This manual (@value{UPDATED}) is for GNU Bison (version
@value{VERSION}), the GNU parser generator.
-Copyright @copyright{} 1988-1993, 1995, 1998-2011 Free Software
+Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
Foundation, Inc.
@quotation
the name of an identifier, etc.).
* Semantic Actions:: Each rule can have an action containing C code.
* GLR Parsers:: Writing parsers for general context-free languages.
-* Locations Overview:: Tracking Locations.
+* Locations:: Overview of location tracking.
* Bison Parser:: What are Bison's input and output,
how is the output used?
* Stages:: Stages in writing and running Bison grammars.
Bison Grammar Files
-* Grammar Outline:: Overall layout of the grammar file.
-* Symbols:: Terminal and nonterminal symbols.
-* Rules:: How to write grammar rules.
-* Recursion:: Writing recursive rules.
-* Semantics:: Semantic values and actions.
-* Locations:: Locations and actions.
-* Declarations:: All kinds of Bison declarations are described here.
-* Multiple Parsers:: Putting more than one Bison parser in one program.
+* Grammar Outline:: Overall layout of the grammar file.
+* Symbols:: Terminal and nonterminal symbols.
+* Rules:: How to write grammar rules.
+* Recursion:: Writing recursive rules.
+* Semantics:: Semantic values and actions.
+* Tracking Locations:: Locations and actions.
+* Named References:: Using named references in actions.
+* Declarations:: All kinds of Bison declarations are described here.
+* Multiple Parsers:: Putting more than one Bison parser in one program.
Outline of a Bison Grammar
* Mid-Rule Actions:: Most actions go at the end of a rule.
This says when, why and how to use the exceptional
action in the middle of a rule.
-* Named References:: Using named references in actions.
Tracking Locations
* Contextual Precedence:: When an operator's precedence depends on context.
* Parser States:: The parser is a finite-state-machine with stack.
* Reduce/Reduce:: When two rules are applicable in the same situation.
-* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
+* Mysterious Conflicts:: Conflicts that look unjustified.
* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
* Memory Management:: What happens when memory is exhausted. How to avoid it.
the name of an identifier, etc.).
* Semantic Actions:: Each rule can have an action containing C code.
* GLR Parsers:: Writing parsers for general context-free languages.
-* Locations Overview:: Tracking Locations.
+* Locations:: Overview of location tracking.
* Bison Parser:: What are Bison's input and output,
how is the output used?
* Stages:: Stages in writing and running Bison grammars.
to tell how to parse any portion of an input string with just a single token
of lookahead. For historical reasons, Bison by default is limited by the
additional restrictions of LALR(1), which is hard to explain simply.
-@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for more
-information on this. As an experimental feature, you can escape these
-additional restrictions by requesting IELR(1) or canonical LR(1) parser
-tables. @xref{LR Table Construction}, to learn how.
+@xref{Mysterious Conflicts}, for more information on this. As an
+experimental feature, you can escape these additional restrictions by
+requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
+Construction}, to learn how.
@cindex GLR parsing
@cindex generalized LR (GLR) parsing
initiate error recovery.
During deterministic GLR operation, the effect of @code{YYERROR} is
the same as its effect in a deterministic parser.
-The effect in a deferred action is similar, but the precise point of the
-error is undefined; instead, the parser reverts to deterministic operation,
+The effect in a deferred action is similar, but the precise point of the
+error is undefined; instead, the parser reverts to deterministic operation,
selecting an unspecified stack on which to continue with a syntax error.
In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
parsing, @code{YYERROR} silently prunes
@end smallexample
@noindent
-is one way to allow the same parser to handle two different syntaxes for
+is one way to allow the same parser to handle two different syntaxes for
widgets. The clause preceded by @code{%?} is treated like an ordinary
action, except that its text is treated as an expression and is always
-evaluated immediately (even when in nondeterministic mode). If the
+evaluated immediately (even when in nondeterministic mode). If the
expression yields 0 (false), the clause is treated as a syntax error,
-which, in a nondeterministic parser, causes the stack in which it is reduced
+which, in a nondeterministic parser, causes the stack in which it is reduced
to die. In a deterministic parser, it acts like YYERROR.
As the example shows, predicates otherwise look like semantic actions, and
There is a subtle difference between semantic predicates and ordinary
actions in nondeterministic mode, since the latter are deferred.
