]> git.saurik.com Git - bison.git/blame_incremental - src/tables.c
(alloca): Remove; decl no longer needed.
[bison.git] / src / tables.c
... / ...
CommitLineData
1/* Output the generated parsing program for Bison.
2 Copyright (C) 1984, 1986, 1989, 1992, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of Bison, the GNU Compiler Compiler.
6
7 Bison is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 Bison is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with Bison; see the file COPYING. If not, write to the Free
19 Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23#include "system.h"
24
25#include <bitsetv.h>
26#include <quotearg.h>
27
28#include "complain.h"
29#include "conflicts.h"
30#include "files.h"
31#include "getargs.h"
32#include "gram.h"
33#include "lalr.h"
34#include "reader.h"
35#include "symtab.h"
36#include "tables.h"
37
38/* Several tables are indexed both by state and nonterminal numbers.
39 We call such an index a `vector'; i.e., a vector is either a state
40 or a nonterminal number.
41
42 Of course vector_number_t ought to be wide enough to contain
43 state_number and symbol_number. */
44typedef short vector_number;
45#define state_number_to_vector_number(State) \
46 ((vector_number) State)
47#define symbol_number_to_vector_number(Symbol) \
48 ((vector_number) (state_number_as_int (nstates) + Symbol - ntokens))
49
50int nvectors;
51
52
53/* FROMS and TOS are indexed by vector_number.
54
55 If VECTOR is a nonterminal, (FROMS[VECTOR], TOS[VECTOR]) form an
56 array of state numbers of the non defaulted GOTO on VECTOR.
57
58 If VECTOR is a state, TOS[VECTOR] is the array of actions to do on
59 the (array of) symbols FROMS[VECTOR].
60
61 In both cases, TALLY[VECTOR] is the size of the arrays
62 FROMS[VECTOR], TOS[VECTOR]; and WIDTH[VECTOR] =
63 (FROMS[VECTOR][SIZE] - FROMS[VECTOR][0] + 1) where SIZE =
64 TALLY[VECTOR].
65
66 FROMS therefore contains symbol_number and action_number,
67 TOS state_number and action_number,
68 TALLY sizes,
69 WIDTH differences of FROMS.
70
71 Let base_number be the type of FROMS, TOS, and WIDTH. */
72#define BASE_MAXIMUM INT_MAX
73#define BASE_MINIMUM INT_MIN
74
75static base_number **froms = NULL;
76static base_number **tos = NULL;
77static unsigned int **conflict_tos = NULL;
78static short *tally = NULL;
79static base_number *width = NULL;
80
81
82/* For a given state, N = ACTROW[SYMBOL]:
83
84 If N = 0, stands for `run the default action'.
85 If N = MIN, stands for `raise a syntax error'.
86 If N > 0, stands for `shift SYMBOL and go to n'.
87 If N < 0, stands for `reduce -N'. */
88typedef short action_number;
89#define ACTION_NUMBER_MINIMUM SHRT_MIN
90
91static action_number *actrow = NULL;
92
93/* FROMS and TOS are reordered to be compressed. ORDER[VECTOR] is the
94 new vector number of VECTOR. We skip `empty' vectors (i.e.,
95 TALLY[VECTOR] = 0), and call these `entries'. */
96static vector_number *order = NULL;
97static int nentries;
98
99base_number *base = NULL;
100/* A distinguished value of BASE, negative infinite. During the
101 computation equals to BASE_MINIMUM, later mapped to BASE_NINF to
102 keep parser tables small. */
103base_number base_ninf = 0;
104static base_number *pos = NULL;
105
106static unsigned int *conflrow = NULL;
107unsigned int *conflict_table = NULL;
108unsigned int *conflict_list = NULL;
109int conflict_list_cnt;
110static int conflict_list_free;
111
112/* TABLE_SIZE is the allocated size of both TABLE and CHECK. We start
113 with more or less the original hard-coded value (which was
114 SHRT_MAX). */
115static size_t table_size = 32768;
116base_number *table = NULL;
117base_number *check = NULL;
118/* The value used in TABLE to denote explicit syntax errors
119 (%nonassoc), a negative infinite. First defaults to ACTION_NUMBER_MININUM,
120 but in order to keep small tables, renumbered as TABLE_ERROR, which
121 is the smallest (non error) value minus 1. */
122base_number table_ninf = 0;
123static int lowzero;
124int high;
125
126state_number *yydefgoto;
127rule_number *yydefact;
128
129/*----------------------------------------------------------------.
130| If TABLE (and CHECK) appear to be small to be addressed at |
131| DESIRED, grow them. Note that TABLE[DESIRED] is to be used, so |
132| the desired size is at least DESIRED + 1. |
133`----------------------------------------------------------------*/
134
135static void
136table_grow (size_t desired)
137{
138 size_t old_size = table_size;
139
140 while (table_size <= desired)
141 table_size *= 2;
142
143 if (trace_flag & trace_resource)
144 fprintf (stderr, "growing table and check from: %d to %d\n",
145 old_size, table_size);
146
147 table = XREALLOC (table, base_number, table_size);
148 check = XREALLOC (check, base_number, table_size);
149 conflict_table = XREALLOC (conflict_table, unsigned int, table_size);
150
151 for (/* Nothing. */; old_size < table_size; ++old_size)
152 {
153 table[old_size] = 0;
154 check[old_size] = -1;
155 }
156}
157
158
159
160
161/*-------------------------------------------------------------------.
