]> git.saurik.com Git - bison.git/blobdiff - doc/bison.texinfo
java: fix parser tracing bug.
[bison.git] / doc / bison.texinfo
index 0e7038b3af2505934c59081dd2d7471ba88c75a2..915c8111329ff06edfde84973c7da381ea0bd05d 100644 (file)
@@ -109,6 +109,7 @@ Reference sections:
 * Table of Symbols::    All the keywords of the Bison language are explained.
 * Glossary::            Basic concepts are explained.
 * Copying This Manual:: License for copying this manual.
 * Table of Symbols::    All the keywords of the Bison language are explained.
 * Glossary::            Basic concepts are explained.
 * Copying This Manual:: License for copying this manual.
+* Bibliography::        Publications cited in this manual.
 * Index::               Cross-references to the text.
 
 @detailmenu
 * Index::               Cross-references to the text.
 
 @detailmenu
@@ -264,7 +265,8 @@ The Bison Parser Algorithm
 * Contextual Precedence::  When an operator's precedence depends on context.
 * Parser States::     The parser is a finite-state-machine with stack.
 * Reduce/Reduce::     When two rules are applicable in the same situation.
 * Contextual Precedence::  When an operator's precedence depends on context.
 * Parser States::     The parser is a finite-state-machine with stack.
 * Reduce/Reduce::     When two rules are applicable in the same situation.
-* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
+* Mysterious Conflicts:: Conflicts that look unjustified.
+* Tuning LR::         How to tune fundamental aspects of LR-based parsing.
 * Generalized LR Parsing::  Parsing arbitrary context-free grammars.
 * Memory Management:: What happens when memory is exhausted.  How to avoid it.
 
 * Generalized LR Parsing::  Parsing arbitrary context-free grammars.
 * Memory Management:: What happens when memory is exhausted.  How to avoid it.
 
@@ -276,6 +278,13 @@ Operator Precedence
 * Precedence Examples::  How these features are used in the previous example.
 * How Precedence::    How they work.
 
 * Precedence Examples::  How these features are used in the previous example.
 * How Precedence::    How they work.
 
+Tuning LR
+
+* LR Table Construction:: Choose a different construction algorithm.
+* Default Reductions::    Disable default reductions.
+* LAC::                   Correct lookahead sets in the parser states.
+* Unreachable States::    Keep unreachable parser states for debugging.
+
 Handling Context Dependencies
 
 * Semantic Tokens::   Token parsing can depend on the semantic context.
 Handling Context Dependencies
 
 * Semantic Tokens::   Token parsing can depend on the semantic context.
@@ -472,21 +481,19 @@ order to specify the language Algol 60.  Any grammar expressed in
 BNF is a context-free grammar.  The input to Bison is
 essentially machine-readable BNF.
 
 BNF is a context-free grammar.  The input to Bison is
 essentially machine-readable BNF.
 
-@cindex LALR(1) grammars
-@cindex IELR(1) grammars
-@cindex LR(1) grammars
-There are various important subclasses of context-free grammars.
-Although it can handle almost all context-free grammars, Bison is
-optimized for what are called LR(1) grammars.
-In brief, in these grammars, it must be possible to tell how to parse
-any portion of an input string with just a single token of lookahead.
-For historical reasons, Bison by default is limited by the additional
-restrictions of LALR(1), which is hard to explain simply.
-@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
-more information on this.
-As an experimental feature, you can escape these additional restrictions by
-requesting IELR(1) or canonical LR(1) parser tables.
-@xref{%define Summary,,lr.type}, to learn how.
+@cindex LALR grammars
+@cindex IELR grammars
+@cindex LR grammars
+There are various important subclasses of context-free grammars.  Although
+it can handle almost all context-free grammars, Bison is optimized for what
+are called LR(1) grammars.  In brief, in these grammars, it must be possible
+to tell how to parse any portion of an input string with just a single token
+of lookahead.  For historical reasons, Bison by default is limited by the
+additional restrictions of LALR(1), which is hard to explain simply.
+@xref{Mysterious Conflicts}, for more information on this.  As an
+experimental feature, you can escape these additional restrictions by
+requesting IELR(1) or canonical LR(1) parser tables.  @xref{LR Table
+Construction}, to learn how.
 
 @cindex GLR parsing
 @cindex generalized LR (GLR) parsing
 
 @cindex GLR parsing
 @cindex generalized LR (GLR) parsing
@@ -5146,23 +5153,35 @@ including its naming conventions.  @xref{Bison Options}, for more.
 
 @node %define Summary
 @subsection %define Summary
 
 @node %define Summary
 @subsection %define Summary
+
+There are many features of Bison's behavior that can be controlled by
+assigning the feature a single value.  For historical reasons, some
+such features are assigned values by dedicated directives, such as
+@code{%start}, which assigns the start symbol.  However, newer such
+features are associated with variables, which are assigned by the
+@code{%define} directive:
+
 @deffn {Directive} %define @var{variable}
 @deffnx {Directive} %define @var{variable} @var{value}
 @deffnx {Directive} %define @var{variable} "@var{value}"
 @deffn {Directive} %define @var{variable}
 @deffnx {Directive} %define @var{variable} @var{value}
 @deffnx {Directive} %define @var{variable} "@var{value}"
-Define a variable to adjust Bison's behavior.
+Define @var{variable} to @var{value}.
 
 
-It is an error if a @var{variable} is defined by @code{%define} multiple
-times, but see @ref{Bison Options,,-D @var{name}[=@var{value}]}.
+@var{value} must be placed in quotation marks if it contains any
+character other than a letter, underscore, period, or non-initial dash
+or digit.  Omitting @code{"@var{value}"} entirely is always equivalent
+to specifying @code{""}.
 
 
-@var{value} must be placed in quotation marks if it contains any character
-other than a letter, underscore, period, or non-initial dash or digit.
+It is an error if a @var{variable} is defined by @code{%define}
+multiple times, but see @ref{Bison Options,,-D
+@var{name}[=@var{value}]}.
+@end deffn
 
 
-Omitting @code{"@var{value}"} entirely is always equivalent to specifying
-@code{""}.
+The rest of this section summarizes variables and values that
+@code{%define} accepts.
 