-For example, we could try to rewrite the previous example as
+For example, we could try to rewrite the previous example as
@smallexample
widget :
false). However, this
does @emph{not} have the same effect if @code{new_args} and @code{old_args}
have overlapping syntax.
-Since the mid-rule actions testing @code{new_syntax} are deferred,
+Since the mid-rule actions testing @code{new_syntax} are deferred,
a GLR parser first encounters the unresolved ambiguous reduction
for cases where @code{new_args} and @code{old_args} recognize the same string
@emph{before} performing the tests of @code{new_syntax}. It therefore
%@}
@end example
-@node Locations Overview
+@node Locations
@section Locations
@cindex location
@cindex textual location
Bison provides a mechanism for handling these locations.
Each token has a semantic value. In a similar fashion, each token has an
-associated location, but the type of locations is the same for all tokens and
-groupings. Moreover, the output parser is equipped with a default data
-structure for storing locations (@pxref{Locations}, for more details).
+associated location, but the type of locations is the same for all tokens
+and groupings. Moreover, the output parser is equipped with a default data
+structure for storing locations (@pxref{Tracking Locations}, for more
+details).
Like semantic values, locations can be reached in actions using a dedicated
set of constructs. In the example above, the location of the whole grouping
@xref{Invocation, ,Invoking Bison}.
@menu
-* Grammar Outline:: Overall layout of the grammar file.
-* Symbols:: Terminal and nonterminal symbols.
-* Rules:: How to write grammar rules.
-* Recursion:: Writing recursive rules.
-* Semantics:: Semantic values and actions.
-* Locations:: Locations and actions.
-* Declarations:: All kinds of Bison declarations are described here.
-* Multiple Parsers:: Putting more than one Bison parser in one program.
+* Grammar Outline:: Overall layout of the grammar file.
+* Symbols:: Terminal and nonterminal symbols.
+* Rules:: How to write grammar rules.
+* Recursion:: Writing recursive rules.
+* Semantics:: Semantic values and actions.
+* Tracking Locations:: Locations and actions.
+* Named References:: Using named references in actions.
+* Declarations:: All kinds of Bison declarations are described here.
+* Multiple Parsers:: Putting more than one Bison parser in one program.
@end menu
@node Grammar Outline
* Mid-Rule Actions:: Most actions go at the end of a rule.
This says when, why and how to use the exceptional
action in the middle of a rule.
-* Named References:: Using named references in actions.
@end menu
@node Value Type
useful semantic value associated with the @samp{+} token, it could be
referred to as @code{$2}.
-@xref{Named References,,Using Named References}, for more information
-about using the named references construct.
+@xref{Named References}, for more information about using the named
+references construct.
Note that the vertical-bar character @samp{|} is really a rule
separator, and actions are attached to a single rule. This is a
Now Bison can execute the action in the rule for @code{subroutine} without
deciding which rule for @code{compound} it will eventually use.
-@node Named References
-@subsection Using Named References
-@cindex named references
-
-While every semantic value can be accessed with positional references
-@code{$@var{n}} and @code{$$}, it's often much more convenient to refer to
-them by name. First of all, original symbol names may be used as named
-references. For example:
-
-@example
-@group
-invocation: op '(' args ')'
- @{ $invocation = new_invocation ($op, $args, @@invocation); @}
-@end group
-@end example
-
-@noindent
-The positional @code{$$}, @code{@@$}, @code{$n}, and @code{@@n} can be
-mixed with @code{$name} and @code{@@name} arbitrarily. For example:
-
-@example
-@group
-invocation: op '(' args ')'
- @{ $$ = new_invocation ($op, $args, @@$); @}
-@end group
-@end example
-
-@noindent
-However, sometimes regular symbol names are not sufficient due to
-ambiguities:
-
-@example
-@group
-exp: exp '/' exp
- @{ $exp = $exp / $exp; @} // $exp is ambiguous.
-
-exp: exp '/' exp
- @{ $$ = $1 / $exp; @} // One usage is ambiguous.
-
-exp: exp '/' exp
- @{ $$ = $1 / $3; @} // No error.
