-/* Output the generated parsing program for bison,
- Copyright (C) 1984, 1986, 1989, 1992, 2000, 2001, 2002
- Free Software Foundation, Inc.
+/* Output the generated parsing program for Bison.
+
+ Copyright (C) 1984, 1986, 1989, 1992, 2000, 2001, 2002, 2003, 2004,
+ 2005, 2006, 2009 Free Software Foundation, Inc.
This file is part of Bison, the GNU Compiler Compiler.
- Bison is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
- Bison is distributed in the hope that it will be useful, but
- WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- General Public License for more details.
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
You should have received a copy of the GNU General Public License
- along with Bison; see the file COPYING. If not, write to the Free
- Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
- 02111-1307, USA. */
-
-
-/* The parser tables consist of these tables.
-
- YYTRANSLATE = vector mapping yylex's token numbers into bison's
- token numbers.
-
- YYTNAME = vector of string-names indexed by bison token number.
-
- YYTOKNUM = vector of yylex token numbers corresponding to entries
- in YYTNAME.
-
- YYRLINE = vector of line-numbers of all rules. For yydebug
- printouts.
-
- YYRHS = vector of items of all rules. This is exactly what RITEMS
- contains. For yydebug and for semantic parser.
-
- YYPRHS[R] = index in YYRHS of first item for rule R.
-
- YYR1[R] = symbol number of symbol that rule R derives.
-
- YYR2[R] = number of symbols composing right hand side of rule R.
-
- YYSTOS[S] = the symbol number of the symbol that leads to state S.
-
- YYDEFACT[S] = default rule to reduce with in state s, when YYTABLE
- doesn't specify something else to do. Zero means the default is an
- error.
-
- YYDEFGOTO[I] = default state to go to after a reduction of a rule
- that generates variable NTOKENS + I, except when YYTABLE specifies
- something else to do.
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */
- YYPACT[S] = index in YYTABLE of the portion describing state S.
- The lookahead token's type is used to index that portion to find
- out what to do.
-
- If the value in YYTABLE is positive, we shift the token and go to
- that state.
-
- If the value is negative, it is minus a rule number to reduce by.
-
- If the value is zero, the default action from YYDEFACT[S] is used.
-
- YYPGOTO[I] = the index in YYTABLE of the portion describing what to
- do after reducing a rule that derives variable I + NTOKENS. This
- portion is indexed by the parser state number, S, as of before the
- text for this nonterminal was read. The value from YYTABLE is the
- state to go to if the corresponding value in YYCHECK is S.
-
- YYTABLE = a vector filled with portions for different uses, found
- via YYPACT and YYPGOTO.
-
- YYCHECK = a vector indexed in parallel with YYTABLE. It indicates,
- in a roundabout way, the bounds of the portion you are trying to
- examine.
-
- Suppose that the portion of YYTABLE starts at index P and the index
- to be examined within the portion is I. Then if YYCHECK[P+I] != I,
- I is outside the bounds of what is actually allocated, and the
- default (from YYDEFACT or YYDEFGOTO) should be used. Otherwise,
- YYTABLE[P+I] should be used.
+#include <config.h>
+#include "system.h"
- YYFINAL = the state number of the termination state. YYFLAG = most
- negative short int. Used to flag ?? */
+#include <bitsetv.h>
+#include <quotearg.h>
-#include "system.h"
-#include "bitsetv.h"
-#include "quotearg.h"
-#include "getargs.h"
+#include "complain.h"
+#include "conflicts.h"
#include "files.h"
+#include "getargs.h"
#include "gram.h"
-#include "complain.h"
#include "lalr.h"
+#include "muscle-tab.h"
#include "reader.h"
#include "symtab.h"
-#include "conflicts.h"
#include "tables.h"
-/* Several tables will be indexed both by state and nonterminal
- numbers. We call `vector' such a thing (= either a state or a
- symbol number.
+/* Several tables are indexed both by state and nonterminal numbers.
+ We call such an index a `vector'; i.e., a vector is either a state
+ or a nonterminal number.