 
-Some @var{variable}s take Boolean values.
-In this case, Bison will complain if the variable definition does not meet one
-of the following four conditions:
+Some @var{variable}s take Boolean values.  In this case, Bison will
+complain if the variable definition does not meet one of the following
+four conditions:
 
 @enumerate
 @item @code{@var{value}} is @code{true}
 
 @enumerate
 @item @code{@var{value}} is @code{true}
@@ -5315,7 +5334,7 @@ empty
 
 
 @c ================================================== lex_symbol
 
 
 @c ================================================== lex_symbol
-@item variant
+@item lex_symbol
 @findex %define lex_symbol
 
 @itemize @bullet
 @findex %define lex_symbol
 
 @itemize @bullet
@@ -5339,69 +5358,21 @@ Boolean.
 @c ================================================== lr.default-reductions
 
 @item lr.default-reductions
 @c ================================================== lr.default-reductions
 
 @item lr.default-reductions
-@cindex default reductions
 @findex %define lr.default-reductions
 @findex %define lr.default-reductions
-@cindex delayed syntax errors
-@cindex syntax errors delayed
-@cindex LAC
-@findex %nonassoc
 
 @itemize @bullet
 @item Language(s): all
 
 @item Purpose: Specify the kind of states that are permitted to
 
 @itemize @bullet
 @item Language(s): all
 
 @item Purpose: Specify the kind of states that are permitted to
-contain default reductions.
-That is, in such a state, Bison selects the reduction with the largest
-lookahead set to be the default parser action and then removes that
-lookahead set.
-(The ability to specify where default reductions should be used is
-experimental.
-More user feedback will help to stabilize it.)
-
-@item Accepted Values:
-@itemize
-@item @code{all}.
-This is the traditional Bison behavior.  The main advantage is a
-significant decrease in the size of the parser tables.  The
-disadvantage is that, when the generated parser encounters a
-syntactically unacceptable token, the parser might then perform
-unnecessary default reductions before it can detect the syntax error.
-Such delayed syntax error detection is usually inherent in LALR and
-IELR parser tables anyway due to LR state merging (@pxref{%define
-Summary,,lr.type}).  Furthermore, the use of @code{%nonassoc} can
-contribute to delayed syntax error detection even in the case of
-canonical LR.  As an experimental feature, delayed syntax error
-detection can be overcome in all cases by enabling LAC (@pxref{%define
-Summary,,parse.lac}, for details, including a discussion of the
-effects of delayed syntax error detection).
-
-@item @code{consistent}.
-@cindex consistent states
-A consistent state is a state that has only one possible action.
-If that action is a reduction, then the parser does not need to request
-a lookahead token from the scanner before performing that action.
-However, the parser recognizes the ability to ignore the lookahead token
-in this way only when such a reduction is encoded as a default
-reduction.
-Thus, if default reductions are permitted only in consistent states,
-then a canonical LR parser that does not employ
-@code{%nonassoc} detects a syntax error as soon as it @emph{needs} the
-syntactically unacceptable token from the scanner.
-
-@item @code{accepting}.
-@cindex accepting state
-In the accepting state, the default reduction is actually the accept
-action.
-In this case, a canonical LR parser that does not employ
-@code{%nonassoc} detects a syntax error as soon as it @emph{reaches} the
-syntactically unacceptable token in the input.
-That is, it does not perform any extra reductions.
-@end itemize
+contain default reductions.  @xref{Default Reductions}.  (The ability to
+specify where default reductions should be used is experimental.  More user
+feedback will help to stabilize it.)
 
 
+@item Accepted Values: @code{full}, @code{consistent}, @code{accepting}
 @item Default Value:
 @itemize
 @item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
 @item Default Value:
 @itemize
 @item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
-@item @code{all} otherwise.
+@item @code{full} otherwise.
 @end itemize
 @end itemize
 
 @end itemize
 @end itemize
 
@@ -5412,42 +5383,10 @@ That is, it does not perform any extra reductions.
 
 @itemize @bullet
 @item Language(s): all
 
 @itemize @bullet
 @item Language(s): all
-
 @item Purpose: Request that Bison allow unreachable parser states to
 @item Purpose: Request that Bison allow unreachable parser states to
-remain in the parser tables.
-Bison considers a state to be unreachable if there exists no sequence of
-transitions from the start state to that state.
-A state can become unreachable during conflict resolution if Bison disables a
-shift action leading to it from a predecessor state.
-Keeping unreachable states is sometimes useful for analysis purposes, but they
-are useless in the generated parser.
-
+remain in the parser tables.  @xref{Unreachable States}.
 @item Accepted Values: Boolean
 @item Accepted Values: Boolean
-
 @item Default Value: @code{false}
 @item Default Value: @code{false}
-
-@item Caveats:
-
-@itemize @bullet
-
-@item Unreachable states may contain conflicts and may use rules not used in
-any other state.
-Thus, keeping unreachable states may induce warnings that are irrelevant to
-your parser's behavior, and it may eliminate warnings that are relevant.
-Of course, the change in warnings may actually be relevant to a parser table
-analysis that wants to keep unreachable states, so this behavior will likely
-remain in future Bison releases.
-
-@item While Bison is able to remove unreachable states, it is not guaranteed to
-remove other kinds of useless states.
-Specifically, when Bison disables reduce actions during conflict resolution,
-some goto actions may become useless, and thus some additional states may
-become useless.
-If Bison were to compute which goto actions were useless and then disable those
-actions, it could identify such states as unreachable and then remove those
-states.
-However, Bison does not compute which goto actions are useless.
-@end itemize
 @end itemize
 @c lr.keep-unreachable-states
 
 @end itemize
 @c lr.keep-unreachable-states
 
@@ -5455,87 +5394,15 @@ However, Bison does not compute which goto actions are useless.
 
 @item lr.type
 @findex %define lr.type
 
 @item lr.type
 @findex %define lr.type
-@cindex LALR
-@cindex IELR
-@cindex LR
 
 @itemize @bullet
 @item Language(s): all
 
 @item Purpose: Specify the type of parser tables within the
 
 @itemize @bullet
 @item Language(s): all
 
 @item Purpose: Specify the type of parser tables within the
-LR(1) family.
-(This feature is experimental.
+LR(1) family.  @xref{LR Table Construction}.  (This feature is experimental.
 More user feedback will help to stabilize it.)
 
 More user feedback will help to stabilize it.)
 
-@item Accepted Values:
-@itemize
-@item @code{lalr}.
-While Bison generates LALR parser tables by default for
-historical reasons, IELR or canonical LR is almost
-always preferable for deterministic parsers.
-The trouble is that LALR parser tables can suffer from
-mysterious conflicts and thus may not accept the full set of sentences
-that IELR and canonical LR accept.
-@xref{Mystery Conflicts}, for details.
-However, there are at least two scenarios where LALR may be
-worthwhile:
-@itemize
-@cindex GLR with LALR
-@item When employing GLR parsers (@pxref{GLR Parsers}), if you
-do not resolve any conflicts statically (for example, with @code{%left}
-or @code{%prec}), then the parser explores all potential parses of any
-given input.
-In this case, the use of LALR parser tables is guaranteed not
-to alter the language accepted by the parser.
-LALR parser tables are the smallest parser tables Bison can
-currently generate, so they may be preferable.
-Nevertheless, once you begin to resolve conflicts statically,
-GLR begins to behave more like a deterministic parser, and so
-IELR and canonical LR can be helpful to avoid
-LALR's mysterious behavior.
-
-@item Occasionally during development, an especially malformed grammar
-with a major recurring flaw may severely impede the IELR or
-canonical LR parser table generation algorithm.
-LALR can be a quick way to generate parser tables in order to
-investigate such problems while ignoring the more subtle differences
-from IELR and canonical LR.
-@end itemize
-
-@item @code{ielr}.
-IELR is a minimal LR algorithm.
-That is, given any grammar (LR or non-LR),
-IELR and canonical LR always accept exactly the same
-set of sentences.
-However, as for LALR, the number of parser states is often an
-order of magnitude less for IELR than for canonical
-LR.
-More importantly, because canonical LR's extra parser states
-may contain duplicate conflicts in the case of non-LR
-grammars, the number of conflicts for IELR is often an order
-of magnitude less as well.
-This can significantly reduce the complexity of developing of a grammar.
-
-@item @code{canonical-lr}.
-@cindex delayed syntax errors
-@cindex syntax errors delayed
-@cindex LAC
-@findex %nonassoc
-While inefficient, canonical LR parser tables can be an interesting
-means to explore a grammar because they have a property that IELR and
-LALR tables do not.  That is, if @code{%nonassoc} is not used and
-default reductions are left disabled (@pxref{%define
-Summary,,lr.default-reductions}), then, for every left context of
-every canonical LR state, the set of tokens accepted by that state is
-guaranteed to be the exact set of tokens that is syntactically
-acceptable in that left context.  It might then seem that an advantage
-of canonical LR parsers in production is that, under the above
-constraints, they are guaranteed to detect a syntax error as soon as
-possible without performing any unnecessary reductions.  However, IELR
-parsers using LAC (@pxref{%define Summary,,parse.lac}) are also able
-to achieve this behavior without sacrificing @code{%nonassoc} or
-default reductions.
-@end itemize
+@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
 
