a semantic value (the value of an integer,
the name of an identifier, etc.).
* Semantic Actions:: Each rule can have an action containing C code.
+* Locations Overview:: Tracking Locations.
* Bison Parser:: What are Bison's input and output,
how is the output used?
* Stages:: Stages in writing and running Bison grammars.
language, an expression typically has a semantic value that is a tree
structure describing the meaning of the expression.
-@node Semantic Actions, Bison Parser, Semantic Values, Concepts
+@node Semantic Actions, Locations Overview, Semantic Values, Concepts
@section Semantic Actions
@cindex semantic actions
@cindex actions, semantic
The action says how to produce the semantic value of the sum expression
from the values of the two subexpressions.
-@node Bison Parser, Stages, Semantic Actions, Concepts
+@node Locations Overview, Bison Parser, Semantic Actions, Concepts
+@section Locations
+@cindex location
+@cindex textual position
+@cindex position, textual
+
+Many applications, like interpreters or compilers, have to produce verbose
+and useful error messages. To achieve this, one must be able to keep track of
+the @dfn{textual position}, or @dfn{location}, of each syntactic construct.
+Bison provides a mechanism for handling these locations.
+
+Each token has a semantic value. In a similar fashion, each token has an
+associated location, but the type of locations is the same for all tokens and
+groupings. Moreover, the output parser is equipped with a default data
+structure for storing locations (@pxref{Locations}, for more details).
+
+Like semantic values, locations can be reached in actions using a dedicated
+set of constructs. In the example above, the location of the whole grouping
+is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
+@code{@@3}.
+
+When a rule is matched, a default action is used to compute the semantic value
+of its left hand side (@pxref{Actions}). In the same way, another default
+action is used for locations. However, the action for locations is general
+enough for most cases, meaning there is usually no need to describe for each
+rule how @code{@@$} should be formed. When building a new location for a given
+grouping, the default behavior of the output parser is to take the beginning
+of the first symbol, and the end of the last symbol.
+
+@node Bison Parser, Stages, Locations Overview, Concepts
@section Bison Output: the Parser File
@cindex Bison parser
@cindex Bison utility
definition, which is kept in the header @file{calc.h}, is as follows. It
provides for either functions or variables to be placed in the table.
-@c FIXME: ANSIfy the prototypes for FNCTPTR etc.
@smallexample
@group
+/* Fonctions type. */
+typedef double (*func_t) (double);
+
/* Data type for links in the chain of symbols. */
struct symrec
@{
char *name; /* name of symbol */
int type; /* type of symbol: either VAR or FNCT */
- union @{
- double var; /* value of a VAR */
- double (*fnctptr)(); /* value of a FNCT */
+ union
+ @{
+ double var; /* value of a VAR */
+ func_t fnctptr; /* value of a FNCT */
@} value;
struct symrec *next; /* link field */
@};
/* The symbol table: a chain of `struct symrec'. */
extern symrec *sym_table;
-symrec *putsym ();
-symrec *getsym ();
+symrec *putsym (const char *, func_t);
+symrec *getsym (const char *);
@end group
@end smallexample
struct init
@{
char *fname;
- double (*fnct)();
+ double (*fnct)(double);
@};
@end group
@group
struct init arith_fncts[] =
@{
- "sin", sin,
- "cos", cos,
+ "sin", sin,
+ "cos", cos,
"atan", atan,
- "ln", log,
- "exp", exp,
+ "ln", log,
+ "exp", exp,
"sqrt", sqrt,
0, 0
@};
/* The symbol table: a chain of `struct symrec'. */
-symrec *sym_table = (symrec *)0;
+symrec *sym_table = (symrec *) 0;
@end group
@group
C-language function that recognizes correct instances of the grammar.
The Bison grammar input file conventionally has a name ending in @samp{.y}.
+@xref{Invocation, ,Invoking Bison}.
@menu
* Grammar Outline:: Overall layout of the grammar file.
* Rules:: How to write grammar rules.
* Recursion:: Writing recursive rules.
* Semantics:: Semantic values and actions.
+* Locations:: Locations and actions.
