACTION])
+m4_define([m4_set_foreach],
+[m4_pushdef([$2])m4_ifdef([_m4_set_cleanup($1)],
+ [_m4_set_contents_1c], [_m4_set_contents_1])([$1])_m4_set_contents_2([$1],
+ [m4_define([$2], _m4_defn([_m4_set_($1)]))$3[]])m4_popdef([$2])])
+
+# m4_set_intersection(SET1, SET2)
+# -------------------------------
+# Produce a LIST of quoted elements that occur in both SET1 or SET2.
+# Output a comma prior to any elements, to distinguish the empty
+# string from no elements. This can be directly used as a series of
+# arguments, such as for m4_join, or wrapped inside quotes for use in
+# m4_foreach. Order of the output is not guaranteed.
+#
+# Iterate over the smaller set, and short-circuit the idempotence
+# relation. Use _m4_defn for speed.
+m4_define([m4_set_intersection],
+[m4_if([$1], [$2], [m4_set_listc([$1])],
+ m4_eval(m4_set_size([$2]) < m4_set_size([$1])), [1], [$0([$2], [$1])],
+ [m4_set_foreach([$1], [_m4_element],
+ [m4_set_contains([$2], _m4_defn([_m4_element]),
+ [,_m4_defn([_m4_element])])])])])
+
+# m4_set_list(SET)
+# m4_set_listc(SET)
+# -----------------
+# Produce a LIST of quoted elements of SET. This can be directly used
+# as a series of arguments, such as for m4_join or m4_set_add_all, or
+# wrapped inside quotes for use in m4_foreach or m4_map. With
+# m4_set_list, there is no way to distinguish an empty set from a set
+# containing only the empty string; with m4_set_listc, a leading comma
+# is output if there are any elements.
+m4_define([m4_set_list],
+[m4_ifdef([_m4_set_cleanup($1)], [_m4_set_contents_1c],
+ [_m4_set_contents_1])([$1])_m4_set_contents_2([$1],
+ [_m4_defn([_m4_set_($1)])], [,])])
+
+m4_define([m4_set_listc],
+[m4_ifdef([_m4_set_cleanup($1)], [_m4_set_contents_1c],
+ [_m4_set_contents_1])([$1])_m4_set_contents_2([$1],
+ [,_m4_defn([_m4_set_($1)])])])
+
+# m4_set_remove(SET, VALUE, [IF-PRESENT], [IF-ABSENT])
+# ----------------------------------------------------
+# If VALUE is an element of SET, delete it and expand IF-PRESENT.
+# Otherwise expand IF-ABSENT. Deleting a single value is O(1),
+# although it leaves memory occupied until the next O(n) traversal of
+# the set which will compact the set.
+#
+# Optimize if the element being removed is the most recently added,
+# since defining _m4_set_cleanup($1) slows down so many other macros.
+# In particular, this plays well with m4_set_foreach.
+m4_define([m4_set_remove],
+[m4_set_contains([$1], [$2], [_m4_set_size([$1],
+ [m4_decr])m4_if(_m4_defn([_m4_set([$1])]), [$2],
+ [_m4_popdef([_m4_set([$1],$2)], [_m4_set([$1])])],
+ [m4_define([_m4_set_cleanup($1)])m4_define(
+ [_m4_set([$1],$2)], [0])])$3], [$4])])
+
+# m4_set_size(SET)
+# ----------------
+# Expand to the number of elements currently in SET. This operation
+# is O(1), and thus more efficient than m4_count(m4_set_list([SET])).
+m4_define([m4_set_size],
+[m4_ifdef([_m4_set_size($1)], [m4_indir([_m4_set_size($1)])], [0])])