 @item Default Value: @code{lalr}
 @end itemize
 
 @item Default Value: @code{lalr}
 @end itemize
@@ -5583,8 +5450,9 @@ function.  @xref{Error Reporting, ,The Error Reporting Function
 Error messages passed to @code{yyerror} are simply @w{@code{"syntax
 error"}}.
 @item @code{verbose}
 Error messages passed to @code{yyerror} are simply @w{@code{"syntax
 error"}}.
 @item @code{verbose}
-Error messages report the unexpected token, and possibly the expected
-ones.
+Error messages report the unexpected token, and possibly the expected ones.
+However, this report can often be incorrect when LAC is not enabled
+(@pxref{LAC}).
 @end itemize
 
 @item Default Value:
 @end itemize
 
 @item Default Value:
@@ -5596,84 +5464,13 @@ ones.
 @c ================================================== parse.lac
 @item parse.lac
 @findex %define parse.lac
 @c ================================================== parse.lac
 @item parse.lac
 @findex %define parse.lac
-@cindex LAC
-@cindex lookahead correction
 
 @itemize
 
 @itemize
-@item Languages(s): C
+@item Languages(s): C (deterministic parsers only)
 
 @item Purpose: Enable LAC (lookahead correction) to improve
 
 @item Purpose: Enable LAC (lookahead correction) to improve
-syntax error handling.
-
-Canonical LR, IELR, and LALR can suffer
-from a couple of problems upon encountering a syntax error.  First, the
-parser might perform additional parser stack reductions before
-discovering the syntax error.  Such reductions perform user semantic
-actions that are unexpected because they are based on an invalid token,
-and they cause error recovery to begin in a different syntactic context
-than the one in which the invalid token was encountered.  Second, when
-verbose error messages are enabled (with @code{%error-verbose} or
-@code{#define YYERROR_VERBOSE}), the expected token list in the syntax
-error message can both contain invalid tokens and omit valid tokens.
-
-The culprits for the above problems are @code{%nonassoc}, default
-reductions in inconsistent states, and parser state merging.  Thus,
-IELR and LALR suffer the most.  Canonical
-LR can suffer only if @code{%nonassoc} is used or if default
-reductions are enabled for inconsistent states.
-
-LAC is a new mechanism within the parsing algorithm that
-completely solves these problems for canonical LR,
-IELR, and LALR without sacrificing @code{%nonassoc},
-default reductions, or state mering.  Conceptually, the mechanism is
-straight-forward.  Whenever the parser fetches a new token from the
-scanner so that it can determine the next parser action, it immediately
-suspends normal parsing and performs an exploratory parse using a
-temporary copy of the normal parser state stack.  During this
-exploratory parse, the parser does not perform user semantic actions.
-If the exploratory parse reaches a shift action, normal parsing then
-resumes on the normal parser stacks.  If the exploratory parse reaches
-an error instead, the parser reports a syntax error.  If verbose syntax
-error messages are enabled, the parser must then discover the list of
-expected tokens, so it performs a separate exploratory parse for each
-token in the grammar.
-
-There is one subtlety about the use of LAC.  That is, when in a
-consistent parser state with a default reduction, the parser will not
-attempt to fetch a token from the scanner because no lookahead is
-needed to determine the next parser action.  Thus, whether default
-reductions are enabled in consistent states (@pxref{%define
-Summary,,lr.default-reductions}) affects how soon the parser detects a
-syntax error: when it @emph{reaches} an erroneous token or when it
-eventually @emph{needs} that token as a lookahead.  The latter
-behavior is probably more intuitive, so Bison currently provides no
-way to achieve the former behavior while default reductions are fully
-enabled.
-
-Thus, when LAC is in use, for some fixed decision of whether
-to enable default reductions in consistent states, canonical
-LR and IELR behave exactly the same for both
-syntactically acceptable and syntactically unacceptable input.  While
-LALR still does not support the full language-recognition
-power of canonical LR and IELR, LAC at
-least enables LALR's syntax error handling to correctly
-reflect LALR's language-recognition power.
-
-Because LAC requires many parse actions to be performed twice,
-it can have a performance penalty.  However, not all parse actions must
-be performed twice.  Specifically, during a series of default reductions
-in consistent states and shift actions, the parser never has to initiate
-an exploratory parse.  Moreover, the most time-consuming tasks in a
-parse are often the file I/O, the lexical analysis performed by the
-scanner, and the user's semantic actions, but none of these are
-performed during the exploratory parse.  Finally, the base of the
-temporary stack used during an exploratory parse is a pointer into the
-normal parser state stack so that the stack is never physically copied.
-In our experience, the performance penalty of LAC has proven
-insignificant for practical grammars.
-
+syntax error handling.  @xref{LAC}.
 @item Accepted Values: @code{none}, @code{full}
 @item Accepted Values: @code{none}, @code{full}
-
 @item Default Value: @code{none}
 @end itemize
 @c parse.lac
 @item Default Value: @code{none}
 @end itemize
 @c parse.lac
@@ -5715,45 +5512,53 @@ Boolean.
 @code{false}
 @end itemize
 @c variant
 @code{false}
 @end itemize
 @c variant
-
-
 @end table
 @end table
-@end deffn
 
 
 @node %code Summary
 @subsection %code Summary
 
 
 @node %code Summary
 @subsection %code Summary
-@deffn {Directive} %code @{@var{code}@}
 @findex %code
 @findex %code
-This is the unqualified form of the @code{%code} directive.
-It inserts @var{code} verbatim at a language-dependent default location in the
-output@footnote{The default location is actually skeleton-dependent;
-  writers of non-standard skeletons however should choose the default location
-  consistently with the behavior of the standard Bison skeletons.}.
-
 @cindex Prologue
 @cindex Prologue
+
+The @code{%code} directive inserts code verbatim into the output
+parser source at any of a predefined set of locations.  It thus serves
+as a flexible and user-friendly alternative to the traditional Yacc
+prologue, @code{%@{@var{code}%@}}.  This section summarizes the
+functionality of @code{%code} for the various target languages
+supported by Bison.  For a detailed discussion of how to use
+@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
+is advantageous to do so, @pxref{Prologue Alternatives}.
+
+@deffn {Directive} %code @{@var{code}@}
+This is the unqualified form of the @code{%code} directive.  It
+inserts @var{code} verbatim at a language-dependent default location
+in the parser implementation.
+
 For C/C++, the default location is the parser implementation file
 For C/C++, the default location is the parser implementation file
-after the usual contents of the parser header file.  Thus,
-@code{%code} replaces the traditional Yacc prologue,
-@code{%@{@var{code}%@}}, for most purposes.  For a detailed
-discussion, see @ref{Prologue Alternatives}.
+after the usual contents of the parser header file.  Thus, the
+unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
 
 For Java, the default location is inside the parser class.
 @end deffn
 
 @deffn {Directive} %code @var{qualifier} @{@var{code}@}
 This is the qualified form of the @code{%code} directive.
 