Of course vector_number_t ought to be wide enough to contain
- state_number_t and symbol_number_t. */
-typedef short vector_number_t;
-#define VECTOR_NUMBER_MAX ((vector_number_t) SHRT_MAX)
-#define VECTOR_NUMBER_MIN ((vector_number_t) SHRT_MIN)
-#define state_number_to_vector_number(State) \
- ((vector_number_t) State)
-#define symbol_number_to_vector_number(Symbol) \
- ((vector_number_t) (state_number_as_int (nstates) + Symbol - ntokens))
+ state_number and symbol_number. */
+typedef int vector_number;
+
+#if 0 /* Not currently used. */
+static inline vector_number
+state_number_to_vector_number (state_number s)
+{
+ return s;
+}
+#endif
+
+static inline vector_number
+symbol_number_to_vector_number (symbol_number sym)
+{
+ return state_number_as_int (nstates) + sym - ntokens;
+}
int nvectors;
-/* FROMS and TOS are indexed by vector_number_t.
+/* FROMS and TOS are indexed by vector_number.
If VECTOR is a nonterminal, (FROMS[VECTOR], TOS[VECTOR]) form an
array of state numbers of the non defaulted GOTO on VECTOR.
(FROMS[VECTOR][SIZE] - FROMS[VECTOR][0] + 1) where SIZE =
TALLY[VECTOR].
- FROMS therefore contains symbol_number_t and action_number_t,
- TOS state_number_t and action_number_t,
+ FROMS therefore contains symbol_number and action_number,
+ TOS state_number and action_number,
TALLY sizes,
WIDTH differences of FROMS.
- Let base_t be the type of FROMS, TOS, and WIDTH. */
-#define BASE_MAX ((base_t) INT_MAX)
-#define BASE_MIN ((base_t) INT_MIN)
+ Let base_number be the type of FROMS, TOS, and WIDTH. */
+#define BASE_MAXIMUM INT_MAX
+#define BASE_MINIMUM INT_MIN
-static base_t **froms = NULL;
-static base_t **tos = NULL;
-static unsigned int **conflict_tos = NULL;
-static short *tally = NULL;
-static base_t *width = NULL;
+static base_number **froms;
+static base_number **tos;
+static unsigned int **conflict_tos;
+static int *tally;
+static base_number *width;
/* For a given state, N = ACTROW[SYMBOL]:
If N = 0, stands for `run the default action'.
- If N = MIN, stands for `raise a parse error'.
+ If N = MIN, stands for `raise a syntax error'.
If N > 0, stands for `shift SYMBOL and go to n'.
If N < 0, stands for `reduce -N'. */
-typedef short action_t;
-#define ACTION_MAX ((action_t) SHRT_MAX)
-#define ACTION_MIN ((action_t) SHRT_MIN)
+typedef int action_number;
+#define ACTION_NUMBER_MINIMUM INT_MIN
-static action_t *actrow = NULL;
+static action_number *actrow;
/* FROMS and TOS are reordered to be compressed. ORDER[VECTOR] is the
new vector number of VECTOR. We skip `empty' vectors (i.e.,
TALLY[VECTOR] = 0), and call these `entries'. */
-static vector_number_t *order = NULL;
+static vector_number *order;
static int nentries;
-base_t *base = NULL;
+base_number *base = NULL;
/* A distinguished value of BASE, negative infinite. During the
- computation equals to BASE_MIN, later mapped to BASE_NINF to
+ computation equals to BASE_MINIMUM, later mapped to BASE_NINF to
keep parser tables small. */
-base_t base_ninf = 0;
-static base_t *pos = NULL;
+base_number base_ninf = 0;
+static base_number *pos = NULL;
-static unsigned int *conflrow = NULL;
-unsigned int *conflict_table = NULL;
-unsigned int *conflict_list = NULL;
+static unsigned int *conflrow;
+unsigned int *conflict_table;
+unsigned int *conflict_list;
int conflict_list_cnt;
static int conflict_list_free;
/* TABLE_SIZE is the allocated size of both TABLE and CHECK. We start
with more or less the original hard-coded value (which was
SHRT_MAX). */
-static size_t table_size = 32768;
-base_t *table = NULL;
-base_t *check = NULL;
-/* The value used in TABLE to denote explicit parse errors
- (%nonassoc), a negative infinite. First defaults to ACTION_MIN,
+static int table_size = 32768;
+base_number *table;
+base_number *check;
+/* The value used in TABLE to denote explicit syntax errors
+ (%nonassoc), a negative infinite. First defaults to ACTION_NUMBER_MINIMUM,
but in order to keep small tables, renumbered as TABLE_ERROR, which
is the smallest (non error) value minus 1. */
-base_t table_ninf = 0;
+base_number table_ninf = 0;
static int lowzero;
int high;
-state_number_t *yydefgoto;
-rule_number_t *yydefact;
+state_number *yydefgoto;
+rule_number *yydefact;
/*----------------------------------------------------------------.
