struct infoname *next;
};
-/* Layout Algorithms which can be found in VCG.
- Details about each algoithm can be found below. */
-enum layoutalgorithm
-{
- normal,
- maxdepth,
- mindepth,
- maxdepthslow,
- mindepthslow,
- maxdegree,
- mindegree,
- maxindegree,
- minindegree,
- maxoutdegree,
- minoutdegree,
- minbackward,
- dfs,
- tree
-};
-
/* VCG decision yes/no. */
enum decision
{
int width;
int height;
- /* shrink, expand gives the shrinking and expanding factor of the
+ /* shrink, stretch gives the shrinking and stretching factor of the
node. The values of the attributes width, height, borderwidth and
- the size of the label text is scaled by ((expand=shrink) \Lambda
+ the size of the label text is scaled by ((stretch=shrink) \Lambda
100) percent. Note that the actual scale value is determined by the
scale value of a node relatively to a scale value of the graph,
- i.e. if (expand,shrink) = (2,1) for the graph and (expand,shrink)
+ i.e. if (stretch,shrink) = (2,1) for the graph and (stretch,shrink)
= (2,1) for the node of the graph, then the node is scaled by the
factor 4 compared to the normal size. The scale value can also be
specified by scaling: float.
Default are 1,1. */
int shrink;
- int expand;
+ int stretch;
/* folding specifies the default folding of the nodes. The folding k
(with k ? 0) means that the graph part that is reachable via edges
Default value is 0 */
int folding;
- /* Shrink, expand gives the shrinking and expanding factor for the
- graph's representation (default is 1, 1). ((expand=shrink) \Lambda
+ /* Shrink, stretch gives the shrinking and stretching factor for the
+ graph's representation (default is 1, 1). ((stretch=shrink) \Lambda
100) is the scaling of the graph in percentage, e.g.,
- (expand,shrink) = (1,1) or (2,2) or (3,3) : : : is normal size,
- (expand,shrink) = (1,2) is half size, (expand,shrink) = (2,1) is
+ (stretch,shrink) = (1,1) or (2,2) or (3,3) : : : is normal size,
+ (stretch,shrink) = (1,2) is half size, (stretch,shrink) = (2,1) is
double size. For subgraphs, it is also the scaling factor of the
summary node. The scaling factor can also be specified by scaling:
float (here, scaling 1.0 means normal size). */
int shrink;
- int expand;
+ int stretch;
/* textmode specifies the adjustment of the text within the border of a
summary node. The possibilities are center, left.justify and
Default is box, other: rhomb, ellipse, triangle. */
enum shape shape;
- /* Vertical order is the level position (rank) of the summary node of an
- inner subgraph, if this subgraph is folded. We can also specify
- level: int. The level is only recognized, if an automatical layout is
+ /* Vertical order is the level position (rank) of the summary node of an
+ inner subgraph, if this subgraph is folded. We can also specify
+ level: int. The level is only recognized, if an automatical layout is
calculated. */
int vertical_order;
- /* Horizontal order is the horizontal position of the summary node within
- a level. The nodes which are specified with horizontal positions are
- ordered according to these positions within the levels. The nodes which
- do not have this attribute are inserted into this ordering by the
- crossing reduction mechanism. Note that connected components are
- handled separately, thus it is not possible to intermix such components
- by specifying a horizontal order. If the algorithm for downward laid
- out trees is used, the horizontal order influences only the order of
+ /* Horizontal order is the horizontal position of the summary node within
+ a level. The nodes which are specified with horizontal positions are
+ ordered according to these positions within the levels. The nodes which
+ do not have this attribute are inserted into this ordering by the
+ crossing reduction mechanism. Note that connected components are
+ handled separately, thus it is not possible to intermix such components
+ by specifying a horizontal order. If the algorithm for downward laid
+ out trees is used, the horizontal order influences only the order of
the child nodes at a node, but not the order of the whole level. */
int horizontal_order;
By default, no class names. */
struct classname *classname;
- /* Infoname allows to introduce names for the additional text labels.
- The names are used in the menus.
- Infoname is given by an integer and a string.
+ /* Infoname allows to introduce names for the additional text labels.
+ The names are used in the menus.
+ Infoname is given by an integer and a string.
The default value is NULL. */
struct infoname *infoname;
-
- /* Colorentry allows to fill the color map. A color is a triplet of integer
- values for the red/green/blue-part. Each integer is between 0 (off) and
- 255 (on), e.g., 0 0 0 is black and 255 255 255 is white. For instance
- colorentry 75 : 70 130 180 sets the map entry 75 to steel blue. This
+
+ /* Colorentry allows to fill the color map. A color is a triplet of integer
+ values for the red/green/blue-part. Each integer is between 0 (off) and
+ 255 (on), e.g., 0 0 0 is black and 255 255 255 is white. For instance
+ colorentry 75 : 70 130 180 sets the map entry 75 to steel blue. This
color can be used by specifying just the number 75.
Default id NULL. */
struct colorentry *colorentry;
- /* layoutalgorithm chooses different graph layout algorithms
- Possibilities are maxdepth, mindepth, maxdepthslow, mindepthslow,
- maxdegree, mindegree, maxindegree, minindegree, maxoutdegree,
- minoutdegree, minbackward, dfs and tree. The default algorithm tries
- to give all edges the same orientation and is based on the
- calculation of strongly connected components. The algorithms that
- are based on depth first search are faster. While the simple dfs
- does not enforce additionally constraints, the algorithm maxdepth
- tries to increase the depth of the layout and the algorithm mindepth
- tries to increase the wide of the layout. These algorithms are fast
- heuristics. If they are not appropriate, the algorithms maxdepthslow
- or mindepthslow also increase the depth or wide, but they are very
- slow. The algorithm maxindegree lays out the nodes by scheduling the
- nodes with the maximum of incoming edges first, and minindegree lays
- out the nodes by scheduling the nodes with the minimum of incoming
- edges first. In the same manner work the algorithms maxoutdegree and
- minoutdegree for outgoing edges, and maxdegree and mindegree for the
- sum of incoming and outgoing edges. These algorithms may have various
- effects, and can sometimes be used as replacements of maxdepthslow
- or mindepthslow.
-
- The algorithm minbackward can be used if the graph is acyclic.
- The algorithm tree is a specialized method for downward laid out
- trees. It is much faster on such tree-like graphs and results in a
- balanced layout.
- Default is normal. */
- enum layoutalgorithm layoutalgorithm;
-
/* Layout downfactor, layout upfactor, layout nearfactor The layout
algorithm partitions the set of edges into edges pointing upward,
edges pointing downward, and edges pointing sidewards. The last type
Default is no. */
enum decision ignore_singles;
- /* Long straight phase yes initiates an additional phase that tries to avoid
- bendings in long edges.
- Long edges are laid out by long straight vertical lines with
- gradient 90 degree. Thus, this phase is not very appropriate for
- normal layout, but it is recommended, if an orthogonal layout is
- selected (see manhattan.edges).
- Default is no. */
- enum decision long_straight_phase;
-
/* priority phase yes replaces the normal pendulum method by a
specialized method: It forces straight long edges with 90 degree,
just as the straight phase. In fact, the straight phase is a fine
void add_node (graph *g, node *n);
void add_edge (graph *g, edge *e);
-void add_colorentry (graph *g, int color_idx, int red_cp,
+void add_colorentry (graph *g, int color_idx, int red_cp,
int green_cp, int blue_cp);
void add_classname (graph *g, int val, const char *name);
void add_infoname (graph *g, int val, const char *name);