 For Java, the default location is inside the parser class.
 @end deffn
 
 @deffn {Directive} %code @var{qualifier} @{@var{code}@}
 This is the qualified form of the @code{%code} directive.
-If you need to specify location-sensitive verbatim @var{code} that does not
-belong at the default location selected by the unqualified @code{%code} form,
-use this form instead.
+@var{qualifier} identifies the purpose of @var{code} and thus the
+location(s) where Bison should insert it.  That is, if you need to
+specify location-sensitive @var{code} that does not belong at the
+default location selected by the unqualified @code{%code} form, use
+this form instead.
+@end deffn
 
 
-@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
-where Bison should generate it.
-Not all @var{qualifier}s are accepted for all target languages.
-Unaccepted @var{qualifier}s produce an error.
-Some of the accepted @var{qualifier}s are:
+For any particular qualifier or for the unqualified form, if there are
+multiple occurrences of the @code{%code} directive, Bison concatenates
+the specified code in the order in which it appears in the grammar
+file.
 
 
-@itemize @bullet
+Not all qualifiers are accepted for all target languages.  Unaccepted
+qualifiers produce an error.  Some of the accepted qualifiers are:
+
+@table @code
 @item requires
 @findex %code requires
 
 @item requires
 @findex %code requires
 
@@ -5817,12 +5622,12 @@ parser implementation file.  For example:
 @item Location(s): The parser Java file after any Java package directive and
 before any class definitions.
 @end itemize
 @item Location(s): The parser Java file after any Java package directive and
 before any class definitions.
 @end itemize
-@end itemize
+@end table
 
 
-@cindex Prologue
-For a detailed discussion of how to use @code{%code} in place of the
-traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
-@end deffn
+Though we say the insertion locations are language-dependent, they are
+technically skeleton-dependent.  Writers of non-standard skeletons
+however should choose their locations consistently with the behavior
+of the standard Bison skeletons.
 
 
 @node Multiple Parsers
 
 
 @node Multiple Parsers
@@ -6307,10 +6112,11 @@ receives one argument.  For a syntax error, the string is normally
 @w{@code{"syntax error"}}.
 
 @findex %define parse.error
 @w{@code{"syntax error"}}.
 
 @findex %define parse.error
-If you invoke @samp{%define parse.error verbose} in the Bison
-declarations section (@pxref{Bison Declarations, ,The Bison Declarations
-Section}), then Bison provides a more verbose and specific error message
-string instead of just plain @w{@code{"syntax error"}}.
+If you invoke @samp{%define parse.error verbose} in the Bison declarations
+section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
+Bison provides a more verbose and specific error message string instead of
+just plain @w{@code{"syntax error"}}.  However, that message sometimes
+contains incorrect information if LAC is not enabled (@pxref{LAC}).
 
 The parser can detect one other kind of error: memory exhaustion.  This
 can happen when the input contains constructions that are very deeply
 
 The parser can detect one other kind of error: memory exhaustion.  This
 can happen when the input contains constructions that are very deeply
@@ -6710,7 +6516,8 @@ This kind of parser is known in the literature as a bottom-up parser.
 * Contextual Precedence::  When an operator's precedence depends on context.
 * Parser States::     The parser is a finite-state-machine with stack.
 * Reduce/Reduce::     When two rules are applicable in the same situation.
 * Contextual Precedence::  When an operator's precedence depends on context.
 * Parser States::     The parser is a finite-state-machine with stack.
 * Reduce/Reduce::     When two rules are applicable in the same situation.
-* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
+* Mysterious Conflicts:: Conflicts that look unjustified.
+* Tuning LR::         How to tune fundamental aspects of LR-based parsing.
 * Generalized LR Parsing::  Parsing arbitrary context-free grammars.
 * Memory Management:: What happens when memory is exhausted.  How to avoid it.
 @end menu
 * Generalized LR Parsing::  Parsing arbitrary context-free grammars.
 * Memory Management:: What happens when memory is exhausted.  How to avoid it.
 @end menu
@@ -7278,8 +7085,9 @@ redirects:redirect
         ;
 @end example
 
         ;
 @end example
 
-@node Mystery Conflicts
-@section Mysterious Reduce/Reduce Conflicts
+@node Mysterious Conflicts
+@section Mysterious Conflicts
+@cindex Mysterious Conflicts
 
 Sometimes reduce/reduce conflicts can occur that don't look warranted.
 Here is an example:
 
 Sometimes reduce/reduce conflicts can occur that don't look warranted.
 Here is an example:
@@ -7321,8 +7129,8 @@ of lookahead: when a @code{param_spec} is being read, an @code{ID} is
 a @code{name} if a comma or colon follows, or a @code{type} if another
 @code{ID} follows.  In other words, this grammar is LR(1).
 
 a @code{name} if a comma or colon follows, or a @code{type} if another
 @code{ID} follows.  In other words, this grammar is LR(1).
 
-@cindex LR(1)
-@cindex LALR(1)
+@cindex LR
+@cindex LALR
 However, for historical reasons, Bison cannot by default handle all
 LR(1) grammars.
 In this grammar, two contexts, that after an @code{ID} at the beginning
 However, for historical reasons, Bison cannot by default handle all
 LR(1) grammars.
 In this grammar, two contexts, that after an @code{ID} at the beginning
@@ -7337,15 +7145,16 @@ contexts, so it makes a single parser state for them both.  Combining
 the two contexts causes a conflict later.  In parser terminology, this
 occurrence means that the grammar is not LALR(1).
 
 the two contexts causes a conflict later.  In parser terminology, this
 occurrence means that the grammar is not LALR(1).
 
-For many practical grammars (specifically those that fall into the
-non-LR(1) class), the limitations of LALR(1) result in difficulties
-beyond just mysterious reduce/reduce conflicts.  The best way to fix
-all these problems is to select a different parser table generation
-algorithm.  Either IELR(1) or canonical LR(1) would suffice, but the
-former is more efficient and easier to debug during development.
-@xref{%define Summary,,lr.type}, for details.  (Bison's IELR(1) and
-canonical LR(1) implementations are experimental.  More user feedback
-will help to stabilize them.)
+@cindex IELR
+@cindex canonical LR
+For many practical grammars (specifically those that fall into the non-LR(1)
+class), the limitations of LALR(1) result in difficulties beyond just
+mysterious reduce/reduce conflicts.  The best way to fix all these problems
+is to select a different parser table construction algorithm.  Either
+IELR(1) or canonical LR(1) would suffice, but the former is more efficient
+and easier to debug during development.  @xref{LR Table Construction}, for
+details.  (Bison's IELR(1) and canonical LR(1) implementations are
+experimental.  More user feedback will help to stabilize them.)
 