| If TABLE (and CHECK) appear to be small to be addressed at |
`----------------------------------------------------------------*/
static void
-table_grow (size_t desired)
+table_grow (int desired)
{
- size_t old_size = table_size;
+ int old_size = table_size;
while (table_size <= desired)
table_size *= 2;
fprintf (stderr, "growing table and check from: %d to %d\n",
old_size, table_size);
- table = XREALLOC (table, base_t, table_size);
- check = XREALLOC (check, base_t, table_size);
- conflict_table = XREALLOC (conflict_table, unsigned int, table_size);
+ table = xnrealloc (table, table_size, sizeof *table);
+ conflict_table = xnrealloc (conflict_table, table_size,
+ sizeof *conflict_table);
+ check = xnrealloc (check, table_size, sizeof *check);
for (/* Nothing. */; old_size < table_size; ++old_size)
{
table[old_size] = 0;
+ conflict_table[old_size] = 0;
check[old_size] = -1;
}
}
/*-------------------------------------------------------------------.
-| For GLR parsers, for each conflicted token in STATE, as indicated |
-| by non-zero entries in CONFLROW, create a list of possible |
+| For GLR parsers, for each conflicted token in S, as indicated |
+| by non-zero entries in CONFLROW, create a list of possible |
| reductions that are alternatives to the shift or reduction |
-| currently recorded for that token in STATE. Store the alternative |
+| currently recorded for that token in S. Store the alternative |
| reductions followed by a 0 in CONFLICT_LIST, updating |
| CONFLICT_LIST_CNT, and storing an index to the start of the list |
| back into CONFLROW. |
`-------------------------------------------------------------------*/
static void
-conflict_row (state_t *state)
+conflict_row (state *s)
{
int i, j;
- reductions_t *reds = state->reductions;
+ reductions *reds = s->reductions;
- if (! glr_parser)
+ if (!nondeterministic_parser)
return;
for (j = 0; j < ntokens; j += 1)
/* Find all reductions for token J, and record all that do not
match ACTROW[J]. */
for (i = 0; i < reds->num; i += 1)
- if (bitset_test (reds->lookaheads[i], j)
+ if (bitset_test (reds->lookahead_tokens[i], j)
&& (actrow[j]
!= rule_number_as_item_number (reds->rules[i]->number)))
{
- assert (conflict_list_free > 0);
+ aver (0 < conflict_list_free);
conflict_list[conflict_list_cnt] = reds->rules[i]->number + 1;
conflict_list_cnt += 1;
conflict_list_free -= 1;
}
/* Leave a 0 at the end. */
- assert (conflict_list_free > 0);
+ aver (0 < conflict_list_free);
+ conflict_list[conflict_list_cnt] = 0;
conflict_list_cnt += 1;
conflict_list_free -= 1;
}
/*------------------------------------------------------------------.
