/* Generate the nondeterministic finite state machine for bison,
- Copyright (C) 1984, 1986, 1989, 2000 Free Software Foundation, Inc.
+ Copyright 1984, 1986, 1989, 2000, 2001 Free Software Foundation, Inc.
This file is part of Bison, the GNU Compiler Compiler.
The entry point is generate_states. */
#include "system.h"
-#include "alloc.h"
+#include "getargs.h"
+#include "reader.h"
#include "gram.h"
#include "state.h"
#include "complain.h"
int nstates;
int final_state;
-core *first_state;
-shifts *first_shift;
-reductions *first_reduction;
+core *first_state = NULL;
+shifts *first_shift = NULL;
+reductions *first_reduction = NULL;
-static core *this_state;
-static core *last_state;
-static shifts *last_shift;
-static reductions *last_reduction;
+static core *this_state = NULL;
+static core *last_state = NULL;
+static shifts *last_shift = NULL;
+static reductions *last_reduction = NULL;
static int nshifts;
-static short *shift_symbol;
+static short *shift_symbol = NULL;
-static short *redset;
-static short *shiftset;
+static short *redset = NULL;
+static short *shiftset = NULL;
-static short **kernel_base;
-static short **kernel_end;
-static short *kernel_items;
+static short **kernel_base = NULL;
+static short **kernel_end = NULL;
+static short *kernel_items = NULL;
/* hash table for states, to recognize equivalent ones. */
#define STATE_TABLE_SIZE 1009
-static core **state_table;
+static core **state_table = NULL;
\f
static void
allocate_itemsets (void)
{
- short *itemp;
- int symbol;
int i;
int count;
- short *symbol_count;
+ short *symbol_count = NULL;
count = 0;
- symbol_count = NEW2 (nsyms, short);
+ symbol_count = XCALLOC (short, nsyms);
- itemp = ritem;
- symbol = *itemp++;
- while (symbol)
- {
- if (symbol > 0)
- {
- count++;
- symbol_count[symbol]++;
- }
- symbol = *itemp++;
- }
+ for (i = 0; ritem[i]; ++i)
+ if (ritem[i] > 0)
+ {
+ count++;
+ symbol_count[ritem[i]]++;
+ }
/* See comments before new_itemsets. All the vectors of items
live inside KERNEL_ITEMS. The number of active items after
appears as an item, which is symbol_count[symbol].
We allocate that much space for each symbol. */
- kernel_base = NEW2 (nsyms, short *);
- kernel_items = NEW2 (count, short);
+ kernel_base = XCALLOC (short *, nsyms);
+ if (count)
+ kernel_items = XCALLOC (short, count);
count = 0;
for (i = 0; i < nsyms; i++)
}
shift_symbol = symbol_count;
- kernel_end = NEW2 (nsyms, short *);
+ kernel_end = XCALLOC (short *, nsyms);
}
{
allocate_itemsets ();
- shiftset = NEW2 (nsyms, short);
- redset = NEW2 (nrules + 1, short);
- state_table = NEW2 (STATE_TABLE_SIZE, core *);
+ shiftset = XCALLOC (short, nsyms);
+ redset = XCALLOC (short, nrules + 1);
+ state_table = XCALLOC (core *, STATE_TABLE_SIZE);
}
static void
free_storage (void)
{
- FREE (shift_symbol);
- FREE (redset);
- FREE (shiftset);
- FREE (kernel_base);
- FREE (kernel_end);
- FREE (kernel_items);
- FREE (state_table);
+ XFREE (shift_symbol);
+ XFREE (redset);
+ XFREE (shiftset);
+ XFREE (kernel_base);
+ XFREE (kernel_end);
+ XFREE (kernel_items);
+ XFREE (state_table);
}
{
int i;
int shiftcount;
- short *isp;
- short *ksp;
- int symbol;
-#if TRACE
- fprintf (stderr, "Entering new_itemsets\n");
-#endif
+ if (trace_flag)
+ fprintf (stderr, "Entering new_itemsets, state = %d\n",
+ this_state->number);
for (i = 0; i < nsyms; i++)
kernel_end[i] = NULL;
shiftcount = 0;
- isp = itemset;
-
- while (isp < itemsetend)
+ for (i = 0; i < itemsetend - itemset; ++i)
{
- i = *isp++;
- symbol = ritem[i];
+ int symbol = ritem[itemset[i]];