 If you instead wish to work around LALR(1)'s limitations, you
 can often fix a mysterious conflict by identifying the two parser states
 
 If you instead wish to work around LALR(1)'s limitations, you
 can often fix a mysterious conflict by identifying the two parser states
@@ -7394,11 +7203,412 @@ return_spec:
 @end example
 
 For a more detailed exposition of LALR(1) parsers and parser
 @end example
 
 For a more detailed exposition of LALR(1) parsers and parser
-generators, please see:
-Frank DeRemer and Thomas Pennello, Efficient Computation of
-LALR(1) Look-Ahead Sets, @cite{ACM Transactions on
-Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
-pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
+generators, @pxref{Bibliography,,DeRemer 1982}.
+
+@node Tuning LR
+@section Tuning LR
+
+The default behavior of Bison's LR-based parsers is chosen mostly for
+historical reasons, but that behavior is often not robust.  For example, in
+the previous section, we discussed the mysterious conflicts that can be
+produced by LALR(1), Bison's default parser table construction algorithm.
+Another example is Bison's @code{%define parse.error verbose} directive,
+which instructs the generated parser to produce verbose syntax error
+messages, which can sometimes contain incorrect information.
+
+In this section, we explore several modern features of Bison that allow you
+to tune fundamental aspects of the generated LR-based parsers.  Some of
+these features easily eliminate shortcomings like those mentioned above.
+Others can be helpful purely for understanding your parser.
+
+Most of the features discussed in this section are still experimental.  More
+user feedback will help to stabilize them.
+
+@menu
+* LR Table Construction:: Choose a different construction algorithm.
+* Default Reductions::    Disable default reductions.
+* LAC::                   Correct lookahead sets in the parser states.
+* Unreachable States::    Keep unreachable parser states for debugging.
+@end menu
+
+@node LR Table Construction
+@subsection LR Table Construction
+@cindex Mysterious Conflict
+@cindex LALR
+@cindex IELR
+@cindex canonical LR
+@findex %define lr.type
+
+For historical reasons, Bison constructs LALR(1) parser tables by default.
+However, LALR does not possess the full language-recognition power of LR.
+As a result, the behavior of parsers employing LALR parser tables is often
+mysterious.  We presented a simple example of this effect in @ref{Mysterious
+Conflicts}.
+
+As we also demonstrated in that example, the traditional approach to
+eliminating such mysterious behavior is to restructure the grammar.
+Unfortunately, doing so correctly is often difficult.  Moreover, merely
+discovering that LALR causes mysterious behavior in your parser can be
+difficult as well.
+
+Fortunately, Bison provides an easy way to eliminate the possibility of such
+mysterious behavior altogether.  You simply need to activate a more powerful
+parser table construction algorithm by using the @code{%define lr.type}
+directive.
+
+@deffn {Directive} {%define lr.type @var{TYPE}}
+Specify the type of parser tables within the LR(1) family.  The accepted
+values for @var{TYPE} are:
+
+@itemize
+@item @code{lalr} (default)
+@item @code{ielr}
+@item @code{canonical-lr}
+@end itemize
+
+(This feature is experimental. More user feedback will help to stabilize
+it.)
+@end deffn
+
+For example, to activate IELR, you might add the following directive to you
+grammar file:
+
+@example
+%define lr.type ielr
+@end example
+
+@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
+conflict is then eliminated, so there is no need to invest time in
+comprehending the conflict or restructuring the grammar to fix it.  If,
+during future development, the grammar evolves such that all mysterious
+behavior would have disappeared using just LALR, you need not fear that
+continuing to use IELR will result in unnecessarily large parser tables.
+That is, IELR generates LALR tables when LALR (using a deterministic parsing
+algorithm) is sufficient to support the full language-recognition power of
+LR.  Thus, by enabling IELR at the start of grammar development, you can
+safely and completely eliminate the need to consider LALR's shortcomings.
+
+While IELR is almost always preferable, there are circumstances where LALR
+or the canonical LR parser tables described by Knuth
+(@pxref{Bibliography,,Knuth 1965}) can be useful.  Here we summarize the
+relative advantages of each parser table construction algorithm within
+Bison:
+
+@itemize
+@item LALR
+
+There are at least two scenarios where LALR can be worthwhile:
+
+@itemize
+@item GLR without static conflict resolution.
+
+@cindex GLR with LALR
+When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
+conflicts statically (for example, with @code{%left} or @code{%prec}), then
+the parser explores all potential parses of any given input.  In this case,
+the choice of parser table construction algorithm is guaranteed not to alter
+the language accepted by the parser.  LALR parser tables are the smallest
+parser tables Bison can currently construct, so they may then be preferable.
+Nevertheless, once you begin to resolve conflicts statically, GLR behaves
+more like a deterministic parser in the syntactic contexts where those
+conflicts appear, and so either IELR or canonical LR can then be helpful to
+avoid LALR's mysterious behavior.
+
+@item Malformed grammars.
+
+Occasionally during development, an especially malformed grammar with a
+major recurring flaw may severely impede the IELR or canonical LR parser
+table construction algorithm.  LALR can be a quick way to construct parser
+tables in order to investigate such problems while ignoring the more subtle
+differences from IELR and canonical LR.
+@end itemize
+
+@item IELR
+
+IELR (Inadequacy Elimination LR) is a minimal LR algorithm.  That is, given
+any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
+always accept exactly the same set of sentences.  However, like LALR, IELR
+merges parser states during parser table construction so that the number of
+parser states is often an order of magnitude less than for canonical LR.
+More importantly, because canonical LR's extra parser states may contain
+duplicate conflicts in the case of non-LR grammars, the number of conflicts
+for IELR is often an order of magnitude less as well.  This effect can
+significantly reduce the complexity of developing a grammar.
+
+@item Canonical LR
+
+@cindex delayed syntax error detection
+@cindex LAC
+@findex %nonassoc
+While inefficient, canonical LR parser tables can be an interesting means to
+explore a grammar because they possess a property that IELR and LALR tables
+do not.  That is, if @code{%nonassoc} is not used and default reductions are
+left disabled (@pxref{Default Reductions}), then, for every left context of
+every canonical LR state, the set of tokens accepted by that state is
+guaranteed to be the exact set of tokens that is syntactically acceptable in
+that left context.  It might then seem that an advantage of canonical LR
+parsers in production is that, under the above constraints, they are
+guaranteed to detect a syntax error as soon as possible without performing
+any unnecessary reductions.  However, IELR parsers that use LAC are also
+able to achieve this behavior without sacrificing @code{%nonassoc} or
+default reductions.  For details and a few caveats of LAC, @pxref{LAC}.
+@end itemize
+
+For a more detailed exposition of the mysterious behavior in LALR parsers
+and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
+@ref{Bibliography,,Denny 2010 November}.
+
+@node Default Reductions
+@subsection Default Reductions
+@cindex default reductions
+@findex %define lr.default-reductions
+@findex %nonassoc
+
+After parser table construction, Bison identifies the reduction with the
+largest lookahead set in each parser state.  To reduce the size of the
+parser state, traditional Bison behavior is to remove that lookahead set and
+to assign that reduction to be the default parser action.  Such a reduction
+is known as a @dfn{default reduction}.
+
+Default reductions affect more than the size of the parser tables.  They
+also affect the behavior of the parser:
+
+@itemize
+@item Delayed @code{yylex} invocations.
+
+@cindex delayed yylex invocations
+@cindex consistent states
+@cindex defaulted states
+A @dfn{consistent state} is a state that has only one possible parser
+action.  If that action is a reduction and is encoded as a default
+reduction, then that consistent state is called a @dfn{defaulted state}.
+Upon reaching a defaulted state, a Bison-generated parser does not bother to
+invoke @code{yylex} to fetch the next token before performing the reduction.
+In other words, whether default reductions are enabled in consistent states
+determines how soon a Bison-generated parser invokes @code{yylex} for a
+token: immediately when it @emph{reaches} that token in the input or when it
+eventually @emph{needs} that token as a lookahead to determine the next
+parser action.  Traditionally, default reductions are enabled, and so the
+parser exhibits the latter behavior.
+
+The presence of defaulted states is an important consideration when
+designing @code{yylex} and the grammar file.  That is, if the behavior of
+@code{yylex} can influence or be influenced by the semantic actions
+associated with the reductions in defaulted states, then the delay of the
+next @code{yylex} invocation until after those reductions is significant.
+For example, the semantic actions might pop a scope stack that @code{yylex}
+uses to determine what token to return.  Thus, the delay might be necessary
+to ensure that @code{yylex} does not look up the next token in a scope that
+should already be considered closed.
+
+@item Delayed syntax error detection.
+
+@cindex delayed syntax error detection
+When the parser fetches a new token by invoking @code{yylex}, it checks
+whether there is an action for that token in the current parser state.  The
+parser detects a syntax error if and only if either (1) there is no action
+for that token or (2) the action for that token is the error action (due to