-| Decide what to do for each type of token if seen as the lookahead |
-| token in specified state. The value returned is used as the |
+| Decide what to do for each type of token if seen as the |
+| lookahead in specified state. The value returned is used as the |
| default action (yydefact) for the state. In addition, ACTROW is |
| filled with what to do for each kind of token, index by symbol |
| number, with zero meaning do the default action. The value |
-| ACTION_MIN, a very negative number, means this situation is an |
-| error. The parser recognizes this value specially. |
+| ACTION_NUMBER_MINIMUM, a very negative number, means this |
+| situation is an error. The parser recognizes this value |
+| specially. |
| |
| This is where conflicts are resolved. The loop over lookahead |
| rules considered lower-numbered rules last, and the last rule |
| that has any such conflicts. |
`------------------------------------------------------------------*/
-static rule_t *
-action_row (state_t *state)
+static rule *
+action_row (state *s)
{
int i;
- rule_t *default_rule = NULL;
- reductions_t *redp = state->reductions;
- transitions_t *transitions = state->transitions;
- errs_t *errp = state->errs;
+ rule *default_reduction = NULL;
+ reductions *reds = s->reductions;
+ transitions *trans = s->transitions;
+ errs *errp = s->errs;
/* Set to nonzero to inhibit having any default reduction. */
- int nodefault = 0;
- int conflicted = 0;
+ bool nodefault = false;
+ bool conflicted = false;
for (i = 0; i < ntokens; i++)
actrow[i] = conflrow[i] = 0;
- if (redp->lookaheads)
+ if (reds->lookahead_tokens)
{
int j;
bitset_iterator biter;
/* loop over all the rules available here which require
lookahead (in reverse order to give precedence to the first
rule) */
- for (i = redp->num - 1; i >= 0; --i)
+ for (i = reds->num - 1; i >= 0; --i)
/* and find each token which the rule finds acceptable
to come next */
- BITSET_FOR_EACH (biter, redp->lookaheads[i], j, 0)
+ BITSET_FOR_EACH (biter, reds->lookahead_tokens[i], j, 0)
{
/* and record this rule as the rule to use if that
token follows. */
if (actrow[j] != 0)
- conflicted = conflrow[j] = 1;
- actrow[j] = rule_number_as_item_number (redp->rules[i]->number);
+ {
+ conflicted = true;
+ conflrow[j] = 1;
+ }
+ actrow[j] = rule_number_as_item_number (reds->rules[i]->number);
}
}
/* Now see which tokens are allowed for shifts in this state. For
them, record the shift as the thing to do. So shift is preferred
to reduce. */
- FOR_EACH_SHIFT (transitions, i)
+ FOR_EACH_SHIFT (trans, i)
{
- symbol_number_t symbol = TRANSITION_SYMBOL (transitions, i);
- state_t *shift_state = transitions->states[i];
+ symbol_number sym = TRANSITION_SYMBOL (trans, i);
+ state *shift_state = trans->states[i];
- if (actrow[symbol] != 0)
- conflicted = conflrow[symbol] = 1;
- actrow[symbol] = state_number_as_int (shift_state->number);
+ if (actrow[sym] != 0)
+ {
+ conflicted = true;
+ conflrow[sym] = 1;
+ }
+ actrow[sym] = state_number_as_int (shift_state->number);
/* Do not use any default reduction if there is a shift for
error */
- if (symbol == errtoken->number)
- nodefault = 1;
+ if (sym == errtoken->number)
+ nodefault = true;
}
/* See which tokens are an explicit error in this state (due to
- %nonassoc). For them, record ACTION_MIN as the action. */
+ %nonassoc). For them, record ACTION_NUMBER_MINIMUM as the
+ action. */
for (i = 0; i < errp->num; i++)
{
- symbol_t *symbol = errp->symbols[i];
- actrow[symbol->number] = ACTION_MIN;
+ symbol *sym = errp->symbols[i];
+ actrow[sym->number] = ACTION_NUMBER_MINIMUM;
}
+ /* Turn off default reductions where requested by the user. See
+ state_lookahead_tokens_count in lalr.c to understand when states are
+ labeled as consistent. */
+ {
+ char *default_reductions =
+ muscle_percent_define_get ("lr.default-reductions");
+ if (0 != strcmp (default_reductions, "all") && !s->consistent)
+ nodefault = true;
+ free (default_reductions);
+ }
+
/* Now find the most common reduction and make it the default action
for this state. */
- if (redp->num >= 1 && !nodefault)
+ if (reds->num >= 1 && !nodefault)
{
- if (state->consistent)
- default_rule = redp->rules[0];
+ if (s->consistent)
+ default_reduction = reds->rules[0];
else
{
int max = 0;
- for (i = 0; i < redp->num; i++)
+ for (i = 0; i < reds->num; i++)
{
int count = 0;
- rule_t *rule = redp->rules[i];
- symbol_number_t j;
+ rule *r = reds->rules[i];
+ symbol_number j;
for (j = 0; j < ntokens; j++)
- if (actrow[j] == rule_number_as_item_number (rule->number))
+ if (actrow[j] == rule_number_as_item_number (r->number))
count++;
if (count > max)
{
max = count;
- default_rule = rule;
+ default_reduction = r;
}
}
{
int j;
for (j = 0; j < ntokens; j++)
- if (actrow[j] == rule_number_as_item_number (default_rule->number)
- && ! (glr_parser && conflrow[j]))
+ if (actrow[j]
+ == rule_number_as_item_number (default_reduction->number)
+ && ! (nondeterministic_parser && conflrow[j]))
actrow[j] = 0;
}
}
}
- /* If have no default rule, the default is an error.