-@end group
-@end example
-
-@noindent
-When ambiguity occurs, explicitly declared names may be used for values and
-locations. Explicit names are declared as a bracketed name after a symbol
-appearance in rule definitions. For example:
-@example
-@group
-exp[result]: exp[left] '/' exp[right]
- @{ $result = $left / $right; @}
-@end group
-@end example
-
-@noindent
-Explicit names may be declared for RHS and for LHS symbols as well. In order
-to access a semantic value generated by a mid-rule action, an explicit name
-may also be declared by putting a bracketed name after the closing brace of
-the mid-rule action code:
-@example
-@group
-exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
- @{ $res = $left + $right; @}
-@end group
-@end example
-
-@noindent
-
-In references, in order to specify names containing dots and dashes, an explicit
-bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
-@example
-@group
-if-stmt: IF '(' expr ')' THEN then.stmt ';'
- @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
-@end group
-@end example
-
-It often happens that named references are followed by a dot, dash or other
-C punctuation marks and operators. By default, Bison will read
-@code{$name.suffix} as a reference to symbol value @code{$name} followed by
-@samp{.suffix}, i.e., an access to the @samp{suffix} field of the semantic
-value. In order to force Bison to recognize @code{name.suffix} in its entirety
-as the name of a semantic value, bracketed syntax @code{$[name.suffix]}
-must be used.
-
-
-@node Locations
+@node Tracking Locations
@section Tracking Locations
@cindex location
@cindex textual location
In addition, the named references construct @code{@@@var{name}} and
@code{@@[@var{name}]} may also be used to address the symbol locations.
-@xref{Named References,,Using Named References}, for more information
-about using the named references construct.
+@xref{Named References}, for more information about using the named
+references construct.
Here is a basic example using the default data type for locations:
statement when it is followed by a semicolon.
@end itemize
+@node Named References
+@section Named References
+@cindex named references
+
+As described in the preceding sections, the traditional way to refer to any
+semantic value or location is a @dfn{positional reference}, which takes the
+form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
+such a reference is not very descriptive. Moreover, if you later decide to
+insert or remove symbols in the right-hand side of a grammar rule, the need
+to renumber such references can be tedious and error-prone.
+
+To avoid these issues, you can also refer to a semantic value or location
+using a @dfn{named reference}. First of all, original symbol names may be
+used as named references. For example:
+
+@example
+@group
+invocation: op '(' args ')'
+ @{ $invocation = new_invocation ($op, $args, @@invocation); @}
+@end group
+@end example
+
+@noindent
+Positional and named references can be mixed arbitrarily. For example:
+
+@example
+@group
+invocation: op '(' args ')'
+ @{ $$ = new_invocation ($op, $args, @@$); @}
+@end group
+@end example
+
+@noindent
+However, sometimes regular symbol names are not sufficient due to
+ambiguities:
+
+@example
+@group
+exp: exp '/' exp
+ @{ $exp = $exp / $exp; @} // $exp is ambiguous.
+
+exp: exp '/' exp
+ @{ $$ = $1 / $exp; @} // One usage is ambiguous.
+
+exp: exp '/' exp
+ @{ $$ = $1 / $3; @} // No error.
+@end group
+@end example
+
+@noindent
+When ambiguity occurs, explicitly declared names may be used for values and
+locations. Explicit names are declared as a bracketed name after a symbol
+appearance in rule definitions. For example:
+@example
+@group
+exp[result]: exp[left] '/' exp[right]
+ @{ $result = $left / $right; @}
+@end group
+@end example
+
+@noindent
+In order to access a semantic value generated by a mid-rule action, an
+explicit name may also be declared by putting a bracketed name after the
+closing brace of the mid-rule action code:
+@example
+@group
+exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
+ @{ $res = $left + $right; @}
+@end group
+@end example
+
+@noindent
+
+In references, in order to specify names containing dots and dashes, an explicit
+bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
+@example
+@group
+if-stmt: IF '(' expr ')' THEN then.stmt ';'
+ @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
+@end group
+@end example
+
+It often happens that named references are followed by a dot, dash or other
+C punctuation marks and operators. By default, Bison will read
+@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
+@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
+value. In order to force Bison to recognize @samp{name.suffix} in its
+entirety as the name of a semantic value, the bracketed syntax
+@samp{$[name.suffix]} must be used.
+
+The named references feature is experimental. More user feedback will help
+to stabilize it.
+
@node Declarations
@section Bison Declarations
@cindex declarations, Bison
@cindex mid-rule actions
Finally, Bison will never invoke a @code{%destructor} for an unreferenced
mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
-That is, Bison does not consider a mid-rule to have a semantic value if you do
-not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
-@var{n} is the RHS symbol position of the mid-rule) in any later action in that
-rule.