+the use of @code{%nonassoc}).  However, if there is a default reduction in
+that state (which might or might not be a defaulted state), then it is
+impossible for condition 1 to exist.  That is, all tokens have an action.
+Thus, the parser sometimes fails to detect the syntax error until it reaches
+a later state.
+
+@cindex LAC
+@c If there's an infinite loop, default reductions can prevent an incorrect
+@c sentence from being rejected.
+While default reductions never cause the parser to accept syntactically
+incorrect sentences, the delay of syntax error detection can have unexpected
+effects on the behavior of the parser.  However, the delay can be caused
+anyway by parser state merging and the use of @code{%nonassoc}, and it can
+be fixed by another Bison feature, LAC.  We discuss the effects of delayed
+syntax error detection and LAC more in the next section (@pxref{LAC}).
+@end itemize
+
+For canonical LR, the only default reduction that Bison enables by default
+is the accept action, which appears only in the accepting state, which has
+no other action and is thus a defaulted state.  However, the default accept
+action does not delay any @code{yylex} invocation or syntax error detection
+because the accept action ends the parse.
+
+For LALR and IELR, Bison enables default reductions in nearly all states by
+default.  There are only two exceptions.  First, states that have a shift
+action on the @code{error} token do not have default reductions because
+delayed syntax error detection could then prevent the @code{error} token
+from ever being shifted in that state.  However, parser state merging can
+cause the same effect anyway, and LAC fixes it in both cases, so future
+versions of Bison might drop this exception when LAC is activated.  Second,
+GLR parsers do not record the default reduction as the action on a lookahead
+token for which there is a conflict.  The correct action in this case is to
+split the parse instead.
+
+To adjust which states have default reductions enabled, use the
+@code{%define lr.default-reductions} directive.
+
+@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
+Specify the kind of states that are permitted to contain default reductions.
+The accepted values of @var{WHERE} are:
+@itemize
+@item @code{full} (default for LALR and IELR)
+@item @code{consistent}
+@item @code{accepting} (default for canonical LR)
+@end itemize
+
+(The ability to specify where default reductions are permitted is
+experimental.  More user feedback will help to stabilize it.)
+@end deffn
+
+@node LAC
+@subsection LAC
+@findex %define parse.lac
+@cindex LAC
+@cindex lookahead correction
+
+Canonical LR, IELR, and LALR can suffer from a couple of problems upon
+encountering a syntax error.  First, the parser might perform additional
+parser stack reductions before discovering the syntax error.  Such
+reductions can perform user semantic actions that are unexpected because
+they are based on an invalid token, and they cause error recovery to begin
+in a different syntactic context than the one in which the invalid token was
+encountered.  Second, when verbose error messages are enabled (@pxref{Error
+Reporting}), the expected token list in the syntax error message can both
+contain invalid tokens and omit valid tokens.
+
+The culprits for the above problems are @code{%nonassoc}, default reductions
+in inconsistent states (@pxref{Default Reductions}), and parser state
+merging.  Because IELR and LALR merge parser states, they suffer the most.
+Canonical LR can suffer only if @code{%nonassoc} is used or if default
+reductions are enabled for inconsistent states.
+
+LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
+that solves these problems for canonical LR, IELR, and LALR without
+sacrificing @code{%nonassoc}, default reductions, or state merging.  You can
+enable LAC with the @code{%define parse.lac} directive.
+
+@deffn {Directive} {%define parse.lac @var{VALUE}}
+Enable LAC to improve syntax error handling.
+@itemize
+@item @code{none} (default)
+@item @code{full}
+@end itemize
+(This feature is experimental.  More user feedback will help to stabilize
+it.  Moreover, it is currently only available for deterministic parsers in
+C.)
+@end deffn
+
+Conceptually, the LAC mechanism is straight-forward.  Whenever the parser
+fetches a new token from the scanner so that it can determine the next
+parser action, it immediately suspends normal parsing and performs an
+exploratory parse using a temporary copy of the normal parser state stack.
+During this exploratory parse, the parser does not perform user semantic
+actions.  If the exploratory parse reaches a shift action, normal parsing
+then resumes on the normal parser stacks.  If the exploratory parse reaches
+an error instead, the parser reports a syntax error.  If verbose syntax
+error messages are enabled, the parser must then discover the list of
+expected tokens, so it performs a separate exploratory parse for each token
+in the grammar.
+
+There is one subtlety about the use of LAC.  That is, when in a consistent
+parser state with a default reduction, the parser will not attempt to fetch
+a token from the scanner because no lookahead is needed to determine the
+next parser action.  Thus, whether default reductions are enabled in
+consistent states (@pxref{Default Reductions}) affects how soon the parser
+detects a syntax error: immediately when it @emph{reaches} an erroneous
+token or when it eventually @emph{needs} that token as a lookahead to
+determine the next parser action.  The latter behavior is probably more
+intuitive, so Bison currently provides no way to achieve the former behavior
+while default reductions are enabled in consistent states.
+
+Thus, when LAC is in use, for some fixed decision of whether to enable
+default reductions in consistent states, canonical LR and IELR behave almost
+exactly the same for both syntactically acceptable and syntactically
+unacceptable input.  While LALR still does not support the full
+language-recognition power of canonical LR and IELR, LAC at least enables
+LALR's syntax error handling to correctly reflect LALR's
+language-recognition power.
+
+There are a few caveats to consider when using LAC:
+
+@itemize
+@item Infinite parsing loops.
+
+IELR plus LAC does have one shortcoming relative to canonical LR.  Some
+parsers generated by Bison can loop infinitely.  LAC does not fix infinite
+parsing loops that occur between encountering a syntax error and detecting
+it, but enabling canonical LR or disabling default reductions sometimes
+does.
+
+@item Verbose error message limitations.
+
+Because of internationalization considerations, Bison-generated parsers
+limit the size of the expected token list they are willing to report in a
+verbose syntax error message.  If the number of expected tokens exceeds that
+limit, the list is simply dropped from the message.  Enabling LAC can
+increase the size of the list and thus cause the parser to drop it.  Of
+course, dropping the list is better than reporting an incorrect list.
+
+@item Performance.
+
+Because LAC requires many parse actions to be performed twice, it can have a
+performance penalty.  However, not all parse actions must be performed
+twice.  Specifically, during a series of default reductions in consistent
+states and shift actions, the parser never has to initiate an exploratory
+parse.  Moreover, the most time-consuming tasks in a parse are often the
+file I/O, the lexical analysis performed by the scanner, and the user's
+semantic actions, but none of these are performed during the exploratory
+parse.  Finally, the base of the temporary stack used during an exploratory
+parse is a pointer into the normal parser state stack so that the stack is
+never physically copied.  In our experience, the performance penalty of LAC
+has proven insignificant for practical grammars.
+@end itemize
+
+While the basic premise behind LAC has been recognized in the parser
+community for years, for the first publication that uses the term LAC and
+that discusses Bison's LAC implementation, @pxref{Bibliography,,Denny 2010
+May}.
+
+@node Unreachable States
+@subsection Unreachable States
+@findex %define lr.keep-unreachable-states
+@cindex unreachable states
+
+If there exists no sequence of transitions from the parser's start state to
+some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
+state}.  A state can become unreachable during conflict resolution if Bison
+disables a shift action leading to it from a predecessor state.
+
+By default, Bison removes unreachable states from the parser after conflict
+resolution because they are useless in the generated parser.  However,
+keeping unreachable states is sometimes useful when trying to understand the
+relationship between the parser and the grammar.
+
+@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
+Request that Bison allow unreachable states to remain in the parser tables.
+@var{VALUE} must be a Boolean.  The default is @code{false}.
+@end deffn
+
+There are a few caveats to consider:
+
+@itemize @bullet
+@item Missing or extraneous warnings.
+
+Unreachable states may contain conflicts and may use rules not used in any
+other state.  Thus, keeping unreachable states may induce warnings that are
+irrelevant to your parser's behavior, and it may eliminate warnings that are
+relevant.  Of course, the change in warnings may actually be relevant to a
+parser table analysis that wants to keep unreachable states, so this
+behavior will likely remain in future Bison releases.
+
+@item Other useless states.
+
+While Bison is able to remove unreachable states, it is not guaranteed to
+remove other kinds of useless states.  Specifically, when Bison disables
+reduce actions during conflict resolution, some goto actions may become
+useless, and thus some additional states may become useless.  If Bison were
+to compute which goto actions were useless and then disable those actions,
+it could identify such states as unreachable and then remove those states.
+However, Bison does not compute which goto actions are useless.
+@end itemize
 