+ /* If have no default reduction, the default is an error.
So replace any action which says "error" with "use default". */
- if (!default_rule)
+ if (!default_reduction)
for (i = 0; i < ntokens; i++)
- if (actrow[i] == ACTION_MIN)
+ if (actrow[i] == ACTION_NUMBER_MINIMUM)
actrow[i] = 0;
if (conflicted)
- conflict_row (state);
+ conflict_row (s);
- return default_rule;
+ return default_reduction;
}
-/*--------------------------------------------.
-| Set FROMS, TOS, TALLY and WIDTH for STATE. |
-`--------------------------------------------*/
+/*----------------------------------------.
+| Set FROMS, TOS, TALLY and WIDTH for S. |
+`----------------------------------------*/
static void
-save_row (state_number_t state)
+save_row (state_number s)
{
- symbol_number_t i;
+ symbol_number i;
int count;
- base_t *sp = NULL;
- base_t *sp1 = NULL;
- base_t *sp2 = NULL;
- unsigned int *sp3 = NULL;
+ base_number *sp;
+ base_number *sp1;
+ base_number *sp2;
+ unsigned int *sp3;
- /* Number of non default actions in STATE. */
+ /* Number of non default actions in S. */
count = 0;
for (i = 0; i < ntokens; i++)
if (actrow[i] != 0)
return;
/* Allocate non defaulted actions. */
- froms[state] = sp1 = sp = XCALLOC (base_t, count);
- tos[state] = sp2 = XCALLOC (base_t, count);
- if (glr_parser)
- conflict_tos[state] = sp3 = XCALLOC (unsigned int, count);
- else
- conflict_tos[state] = NULL;
+ froms[s] = sp = sp1 = xnmalloc (count, sizeof *sp1);
+ tos[s] = sp2 = xnmalloc (count, sizeof *sp2);
+ conflict_tos[s] = sp3 =
+ nondeterministic_parser ? xnmalloc (count, sizeof *sp3) : NULL;
/* Store non defaulted actions. */
for (i = 0; i < ntokens; i++)
{
*sp1++ = i;
*sp2++ = actrow[i];
- if (glr_parser)
+ if (nondeterministic_parser)
*sp3++ = conflrow[i];
}
- tally[state] = count;
- width[state] = sp1[-1] - sp[0] + 1;
+ tally[s] = count;
+ width[s] = sp1[-1] - sp[0] + 1;
}
static void
token_actions (void)
{
- state_number_t i;
- symbol_number_t j;
- rule_number_t r;
+ state_number i;
+ symbol_number j;
+ rule_number r;
- int nconflict = glr_parser ? conflicts_total_count () : 0;
+ int nconflict = nondeterministic_parser ? conflicts_total_count () : 0;
- yydefact = XCALLOC (rule_number_t, nstates);
+ yydefact = xnmalloc (nstates, sizeof *yydefact);
- actrow = XCALLOC (action_t, ntokens);
- conflrow = XCALLOC (unsigned int, ntokens);
+ actrow = xnmalloc (ntokens, sizeof *actrow);
+ conflrow = xnmalloc (ntokens, sizeof *conflrow);
- conflict_list = XCALLOC (unsigned int, 1 + 2 * nconflict);
+ conflict_list = xnmalloc (1 + 2 * nconflict, sizeof *conflict_list);
conflict_list_free = 2 * nconflict;
conflict_list_cnt = 1;
/* Find the rules which are reduced. */
- if (!glr_parser)
+ if (!nondeterministic_parser)