if (symbol > 0)
{
- ksp = kernel_end[symbol];
+ short *ksp = kernel_end[symbol];
if (!ksp)
{
- shift_symbol[shiftcount++] = symbol;
+ shift_symbol[shiftcount] = symbol;
ksp = kernel_base[symbol];
+ shiftcount++;
}
- *ksp++ = i + 1;
+ *ksp++ = itemset[i] + 1;
kernel_end[symbol] = ksp;
}
}
{
int n;
core *p;
- short *isp1;
- short *isp2;
- short *iend;
-#if TRACE
- fprintf (stderr, "Entering new_state, symbol = %d\n", symbol);
-#endif
+ if (trace_flag)
+ fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n",
+ this_state->number, symbol, tags[symbol]);
if (nstates >= MAXSHORT)
fatal (_("too many states (max %d)"), MAXSHORT);
- isp1 = kernel_base[symbol];
- iend = kernel_end[symbol];
- n = iend - isp1;
+ n = kernel_end[symbol] - kernel_base[symbol];
- p =
- (core *) xmalloc ((unsigned) (sizeof (core) + (n - 1) * sizeof (short)));
+ p = CORE_ALLOC (n);
p->accessing_symbol = symbol;
p->number = nstates;
p->nitems = n;
- isp2 = p->items;
- while (isp1 < iend)
- *isp2++ = *isp1++;
+ shortcpy (p->items, kernel_base[symbol], n);
last_state->next = p;
last_state = p;
-
nstates++;
return p;
/*--------------------------------------------------------------.
| Find the state number for the state we would get to (from the |
| current state) by shifting symbol. Create a new state if no |
-| equivalent one exists already. Used by append_states. |
+| equivalent one exists already. Used by append_states. |
`--------------------------------------------------------------*/
static int
get_state (int symbol)
{
int key;
- short *isp1;
short *isp2;
- short *iend;
+ int i;
core *sp;
- int found;
-
- int n;
-#if TRACE
- fprintf (stderr, "Entering get_state, symbol = %d\n", symbol);
-#endif
+ int n = kernel_end[symbol] - kernel_base[symbol];
- isp1 = kernel_base[symbol];
- iend = kernel_end[symbol];
- n = iend - isp1;
+ if (trace_flag)
+ fprintf (stderr, "Entering get_state, state = %d, symbol = %d (%s)\n",
+ this_state->number, symbol, tags[symbol]);
- /* add up the target state's active item numbers to get a hash key */
+ /* Add up the target state's active item numbers to get a hash key.
+ */
key = 0;
- while (isp1 < iend)
- key += *isp1++;
-
+ for (i = 0; i < n; ++i)
+ key += kernel_base[symbol][i];
key = key % STATE_TABLE_SIZE;
-
sp = state_table[key];
if (sp)
{
- found = 0;
+ int found = 0;
while (!found)
{
if (sp->nitems == n)
{
+ int i;
found = 1;
- isp1 = kernel_base[symbol];
- isp2 = sp->items;
-
- while (found && isp1 < iend)
- {
- if (*isp1++ != *isp2++)
- found = 0;
- }
+ for (i = 0; i < n; ++i)
+ if (kernel_base[symbol][i] != sp->items[i])
+ found = 0;
}
if (!found)
state_table[key] = sp = new_state (symbol);
}
+ if (trace_flag)
+ fprintf (stderr, "Exiting get_state => %d\n", sp->number);
+
return sp->number;
}
int j;
int symbol;
-#if TRACE
- fprintf (stderr, "Entering append_states\n");
-#endif
+ if (trace_flag)
+ fprintf (stderr, "Entering append_states, state = %d\n",
+ this_state->number);
/* first sort shift_symbol into increasing order */
}
for (i = 0; i < nshifts; i++)
- {
- symbol = shift_symbol[i];
- shiftset[i] = get_state (symbol);
- }
+ shiftset[i] = get_state (shift_symbol[i]);
}
static void
new_states (void)
{
- core *p;
-
- p = (core *) xmalloc ((unsigned) (sizeof (core) - sizeof (short)));
- first_state = last_state = this_state = p;
+ first_state = last_state = this_state = CORE_ALLOC (0);
nstates = 1;
}
static void
save_shifts (void)
{
- shifts *p;
- short *sp1;
- short *sp2;
- short *send;
-
- p = (shifts *) xmalloc ((unsigned) (sizeof (shifts) +