* Declarations:: All kinds of Bison declarations are described here.
* Multiple Parsers:: Putting more than one Bison parser in one program.
@end menu
defines two mutually-recursive nonterminals, since each refers to the
other.
-@node Semantics, Declarations, Recursion, Grammar File
+@node Semantics, Locations, Recursion, Grammar File
@section Defining Language Semantics
@cindex defining language semantics
@cindex language semantics, defining
its value with an assignment to @code{$$}, and actions later in the rule
can refer to the value using @code{$@var{n}}. Since there is no symbol
to name the action, there is no way to declare a data type for the value
-in advance, so you must use the @samp{$<@dots{}>} construct to specify a
-data type each time you refer to this value.
+in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
+specify a data type each time you refer to this value.
There is no way to set the value of the entire rule with a mid-rule
action, because assignments to @code{$$} do not have that effect. The
converted to an end-of-rule action in this way, and this is what Bison
actually does to implement mid-rule actions.
-@node Declarations, Multiple Parsers, Semantics, Grammar File
+@node Locations, Declarations, Semantics, Grammar File
+@section Tracking Locations
+@cindex location
+@cindex textual position
+@cindex position, textual
+
+Though grammar rules and semantic actions are enough to write a fully
+functional parser, it can be useful to process some additionnal informations,
+especially symbol locations.
+
+@c (terminal or not) ?
+
+The way locations are handled is defined by providing a data type, and actions
+to take when rules are matched.
+
+@menu
+* Location Type:: Specifying a data type for locations.
+* Actions and Locations:: Using locations in actions.
+* Location Default Action:: Defining a general way to compute locations.
+@end menu
+
+@node Location Type, Actions and Locations, , Locations
+@subsection Data Type of Locations
+@cindex data type of locations
+@cindex default location type
+
+Defining a data type for locations is much simpler than for semantic values,
+since all tokens and groupings always use the same type.
+
+The type of locations is specified by defining a macro called @code{YYLTYPE}.
+When @code{YYLTYPE} is not defined, Bison uses a default structure type with
+four members:
+
+@example
+struct
+@{
+ int first_line;
+ int first_column;
+ int last_line;
+ int last_column;
+@}
+@end example
+
+@node Actions and Locations, Location Default Action, Location Type, Locations
+@subsection Actions and Locations
+@cindex location actions
+@cindex actions, location
+@vindex @@$
+@vindex @@@var{n}
+
+Actions are not only useful for defining language semantics, but also for
+describing the behavior of the output parser with locations.
+
+The most obvious way for building locations of syntactic groupings is very
+similar to the way semantic values are computed. In a given rule, several
+constructs can be used to access the locations of the elements being matched.
+The location of the @var{n}th component of the right hand side is
+@code{@@@var{n}}, while the location of the left hand side grouping is
+@code{@@$}.
+
+Here is a basic example using the default data type for locations:
+
+@example
+@group
+exp: @dots{}
+ | exp '/' exp
+ @{
+ @@$.first_column = @@1.first_column;
+ @@$.first_line = @@1.first_line;
+ @@$.last_column = @@3.last_column;
+ @@$.last_line = @@3.last_line;
+ if ($3)
+ $$ = $1 / $3;
+ else
+ @{
+ $$ = 1;
+ printf("Division by zero, l%d,c%d-l%d,c%d",
+ @@3.first_line, @@3.first_column,
+ @@3.last_line, @@3.last_column);
+ @}
+ @}
+@end group
+@end example
+
+As for semantic values, there is a default action for locations that is
+run each time a rule is matched. It sets the beginning of @code{@@$} to the
+beginning of the first symbol, and the end of @code{@@$} to the end of the
+last symbol.