for (r = 0; r < nrules; ++r)
- rules[r].useful = FALSE;
+ rules[r].useful = false;
for (i = 0; i < nstates; ++i)
{
- rule_t *default_rule = action_row (states[i]);
- yydefact[i] = default_rule ? default_rule->number + 1 : 0;
+ rule *default_reduction = action_row (states[i]);
+ yydefact[i] = default_reduction ? default_reduction->number + 1 : 0;
save_row (i);
/* Now that the parser was computed, we can find which rules are
really reduced, and which are not because of SR or RR
conflicts. */
- if (!glr_parser)
+ if (!nondeterministic_parser)
{
for (j = 0; j < ntokens; ++j)
- if (actrow[j] < 0 && actrow[j] != ACTION_MIN)
- rules[item_number_as_rule_number (actrow[j])].useful = TRUE;
+ if (actrow[j] < 0 && actrow[j] != ACTION_NUMBER_MINIMUM)
+ rules[item_number_as_rule_number (actrow[j])].useful = true;
if (yydefact[i])
- rules[yydefact[i] - 1].useful = TRUE;
+ rules[yydefact[i] - 1].useful = true;
}
}
/*------------------------------------------------------------------.
| Compute FROMS[VECTOR], TOS[VECTOR], TALLY[VECTOR], WIDTH[VECTOR], |
| i.e., the information related to non defaulted GOTO on the nterm |
-| SYMBOL. |
+| SYM. |
| |
-| DEFAULT_STATE is the principal destination on SYMBOL, i.e., the |
-| default GOTO destination on SYMBOL. |
+| DEFAULT_STATE is the principal destination on SYM, i.e., the |
+| default GOTO destination on SYM. |
`------------------------------------------------------------------*/
static void
-save_column (symbol_number_t symbol, state_number_t default_state)
+save_column (symbol_number sym, state_number default_state)
{
- int i;
- base_t *sp;
- base_t *sp1;
- base_t *sp2;
+ goto_number i;
+ base_number *sp;
+ base_number *sp1;
+ base_number *sp2;
int count;
- vector_number_t symno = symbol_number_to_vector_number (symbol);
+ vector_number symno = symbol_number_to_vector_number (sym);
- goto_number_t begin = goto_map[symbol];
- goto_number_t end = goto_map[symbol + 1];
+ goto_number begin = goto_map[sym - ntokens];
+ goto_number end = goto_map[sym - ntokens + 1];
/* Number of non default GOTO. */
count = 0;
return;
/* Allocate room for non defaulted gotos. */
- froms[symno] = sp1 = sp = XCALLOC (base_t, count);
- tos[symno] = sp2 = XCALLOC (base_t, count);
+ froms[symno] = sp = sp1 = xnmalloc (count, sizeof *sp1);
+ tos[symno] = sp2 = xnmalloc (count, sizeof *sp2);
/* Store the state numbers of the non defaulted gotos. */
for (i = begin; i < end; i++)
}
-/*----------------------------------------------------------------.
-| Return `the' most common destination GOTO on SYMBOL (a nterm). |
-`----------------------------------------------------------------*/
+/*-------------------------------------------------------------.