-However, if you do reference either, the Bison-generated parser will invoke the
-@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
+That is, Bison does not consider a mid-rule to have a semantic value if you
+do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
+(where @var{n} is the right-hand side symbol position of the mid-rule) in
+any later action in that rule. However, if you do reference either, the
+Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
+it discards the mid-rule symbol.
@ignore
@noindent
(Reentrant) Parser}.
If you have also used locations, the parser header file declares
-@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
-the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations,
-,Tracking Locations}.
+@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
+@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
This parser header file is normally essential if you wish to put the
definition of @code{yylex} in a separate source file, because
specify where default reductions should be used is experimental. More user
feedback will help to stabilize it.)
-@item Accepted Values: @code{full}, @code{consistent}, @code{accepting}
+@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
@item Default Value:
@itemize
@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
-@item @code{full} otherwise.
+@item @code{most} otherwise.
@end itemize
@end itemize
@subsection Textual Locations of Tokens
@vindex yylloc
-If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
-Tracking Locations}) in actions to keep track of the textual locations
-of tokens and groupings, then you must provide this information in
-@code{yylex}. The function @code{yyparse} expects to find the textual
-location of a token just parsed in the global variable @code{yylloc}.
-So @code{yylex} must store the proper data in that variable.
+If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
+in actions to keep track of the textual locations of tokens and groupings,
+then you must provide this information in @code{yylex}. The function
+@code{yyparse} expects to find the textual location of a token just parsed
+in the global variable @code{yylloc}. So @code{yylex} must store the proper
+data in that variable.
By default, the value of @code{yylloc} is a structure and you need only
initialize the members that are going to be used by the actions. The
@deffn {Value} @@$
@findex @@$
-Acts like a structure variable containing information on the textual location
-of the grouping made by the current rule. @xref{Locations, ,
-Tracking Locations}.
+Acts like a structure variable containing information on the textual
+location of the grouping made by the current rule. @xref{Tracking
+Locations}.
@c Check if those paragraphs are still useful or not.
@deffn {Value} @@@var{n}
@findex @@@var{n}
-Acts like a structure variable containing information on the textual location
-of the @var{n}th component of the current rule. @xref{Locations, ,
-Tracking Locations}.
+Acts like a structure variable containing information on the textual
+location of the @var{n}th component of the current rule. @xref{Tracking
+Locations}.
@end deffn
@node Internationalization
* Contextual Precedence:: When an operator's precedence depends on context.
* Parser States:: The parser is a finite-state-machine with stack.
* Reduce/Reduce:: When two rules are applicable in the same situation.
-* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
+* Mysterious Conflicts:: Conflicts that look unjustified.
* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
* Memory Management:: What happens when memory is exhausted. How to avoid it.
;
@end example
-@node Mystery Conflicts
-@section Mysterious Reduce/Reduce Conflicts
+@node Mysterious Conflicts
+@section Mysterious Conflicts
@cindex Mysterious Conflicts
Sometimes reduce/reduce conflicts can occur that don't look warranted.
For historical reasons, Bison constructs LALR(1) parser tables by default.
However, LALR does not possess the full language-recognition power of LR.
As a result, the behavior of parsers employing LALR parser tables is often
-mysterious. We presented a simple example of this effect in @ref{Mystery
+mysterious. We presented a simple example of this effect in @ref{Mysterious
Conflicts}.
As we also demonstrated in that example, the traditional approach to
%define lr.type ielr
@end example
-@noindent For the example in @ref{Mystery Conflicts}, the mysterious
+@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
conflict is then eliminated, so there is no need to invest time in
comprehending the conflict or restructuring the grammar to fix it. If,
during future development, the grammar evolves such that all mysterious
Specify the kind of states that are permitted to contain default reductions.
The accepted values of @var{WHERE} are:
@itemize
-@item @code{full} (default for LALR and IELR)
+@item @code{most} (default for LALR and IELR)
@item @code{consistent}
@item @code{accepting} (default for canonical LR)
@end itemize
has proven insignificant for practical grammars.
@end itemize
+While the LAC algorithm shares techniques that have been recognized in the
+parser community for years, for the publication that introduces LAC,
+@pxref{Bibliography,,Denny 2010 May}.
+
@node Unreachable States
@subsection Unreachable States
@findex %define lr.keep-unreachable-states
The same is true of languages that require more than one symbol of
lookahead, since the parser lacks the information necessary to make a
decision at the point it must be made in a shift-reduce parser.