 @node Generalized LR Parsing
 @section Generalized LR (GLR) Parsing
 
 @node Generalized LR Parsing
 @section Generalized LR (GLR) Parsing
@@ -7417,7 +7627,7 @@ sequence of reductions cannot have deterministic parsers in this sense.
 The same is true of languages that require more than one symbol of
 lookahead, since the parser lacks the information necessary to make a
 decision at the point it must be made in a shift-reduce parser.
 The same is true of languages that require more than one symbol of
 lookahead, since the parser lacks the information necessary to make a
 decision at the point it must be made in a shift-reduce parser.
-Finally, as previously mentioned (@pxref{Mystery Conflicts}),
+Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
 there are languages where Bison's default choice of how to
 summarize the input seen so far loses necessary information.
 
 there are languages where Bison's default choice of how to
 summarize the input seen so far loses necessary information.
 
@@ -7479,12 +7689,8 @@ structure should generally be adequate.  On LR(1) portions of a
 grammar, in particular, it is only slightly slower than with the
 deterministic LR(1) Bison parser.
 
 grammar, in particular, it is only slightly slower than with the
 deterministic LR(1) Bison parser.
 
-For a more detailed exposition of GLR parsers, please see: Elizabeth
-Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
-Generalised LR Parsers, Royal Holloway, University of
-London, Department of Computer Science, TR-00-12,
-@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
-(2000-12-24).
+For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
+2000}.
 
 @node Memory Management
 @section Memory Management, and How to Avoid Memory Exhaustion
 
 @node Memory Management
 @section Memory Management, and How to Avoid Memory Exhaustion
@@ -9487,8 +9693,9 @@ propagated.
 @end example
 
 @noindent
 @end example
 
 @noindent
-Use the following two directives to enable parser tracing and verbose
-error messages.
+Use the following two directives to enable parser tracing and verbose error
+messages.  However, verbose error messages can contain incorrect information
+(@pxref{LAC}).
 
 @comment file: calc++-parser.yy
 @example
 
 @comment file: calc++-parser.yy
 @example
@@ -10878,7 +11085,8 @@ Start-Symbol}.  It cannot be used in the grammar.
 
 @deffn {Directive} %code @{@var{code}@}
 @deffnx {Directive} %code @var{qualifier} @{@var{code}@}
 
 @deffn {Directive} %code @{@var{code}@}
 @deffnx {Directive} %code @var{qualifier} @{@var{code}@}
-Insert @var{code} verbatim into output parser source.
+Insert @var{code} verbatim into the output parser source at the
+default location or at the location specified by @var{qualifier}.
 @xref{%code Summary}.
 @end deffn
 
 @xref{%code Summary}.
 @end deffn
 
@@ -10894,9 +11102,9 @@ Precedence}.
 @end deffn
 @end ifset
 
 @end deffn
 @end ifset
 
-@deffn {Directive} %define @var{define-variable}
-@deffnx {Directive} %define @var{define-variable} @var{value}
-@deffnx {Directive} %define @var{define-variable} "@var{value}"
+@deffn {Directive} %define @var{variable}
+@deffnx {Directive} %define @var{variable} @var{value}
+@deffnx {Directive} %define @var{variable} "@var{value}"
 Define a variable to adjust Bison's behavior.  @xref{%define Summary}.
 @end deffn
 
 Define a variable to adjust Bison's behavior.  @xref{%define Summary}.
 @end deffn
 
@@ -10938,7 +11146,8 @@ token is reset to the token that originally caused the violation.
 @end deffn
 
 @deffn {Directive} %error-verbose
 @end deffn
 
 @deffn {Directive} %error-verbose
-An obsolete directive standing for @samp{%define parse.error verbose}.
+An obsolete directive standing for @samp{%define parse.error verbose}
+(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
 @end deffn
 
 @deffn {Directive} %file-prefix "@var{prefix}"
 @end deffn
 
 @deffn {Directive} %file-prefix "@var{prefix}"
@@ -11291,7 +11500,7 @@ Data type of semantic values; @code{int} by default.
 @cindex glossary
 
 @table @asis
 @cindex glossary
 
 @table @asis
-@item Accepting State
+@item Accepting state
 A state whose only action is the accept action.
 The accepting state is thus a consistent state.
 @xref{Understanding,,}.
 A state whose only action is the accept action.
 The accepting state is thus a consistent state.
 @xref{Understanding,,}.
@@ -11302,9 +11511,8 @@ by John Backus, and slightly improved by Peter Naur in his 1960-01-02
 committee document contributing to what became the Algol 60 report.
 @xref{Language and Grammar, ,Languages and Context-Free Grammars}.
 
 committee document contributing to what became the Algol 60 report.
 @xref{Language and Grammar, ,Languages and Context-Free Grammars}.
 