+| Return `the' most common destination GOTO on SYM (a nterm). |
+`-------------------------------------------------------------*/
-static state_number_t
-default_goto (symbol_number_t symbol, short state_count[])
+static state_number
+default_goto (symbol_number sym, size_t state_count[])
{
- state_number_t s;
- int i;
- goto_number_t m = goto_map[symbol];
- goto_number_t n = goto_map[symbol + 1];
- state_number_t default_state = (state_number_t) -1;
- int max = 0;
+ state_number s;
+ goto_number i;
+ goto_number m = goto_map[sym - ntokens];
+ goto_number n = goto_map[sym - ntokens + 1];
+ state_number default_state = -1;
+ size_t max = 0;
if (m == n)
- return (state_number_t) -1;
+ return -1;
for (s = 0; s < nstates; s++)
state_count[s] = 0;
static void
goto_actions (void)
{
- symbol_number_t i;
- short *state_count = XCALLOC (short, nstates);
- yydefgoto = XMALLOC (state_number_t, nvars);
+ symbol_number i;
+ size_t *state_count = xnmalloc (nstates, sizeof *state_count);
+ yydefgoto = xnmalloc (nvars, sizeof *yydefgoto);
/* For a given nterm I, STATE_COUNT[S] is the number of times there
is a GOTO to S on I. */
for (i = ntokens; i < nsyms; ++i)
{
- state_number_t default_state = default_goto (i, state_count);
+ state_number default_state = default_goto (i, state_count);
save_column (i, default_state);
yydefgoto[i - ntokens] = default_state;
}
In any other case, return -1. */
-static state_number_t
-matching_state (vector_number_t vector)
+static state_number
+matching_state (vector_number vector)
{
- vector_number_t i = order[vector];
+ vector_number i = order[vector];
int t;
int w;
int prev;
/* If VECTOR is a nterm, return -1. */
- if (i >= (int) nstates)
+ if (nstates <= i)
return -1;
t = tally[i];
w = width[i];
+ /* If VECTOR has GLR conflicts, return -1 */
+ if (conflict_tos[i] != NULL)
+ {
+ int j;
+ for (j = 0; j < t; j += 1)
+ if (conflict_tos[i][j] != 0)
+ return -1;
+ }
+
for (prev = vector - 1; prev >= 0; prev--)
{
- vector_number_t j = order[prev];
+ vector_number j = order[prev];
int k;
int match = 1;
return -1;
for (k = 0; match && k < t; k++)
- if (tos[j][k] != tos[i][k] || froms[j][k] != froms[i][k])
+ if (tos[j][k] != tos[i][k] || froms[j][k] != froms[i][k]
+ || (conflict_tos[j] != NULL && conflict_tos[j][k] != 0))
match = 0;
if (match)
}
-static base_t
-pack_vector (vector_number_t vector)
+static base_number
+pack_vector (vector_number vector)
{
- vector_number_t i = order[vector];
+ vector_number i = order[vector];
int j;
int t = tally[i];
int loc = 0;
- base_t *from = froms[i];
- base_t *to = tos[i];
+ base_number *from = froms[i];
+ base_number *to = tos[i];
unsigned int *conflict_to = conflict_tos[i];
- assert (t);
+ aver (t != 0);
- for (j = lowzero - from[0]; j < (int) table_size; j++)
+ for (j = lowzero - from[0]; ; j++)
{
int k;
- int ok = 1;
+ bool ok = true;
+
+ aver (j < table_size);
for (k = 0; ok && k < t; k++)
{
loc = j + state_number_as_int (from[k]);
- if (loc >= (int) table_size)
+ if (table_size <= loc)
table_grow (loc);
if (table[loc] != 0)
- ok = 0;
+ ok = false;
}
for (k = 0; ok && k < vector; k++)
if (pos[k] == j)
- ok = 0;
+ ok = false;
if (ok)
{
{
loc = j + from[k];
table[loc] = to[k];
- if (glr_parser && conflict_to != NULL)
+ if (nondeterministic_parser && conflict_to != NULL)
conflict_table[loc] = conflict_to[k];
check[loc] = from[k];
}
if (loc > high)
high = loc;
- if (j < BASE_MIN || BASE_MAX < j)
- fatal ("base_t too small to hold %d\n", j);