-Finally, as previously mentioned (@pxref{Mystery Conflicts}),
+Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
there are languages where Bison's default choice of how to
summarize the input seen so far loses necessary information.
Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
You can generate a deterministic parser containing C++ user code from
-the default (C) skeleton, as well as from the C++ skeleton
+the default (C) skeleton, as well as from the C++ skeleton
(@pxref{C++ Parsers}). However, if you do use the default skeleton
and want to allow the parsing stack to grow,
be careful not to use semantic types or location types that require
be false alarms in existing grammars employing the Yacc constructs
@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
-
@item yacc
Incompatibilities with POSIX Yacc.
+@item conflicts-sr
+@itemx conflicts-rr
+S/R and R/R conflicts. These warnings are enabled by default. However, if
+the @code{%expect} or @code{%expect-rr} directive is specified, an
+unexpected number of conflicts is an error, and an expected number of
+conflicts is not reported, so @option{-W} and @option{--warning} then have
+no effect on the conflict report.
+
+@item other
+All warnings not categorized above. These warnings are enabled by default.
+
+This category is provided merely for the sake of completeness. Future
+releases of Bison may move warnings from this category to new, more specific
+categories.
+
@item all
All the warnings.
@item none
@c - %define filename_type "const symbol::Symbol"
When the directive @code{%locations} is used, the C++ parser supports
-location tracking, see @ref{Locations, , Locations Overview}. Two
-auxiliary classes define a @code{position}, a single point in a file,
-and a @code{location}, a range composed of a pair of
-@code{position}s (possibly spanning several files).
+location tracking, see @ref{Tracking Locations}. Two auxiliary classes
+define a @code{position}, a single point in a file, and a @code{location}, a
+range composed of a pair of @code{position}s (possibly spanning several
+files).
@deftypemethod {position} {std::string*} file
The name of the file. It will always be handled as a pointer, the
@c - class Position
@c - class Location
-When the directive @code{%locations} is used, the Java parser
-supports location tracking, see @ref{Locations, , Locations Overview}.
-An auxiliary user-defined class defines a @dfn{position}, a single point
-in a file; Bison itself defines a class representing a @dfn{location},
-a range composed of a pair of positions (possibly spanning several
-files). The location class is an inner class of the parser; the name
-is @code{Location} by default, and may also be renamed using
-@samp{%define location_type "@var{class-name}"}.
+When the directive @code{%locations} is used, the Java parser supports
+location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
+class defines a @dfn{position}, a single point in a file; Bison itself
+defines a class representing a @dfn{location}, a range composed of a pair of
+positions (possibly spanning several files). The location class is an inner
+class of the parser; the name is @code{Location} by default, and may also be
+renamed using @samp{%define location_type "@var{class-name}"}.
The location class treats the position as a completely opaque value.
By default, the class name is @code{Position}, but this can be changed
send additional files as well (such as `config.h' or `config.cache').
Patches are most welcome, but not required. That is, do not hesitate to
-send a bug report just because you can not provide a fix.
+send a bug report just because you cannot provide a fix.
Send bug reports to @email{bug-bison@@gnu.org}.
@deffn {Variable} @@$
In an action, the location of the left-hand side of the rule.
-@xref{Locations, , Locations Overview}.
+@xref{Tracking Locations}.
@end deffn
@deffn {Variable} @@@var{n}
-In an action, the location of the @var{n}-th symbol of the right-hand
-side of the rule. @xref{Locations, , Locations Overview}.
+In an action, the location of the @var{n}-th symbol of the right-hand side
+of the rule. @xref{Tracking Locations}.
@end deffn
@deffn {Variable} @@@var{name}
-In an action, the location of a symbol addressed by name.
-@xref{Locations, , Locations Overview}.
+In an action, the location of a symbol addressed by name. @xref{Tracking
+Locations}.
@end deffn
@deffn {Variable} @@[@var{name}]
-In an action, the location of a symbol addressed by name.
-@xref{Locations, , Locations Overview}.
+In an action, the location of a symbol addressed by name. @xref{Tracking
+Locations}.
@end deffn
@deffn {Variable} $$
@item LALR(1)
The class of context-free grammars that Bison (like most other parser
generators) can handle by default; a subset of LR(1).
-@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
+@xref{Mysterious Conflicts}.
@item LR(1)
The class of context-free grammars in which at most one token of