+
+With this default action, the location tracking can be fully automatic. The
+example above simply rewrites this way:
+
+@example
+@group
+exp: @dots{}
+ | exp '/' exp
+ @{
+ if ($3)
+ $$ = $1 / $3;
+ else
+ @{
+ $$ = 1;
+ printf("Division by zero, l%d,c%d-l%d,c%d",
+ @@3.first_line, @@3.first_column,
+ @@3.last_line, @@3.last_column);
+ @}
+ @}
+@end group
+@end example
+
+@node Location Default Action, , Actions and Locations, Locations
+@subsection Default Action for Locations
+@vindex YYLLOC_DEFAULT
+
+Actually, actions are not the best place to compute locations. Since locations
+are much more general than semantic values, there is room in the output parser
+to redefine the default action to take for each rule. The
+@code{YYLLOC_DEFAULT} macro is called each time a rule is matched, before the
+associated action is run.
+
+Most of the time, this macro is general enough to suppress location
+dedicated code from semantic actions.
+
+The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
+the location of the grouping (the result of the computation). The second one
+is an array holding locations of all right hand side elements of the rule
+being matched. The last one is the size of the right hand side rule.
+
+By default, it is defined this way:
+
+@example
+@group
+#define YYLLOC_DEFAULT(Current, Rhs, N) \
+ Current.last_line = Rhs[N].last_line; \
+ Current.last_column = Rhs[N].last_column;
+@end group
+@end example
+
+When defining @code{YYLLOC_DEFAULT}, you should consider that:
+
+@itemize @bullet
+@item
+All arguments are free of side-effects. However, only the first one (the
+result) should be modified by @code{YYLLOC_DEFAULT}.
+
+@item
+Before @code{YYLLOC_DEFAULT} is executed, the output parser sets @code{@@$}
+to @code{@@1}.
+
+@item
+For consistency with semantic actions, valid indexes for the location array
+range from 1 to @var{n}.
+@end itemize
+
+@node Declarations, Multiple Parsers, Locations, Grammar File
@section Bison Declarations
@cindex declarations, Bison
@cindex Bison declarations
Declare the expected number of shift-reduce conflicts
(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
+@item %yacc
+@itemx %fixed_output_files
+Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
+including its naming conventions. @xref{Bison Options}, for more.
+
@item %locations
Generate the code processing the locations (@pxref{Action Features,
,Special Features for Use in Actions}). This mode is enabled as soon as
Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
(Reentrant) Parser}).
+@item %no_parser
+Do not include any C code in the parser file; generate tables only. The
+parser file contains just @code{#define} directives and static variable
+declarations.
+
+This option also tells Bison to write the C code for the grammar actions
+into a file named @file{@var{filename}.act}, in the form of a
+brace-surrounded body fit for a @code{switch} statement.
+
@item %no_lines
Don't generate any @code{#line} preprocessor commands in the parser
file. Ordinarily Bison writes these commands in the parser file so that
associate errors with the parser file, treating it an independent source
file in its own right.
-@item %raw
-The output file @file{@var{name}.h} normally defines the tokens with
-Yacc-compatible token numbers. If this option is specified, the
-internal Bison numbers are used instead. (Yacc-compatible numbers start
-at 257 except for single-character tokens; Bison assigns token numbers
-sequentially for all tokens starting at 3.)
+@item %debug
+Output a definition of the macro @code{YYDEBUG} into the parser file, so
+that the debugging facilities are compiled. @xref{Debugging, ,Debugging
+Your Parser}.
+
+@item %defines
+Write an extra output file containing macro definitions for the token
+type names defined in the grammar and the semantic value type
+@code{YYSTYPE}, as well as a few @code{extern} variable declarations.
+
+If the parser output file is named @file{@var{name}.c} then this file
+is named @file{@var{name}.h}.@refill
+
+This output file is essential if you wish to put the definition of
+@code{yylex} in a separate source file, because @code{yylex} needs to
+be able to refer to token type codes and the variable
+@code{yylval}. @xref{Token Values, ,Semantic Values of Tokens}.@refill
+
+@item %verbose
+Write an extra output file containing verbose descriptions of the
+parser states and what is done for each type of look-ahead token in
+that state.
+
+This file also describes all the conflicts, both those resolved by
+operator precedence and the unresolved ones.