+ aver (BASE_MINIMUM <= j && j <= BASE_MAXIMUM);
return j;
}
}
-#define pack_vector_succeeded 0
- assert (pack_vector_succeeded);
- return 0;
}
| parsers. |
`-------------------------------------------------------------*/
-static base_t
-table_ninf_remap (base_t tab[], size_t size, base_t ninf)
+static base_number
+table_ninf_remap (base_number tab[], int size, base_number ninf)
{
- base_t res = 0;
- size_t i;
+ base_number res = 0;
+ int i;
for (i = 0; i < size; i++)
if (tab[i] < res && tab[i] != ninf)
{
int i;
- base = XCALLOC (base_t, nvectors);
- pos = XCALLOC (base_t, nentries);
- table = XCALLOC (base_t, table_size);
- conflict_table = XCALLOC (unsigned int, table_size);
- check = XCALLOC (base_t, table_size);
+ base = xnmalloc (nvectors, sizeof *base);
+ pos = xnmalloc (nentries, sizeof *pos);
+ table = xcalloc (table_size, sizeof *table);
+ conflict_table = xcalloc (table_size, sizeof *conflict_table);
+ check = xnmalloc (table_size, sizeof *check);
lowzero = 0;
high = 0;
for (i = 0; i < nvectors; i++)
- base[i] = BASE_MIN;
+ base[i] = BASE_MINIMUM;
- for (i = 0; i < (int) table_size; i++)
+ for (i = 0; i < table_size; i++)
check[i] = -1;
for (i = 0; i < nentries; i++)
{
- state_number_t state = matching_state (i);
- base_t place;
+ state_number s = matching_state (i);
+ base_number place;
- if (state < 0)
+ if (s < 0)
/* A new set of state actions, or a nonterminal. */
place = pack_vector (i);
else
- /* Action of I were already coded for STATE. */
- place = base[state];
+ /* Action of I were already coded for S. */
+ place = base[s];
pos[i] = place;
base[order[i]] = place;
}
/* Use the greatest possible negative infinites. */
- base_ninf = table_ninf_remap (base, nvectors, BASE_MIN);
- table_ninf = table_ninf_remap (table, high + 1, ACTION_MIN);
+ base_ninf = table_ninf_remap (base, nvectors, BASE_MINIMUM);
+ table_ninf = table_ninf_remap (table, high + 1, ACTION_NUMBER_MINIMUM);
free (pos);
}
{
int i;
- /* That's a poor way to make sure the sizes are properly corelated,
- in particular the signedness is not taking into account, but it's
- not useless. */
- assert (sizeof (nvectors) >= sizeof (nstates));
- assert (sizeof (nvectors) >= sizeof (nvars));
+ /* This is a poor way to make sure the sizes are properly
+ correlated. In particular the signedness is not taken into
+ account. But it's not useless. */
+ verify (sizeof nstates <= sizeof nvectors
+ && sizeof nvars <= sizeof nvectors);
nvectors = state_number_as_int (nstates) + nvars;
- froms = XCALLOC (base_t *, nvectors);
- tos = XCALLOC (base_t *, nvectors);
- conflict_tos = XCALLOC (unsigned int *, nvectors);
- tally = XCALLOC (short, nvectors);
- width = XCALLOC (base_t, nvectors);
+ froms = xcalloc (nvectors, sizeof *froms);
+ tos = xcalloc (nvectors, sizeof *tos);
+ conflict_tos = xcalloc (nvectors, sizeof *conflict_tos);
+ tally = xcalloc (nvectors, sizeof *tally);
+ width = xnmalloc (nvectors, sizeof *width);
token_actions ();
goto_actions ();
- XFREE (goto_map + ntokens);
- XFREE (from_state);
- XFREE (to_state);
+ free (goto_map);
+ free (from_state);
+ free (to_state);
- order = XCALLOC (vector_number_t, nvectors);
+ order = xcalloc (nvectors, sizeof *order);
sort_actions ();
pack_table ();
free (order);
for (i = 0; i < nvectors; i++)
{
- XFREE (froms[i]);
- XFREE (tos[i]);
- XFREE (conflict_tos[i]);
+ free (froms[i]);
+ free (tos[i]);
+ free (conflict_tos[i]);
}
free (froms);