- (nshifts - 1) * sizeof (short)));
+ shifts *p = SHIFTS_ALLOC (nshifts);
p->number = this_state->number;
p->nshifts = nshifts;
- sp1 = shiftset;
- sp2 = p->shifts;
- send = shiftset + nshifts;
-
- while (sp1 < send)
- *sp2++ = *sp1++;
+ shortcpy (p->shifts, shiftset, nshifts);
if (last_shift)
- {
- last_shift->next = p;
- last_shift = p;
- }
+ last_shift->next = p;
else
- {
- first_shift = p;
- last_shift = p;
- }
+ first_shift = p;
+ last_shift = p;
}
core *statep;
shifts *sp;
- statep = (core *) xmalloc ((unsigned) (sizeof (core) - sizeof (short)));
+ statep = CORE_ALLOC (0);
statep->number = nstates;
statep->accessing_symbol = start_symbol;
last_state = statep;
/* Make a shift from this state to (what will be) the final state. */
- sp = NEW (shifts);
+ sp = SHIFTS_ALLOC (1);
sp->number = nstates++;
sp->nshifts = 1;
sp->shifts[0] = nstates;
if (sp && sp->number == k)
{
- sp2 = (shifts *) xmalloc ((unsigned) (sizeof (shifts)
- +
- sp->nshifts *
- sizeof (short)));
+ sp2 = SHIFTS_ALLOC (sp->nshifts + 1);
sp2->number = k;
sp2->nshifts = sp->nshifts + 1;
sp2->shifts[0] = nstates;
sp1->next = sp2;
if (sp == last_shift)
last_shift = sp2;
- FREE (sp);
+ XFREE (sp);
}
else
{
- sp2 = NEW (shifts);
+ sp2 = SHIFTS_ALLOC (1);
sp2->number = k;
sp2->nshifts = 1;
sp2->shifts[0] = nstates;
going to the next-to-final state (yet to be made). */
sp = first_shift;
- sp2 = (shifts *) xmalloc (sizeof (shifts)
- + sp->nshifts * sizeof (short));
+ sp2 = SHIFTS_ALLOC (sp->nshifts + 1);
sp2->nshifts = sp->nshifts + 1;
/* Stick this shift into the vector at the proper place. */
if (last_shift == sp)
last_shift = sp2;
- FREE (sp);
+ XFREE (sp);
/* Create the next-to-final state, with shift to
what will be the final state. */
{
/* The initial state didn't even have any shifts.
Give it one shift, to the next-to-final state. */
- sp = NEW (shifts);
+ sp = SHIFTS_ALLOC (1);
sp->nshifts = 1;
sp->shifts[0] = nstates;
/* There are no shifts for any state.
Make one shift, from the initial state to the next-to-final state. */
- sp = NEW (shifts);
+ sp = SHIFTS_ALLOC (1);
sp->nshifts = 1;
sp->shifts[0] = nstates;
/* Make the final state--the one that follows a shift from the
next-to-final state.
The symbol for that shift is 0 (end-of-file). */
- statep = (core *) xmalloc ((unsigned) (sizeof (core) - sizeof (short)));
+ statep = CORE_ALLOC (0);
statep->number = nstates;
last_state->next = statep;
last_state = statep;
/* Make the shift from the final state to the termination state. */
- sp = NEW (shifts);
+ sp = SHIFTS_ALLOC (1);
sp->number = nstates++;
sp->nshifts = 1;
sp->shifts[0] = nstates;
final_state = nstates;
/* Make the termination state. */
- statep = (core *) xmalloc ((unsigned) (sizeof (core) - sizeof (short)));
+ statep = CORE_ALLOC (0);
statep->number = nstates++;
last_state->next = statep;
last_state = statep;
save_reductions (void)
{
short *isp;
- short *rp1;
- short *rp2;
int item;
int count;
reductions *p;
if (count)
{
- p = (reductions *) xmalloc ((unsigned) (sizeof (reductions) +
- (count - 1) * sizeof (short)));
+ p = REDUCTIONS_ALLOC (count);
p->number = this_state->number;
p->nreds = count;
- rp1 = redset;
- rp2 = p->rules;
- rend = rp1 + count;
-
- for (/* nothing */; rp1 < rend; ++rp1, ++rp2)
- *rp2 = *rp1;
+ shortcpy (p->rules, redset, count);
if (last_reduction)
- {
- last_reduction->next = p;
- last_reduction = p;
- }
+ last_reduction->next = p;
else
- {
- first_reduction = p;
- last_reduction = p;
- }
+ first_reduction = p;
+ last_reduction = p;
}
}