-@item Consistent State
-A state containing only one possible action.  @xref{%define
-Summary,,lr.default-reductions}.
+@item Consistent state
+A state containing only one possible action.  @xref{Default Reductions}.
 
 @item Context-free grammars
 Grammars specified as rules that can be applied regardless of context.
 
 @item Context-free grammars
 Grammars specified as rules that can be applied regardless of context.
@@ -11313,12 +11521,15 @@ expression, integers are allowed @emph{anywhere} an expression is
 permitted.  @xref{Language and Grammar, ,Languages and Context-Free
 Grammars}.
 
 permitted.  @xref{Language and Grammar, ,Languages and Context-Free
 Grammars}.
 
-@item Default Reduction
+@item Default reduction
 The reduction that a parser should perform if the current parser state
 contains no other action for the lookahead token.  In permitted parser
 The reduction that a parser should perform if the current parser state
 contains no other action for the lookahead token.  In permitted parser
-states, Bison declares the reduction with the largest lookahead set to
-be the default reduction and removes that lookahead set.
-@xref{%define Summary,,lr.default-reductions}.
+states, Bison declares the reduction with the largest lookahead set to be
+the default reduction and removes that lookahead set.  @xref{Default
+Reductions}.
+
+@item Defaulted state
+A consistent state with a default reduction.  @xref{Default Reductions}.
 
 @item Dynamic allocation
 Allocation of memory that occurs during execution, rather than at
 
 @item Dynamic allocation
 Allocation of memory that occurs during execution, rather than at
@@ -11350,17 +11561,16 @@ A language construct that is (in general) grammatically divisible;
 for example, `expression' or `declaration' in C@.
 @xref{Language and Grammar, ,Languages and Context-Free Grammars}.
 
 for example, `expression' or `declaration' in C@.
 @xref{Language and Grammar, ,Languages and Context-Free Grammars}.
 
-@item IELR(1)
-A minimal LR(1) parser table generation algorithm.  That is, given any
+@item IELR(1) (Inadequacy Elimination LR(1))
+A minimal LR(1) parser table construction algorithm.  That is, given any
 context-free grammar, IELR(1) generates parser tables with the full
 context-free grammar, IELR(1) generates parser tables with the full
-language recognition power of canonical LR(1) but with nearly the same
-number of parser states as LALR(1).  This reduction in parser states
-is often an order of magnitude.  More importantly, because canonical
-LR(1)'s extra parser states may contain duplicate conflicts in the
-case of non-LR(1) grammars, the number of conflicts for IELR(1) is
-often an order of magnitude less as well.  This can significantly
-reduce the complexity of developing of a grammar.  @xref{%define
-Summary,,lr.type}.
+language-recognition power of canonical LR(1) but with nearly the same
+number of parser states as LALR(1).  This reduction in parser states is
+often an order of magnitude.  More importantly, because canonical LR(1)'s
+extra parser states may contain duplicate conflicts in the case of non-LR(1)
+grammars, the number of conflicts for IELR(1) is often an order of magnitude
+less as well.  This can significantly reduce the complexity of developing a
+grammar.  @xref{LR Table Construction}.
 
 @item Infix operator
 An arithmetic operator that is placed between the operands on which it
 
 @item Infix operator
 An arithmetic operator that is placed between the operands on which it
@@ -11371,12 +11581,11 @@ A continuous flow of data between devices or programs.
 
 @item LAC (Lookahead Correction)
 A parsing mechanism that fixes the problem of delayed syntax error
 
 @item LAC (Lookahead Correction)
 A parsing mechanism that fixes the problem of delayed syntax error
-detection, which is caused by LR state merging, default reductions,
-and the use of @code{%nonassoc}.  Delayed syntax error detection
-results in unexpected semantic actions, initiation of error recovery
-in the wrong syntactic context, and an incorrect list of expected
-tokens in a verbose syntax error message.  @xref{%define
-Summary,,parse.lac}.
+detection, which is caused by LR state merging, default reductions, and the
+use of @code{%nonassoc}.  Delayed syntax error detection results in
+unexpected semantic actions, initiation of error recovery in the wrong
+syntactic context, and an incorrect list of expected tokens in a verbose
+syntax error message.  @xref{LAC}.
 
 @item Language construct
 One of the typical usage schemas of the language.  For example, one of
 
 @item Language construct
 One of the typical usage schemas of the language.  For example, one of
@@ -11415,7 +11624,7 @@ Tokens}.
 @item LALR(1)
 The class of context-free grammars that Bison (like most other parser
 generators) can handle by default; a subset of LR(1).
 @item LALR(1)
 The class of context-free grammars that Bison (like most other parser
 generators) can handle by default; a subset of LR(1).
-@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
+@xref{Mysterious Conflicts}.
 
 @item LR(1)
 The class of context-free grammars in which at most one token of
 
 @item LR(1)
 The class of context-free grammars in which at most one token of
@@ -11492,12 +11701,57 @@ the lexical analyzer.  @xref{Symbols}.
 A grammar symbol that has no rules in the grammar and therefore is
 grammatically indivisible.  The piece of text it represents is a token.
 @xref{Language and Grammar, ,Languages and Context-Free Grammars}.
 A grammar symbol that has no rules in the grammar and therefore is
 grammatically indivisible.  The piece of text it represents is a token.
 @xref{Language and Grammar, ,Languages and Context-Free Grammars}.
+
+@item Unreachable state
+A parser state to which there does not exist a sequence of transitions from
+the parser's start state.  A state can become unreachable during conflict
+resolution.  @xref{Unreachable States}.
 @end table
 
 @node Copying This Manual
 @appendix Copying This Manual
 @include fdl.texi
 
 @end table
 
 @node Copying This Manual
 @appendix Copying This Manual
 @include fdl.texi
 
+@node Bibliography
+@unnumbered Bibliography
+
+@table @asis
+@item [Denny 2008]
+Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
+for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
+2008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
+pp.@: 240--245.  @uref{http://dx.doi.org/10.1145/1363686.1363747}
+
+@item [Denny 2010 May]
+Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
+Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
+University, Clemson, SC, USA (May 2010).
+@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
+
+@item [Denny 2010 November]
+Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
+Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
+in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
+2010), pp.@: 943--979.  @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
+
+@item [DeRemer 1982]
+Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
+Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
+Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
+615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
+
+@item [Knuth 1965]
+Donald E. Knuth, On the Translation of Languages from Left to Right, in
+@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
+607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
+
+@item [Scott 2000]
+Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
+@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
+London, Department of Computer Science, TR-00-12 (December 2000).
+@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
+@end table
+
 @node Index
 @unnumbered Index
 
 @node Index
 @unnumbered Index