+
+The file's name is made by removing @samp{.tab.c} or @samp{.c} from
+the parser output file name, and adding @samp{.output} instead.@refill
+
+Therefore, if the input file is @file{foo.y}, then the parser file is
+called @file{foo.tab.c} by default. As a consequence, the verbose
+output file is called @file{foo.output}.@refill
@item %token_table
Generate an array of token names in the parser file. The name of the
@subsection Textual Positions of Tokens
@vindex yylloc
-If you are using the @samp{@@@var{n}}-feature (@pxref{Action Features,
-,Special Features for Use in Actions}) in actions to keep track of the
+If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
+Tracking Locations}) in actions to keep track of the
textual locations of tokens and groupings, then you must provide this
information in @code{yylex}. The function @code{yyparse} expects to
find the textual location of a token just parsed in the global variable
@code{yylloc}. So @code{yylex} must store the proper data in that
-variable. The value of @code{yylloc} is a structure and you need only
+variable.
+
+By default, the value of @code{yylloc} is a structure and you need only
initialize the members that are going to be used by the actions. The
four members are called @code{first_line}, @code{first_column},
@code{last_line} and @code{last_column}. Note that the use of this
errors. This is useful primarily in error rules.
@xref{Error Recovery}.
-@item @@@var{n}
-@findex @@@var{n}
-Acts like a structure variable containing information on the line
-numbers and column numbers of the @var{n}th component of the current
-rule. The structure has four members, like this:
+@item @@$
+@findex @@$
+Acts like a structure variable containing information on the textual position
+of the grouping made by the current rule. @xref{Locations, ,
+Tracking Locations}.
-@example
-struct @{
- int first_line, last_line;
- int first_column, last_column;
-@};
-@end example
+@c Check if those paragraphs are still useful or not.
+
+@c @example
+@c struct @{
+@c int first_line, last_line;
+@c int first_column, last_column;
+@c @};
+@c @end example
+
+@c Thus, to get the starting line number of the third component, you would
+@c use @samp{@@3.first_line}.
-Thus, to get the starting line number of the third component, you would
-use @samp{@@3.first_line}.
+@c In order for the members of this structure to contain valid information,
+@c you must make @code{yylex} supply this information about each token.
+@c If you need only certain members, then @code{yylex} need only fill in
+@c those members.
-In order for the members of this structure to contain valid information,
-you must make @code{yylex} supply this information about each token.
-If you need only certain members, then @code{yylex} need only fill in
-those members.
+@c The use of this feature makes the parser noticeably slower.
+
+@item @@@var{n}
+@findex @@@var{n}
+Acts like a structure variable containing information on the textual position
+of the @var{n}th component of the current rule. @xref{Locations, ,
+Tracking Locations}.
-The use of this feature makes the parser noticeably slower.
@end table
@node Algorithm, Error Recovery, Interface, Top
@samp{.y}. The parser file's name is made by replacing the @samp{.y}
with @samp{.tab.c}. Thus, the @samp{bison foo.y} filename yields
@file{foo.tab.c}, and the @samp{bison hack/foo.y} filename yields
-@file{hack/foo.tab.c}.@refill
+@file{hack/foo.tab.c}. It's is also possible, in case you are writting
+C++ code instead of C in your grammar file, to name it @file{foo.ypp}
+or @file{foo.y++}. Then, the output files will take an extention like
+the given one as input (repectively @file{foo.tab.cpp} and @file{foo.tab.c++}).
+This feature takes effect with all options that manipulate filenames like
+@samp{-o} or @samp{-d}.
+
+For example :
+
+@example
+bison -d @var{infile.yxx}
+@end example
+@noindent
+will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}. and
+
+@example
+bison -d @var{infile.y} -o @var{output.c++}
+@end example
+@noindent
+will produce @file{output.c++} and @file{outfile.h++}.
+
@menu
* Bison Options:: All the options described in detail,
Tuning the parser:
@table @option
+@item -S @var{file}
+@itemx --skeleton=@var{file}
+Specify the skeleton to use. You probably don't need this option unless
+you are developing Bison.
+
@item -t
@itemx --debug
-Output a definition of the macro @code{YYDEBUG} into the parser file,
-so that the debugging facilities are compiled. @xref{Debugging, ,Debugging Your Parser}.
+Output a definition of the macro @code{YYDEBUG} into the parser file, so
+that the debugging facilities are compiled. @xref{Debugging, ,Debugging
+Your Parser}.
@item --locations
Pretend that @code{%locactions} was specified. @xref{Decl Summary}.
@item -n
@itemx --no-parser
-Do not include any C code in the parser file; generate tables only. The
-parser file contains just @code{#define} directives and static variable
-declarations.
-
-This option also tells Bison to write the C code for the grammar actions
-into a file named @file{@var{filename}.act}, in the form of a
-brace-surrounded body fit for a @code{switch} statement.
-
-@item -r
-@itemx --raw
-Pretend that @code{%raw} was specified. @xref{Decl Summary}.
+Pretend that @code{%no_parser} was specified. @xref{Decl Summary}.
@item -k
@itemx --token-table
@table @option
@item -d
@itemx --defines
-Write an extra output file containing macro definitions for the token
-type names defined in the grammar and the semantic value type
-@code{YYSTYPE}, as well as a few @code{extern} variable declarations.
-
-If the parser output file is named @file{@var{name}.c} then this file
-is named @file{@var{name}.h}.@refill
-
-This output file is essential if you wish to put the definition of
-@code{yylex} in a separate source file, because @code{yylex} needs to
-be able to refer to token type codes and the variable
-@code{yylval}. @xref{Token Values, ,Semantic Values of Tokens}.@refill
+Pretend that @code{%verbose} was specified, i.e., write an extra output
+file containing macro definitions for the token type names defined in
+the grammar and the semantic value type @code{YYSTYPE}, as well as a few
+@code{extern} variable declarations. @xref{Decl Summary}.
@item -b @var{file-prefix}
@itemx --file-prefix=@var{prefix}
@item -v
@itemx --verbose
-Write an extra output file containing verbose descriptions of the
-parser states and what is done for each type of look-ahead token in
-that state.
-
-This file also describes all the conflicts, both those resolved by
-operator precedence and the unresolved ones.
-
-The file's name is made by removing @samp{.tab.c} or @samp{.c} from
-the parser output file name, and adding @samp{.output} instead.@refill
-
-Therefore, if the input file is @file{foo.y}, then the parser file is
-called @file{foo.tab.c} by default. As a consequence, the verbose
-output file is called @file{foo.output}.@refill
+Pretend that @code{%verbose} was specified, i.e, write an extra output
+file containing verbose descriptions of the grammar and
+parser. @xref{Decl Summary}, for more.
@item -o @var{outfile}
@itemx --output-file=@var{outfile}
\line{ --no-lines \leaderfill -l}
\line{ --no-parser \leaderfill -n}
\line{ --output-file \leaderfill -o}
-\line{ --raw \leaderfill -r}
\line{ --token-table \leaderfill -k}
\line{ --verbose \leaderfill -v}
\line{ --version \leaderfill -V}
--no-lines -l
--no-parser -n
--output-file=@var{outfile} -o @var{outfile}
---raw -r
--token-table -k
--verbose -v
--version -V
@item YYLTYPE
Macro for the data type of @code{yylloc}; a structure with four
-members. @xref{Token Positions, ,Textual Positions of Tokens}.
+members. @xref{Location Type, , Data Types of Locations}.
@item yyltype
Default value for YYLTYPE.
The parser function produced by Bison; call this function to start
parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
+@item %debug
+Equip the parser for debugging. @xref{Decl Summary}.
+
+@item %defines
+Bison declaration to create a header file meant for the scanner.
+@xref{Decl Summary}.
+
@item %left
Bison declaration to assign left associativity to token(s).
@xref{Precedence Decl, ,Operator Precedence}.
Bison declaration to request a pure (reentrant) parser.
@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
-@item %raw
-Bison declaration to use Bison internal token code numbers in token
-tables instead of the usual Yacc-compatible token code numbers.
-@xref{Decl Summary}.
-
@item %right
Bison declaration to assign right associativity to token(s).
@xref{Precedence Decl, ,Operator Precedence}.