162| For GLR parsers, for each conflicted token in S, as indicated |
163| by non-zero entries in CONFLROW, create a list of possible |
164| reductions that are alternatives to the shift or reduction |
165| currently recorded for that token in S. Store the alternative |
166| reductions followed by a 0 in CONFLICT_LIST, updating |
167| CONFLICT_LIST_CNT, and storing an index to the start of the list |
168| back into CONFLROW. |
169`-------------------------------------------------------------------*/
170
171static void
172conflict_row (state *s)
173{
174 int i, j;
175 reductions *reds = s->reductions;
176
177 if (! glr_parser)
178 return;
179
180 for (j = 0; j < ntokens; j += 1)
181 if (conflrow[j])
182 {
183 conflrow[j] = conflict_list_cnt;
184
185 /* Find all reductions for token J, and record all that do not
186 match ACTROW[J]. */
187 for (i = 0; i < reds->num; i += 1)
188 if (bitset_test (reds->lookaheads[i], j)
189 && (actrow[j]
190 != rule_number_as_item_number (reds->rules[i]->number)))
191 {
192 if (conflict_list_free <= 0)
193 abort ();
194 conflict_list[conflict_list_cnt] = reds->rules[i]->number + 1;
195 conflict_list_cnt += 1;
196 conflict_list_free -= 1;
197 }
198
199 /* Leave a 0 at the end. */
200 if (conflict_list_free <= 0)
201 abort ();
202 conflict_list_cnt += 1;
203 conflict_list_free -= 1;
204 }
205}
206
207
208/*------------------------------------------------------------------.
209| Decide what to do for each type of token if seen as the lookahead |
210| token in specified state. The value returned is used as the |
211| default action (yydefact) for the state. In addition, ACTROW is |
212| filled with what to do for each kind of token, index by symbol |
213| number, with zero meaning do the default action. The value |
214| ACTION_NUMBER_MINIMUM, a very negative number, means this |
215| situation is an error. The parser recognizes this value |
216| specially. |
217| |
218| This is where conflicts are resolved. The loop over lookahead |
219| rules considered lower-numbered rules last, and the last rule |
220| considered that likes a token gets to handle it. |
221| |
222| For GLR parsers, also sets CONFLROW[SYM] to an index into |
223| CONFLICT_LIST iff there is an unresolved conflict (s/r or r/r) |
224| with symbol SYM. The default reduction is not used for a symbol |
225| that has any such conflicts. |
226`------------------------------------------------------------------*/
227
228static rule *
229action_row (state *s)
230{
231 int i;
232 rule *default_rule = NULL;
233 reductions *reds = s->reductions;
234 transitions *trans = s->transitions;
235 errs *errp = s->errs;
236 /* Set to nonzero to inhibit having any default reduction. */
237 int nodefault = 0;
238 int conflicted = 0;
239
240 for (i = 0; i < ntokens; i++)
241 actrow[i] = conflrow[i] = 0;
242
243 if (reds->lookaheads)
244 {
245 int j;
246 bitset_iterator biter;
247 /* loop over all the rules available here which require
248 lookahead (in reverse order to give precedence to the first
249 rule) */
250 for (i = reds->num - 1; i >= 0; --i)
251 /* and find each token which the rule finds acceptable
252 to come next */
253 BITSET_FOR_EACH (biter, reds->lookaheads[i], j, 0)
254 {
255 /* and record this rule as the rule to use if that
256 token follows. */
257 if (actrow[j] != 0)
258 conflicted = conflrow[j] = 1;
259 actrow[j] = rule_number_as_item_number (reds->rules[i]->number);
260 }
261 }
262
263 /* Now see which tokens are allowed for shifts in this state. For
264 them, record the shift as the thing to do. So shift is preferred
265 to reduce. */
266 FOR_EACH_SHIFT (trans, i)
267 {
268 symbol_number sym = TRANSITION_SYMBOL (trans, i);
269 state *shift_state = trans->states[i];
270
271 if (actrow[sym] != 0)
272 conflicted = conflrow[sym] = 1;
273 actrow[sym] = state_number_as_int (shift_state->number);
274
275 /* Do not use any default reduction if there is a shift for
276 error */
277 if (sym == errtoken->number)
278 nodefault = 1;
279 }
280
281 /* See which tokens are an explicit error in this state (due to
282 %nonassoc). For them, record ACTION_NUMBER_MINIMUM as the
283 action. */
284 for (i = 0; i < errp->num; i++)
285 {
286 symbol *sym = errp->symbols[i];
287 actrow[sym->number] = ACTION_NUMBER_MINIMUM;
288 }
289
290 /* Now find the most common reduction and make it the default action
291 for this state. */
292
293 if (reds->num >= 1 && !nodefault)
294 {
295 if (s->consistent)
296 default_rule = reds->rules[0];
297 else
298 {
299 int max = 0;
300 for (i = 0; i < reds->num; i++)
301 {
302 int count = 0;
303 rule *r = reds->rules[i];
304 symbol_number j;
305
306 for (j = 0; j < ntokens; j++)
307 if (actrow[j] == rule_number_as_item_number (r->number))
308 count++;
309
310 if (count > max)
311 {
312 max = count;
313 default_rule = r;
314 }
315 }
316
317 /* GLR parsers need space for conflict lists, so we can't
318 default conflicted entries. For non-conflicted entries
319 or as long as we are not building a GLR parser,
320 actions that match the default are replaced with zero,
321 which means "use the default". */
322
323 if (max > 0)
324 {
325 int j;
326 for (j = 0; j < ntokens; j++)
327 if (actrow[j] == rule_number_as_item_number (default_rule->number)
328 && ! (glr_parser && conflrow[j]))
329 actrow[j] = 0;
330 }
331 }
332 }
333
334 /* If have no default rule, the default is an error.
335 So replace any action which says "error" with "use default". */
336
337 if (!default_rule)
338 for (i = 0; i < ntokens; i++)
339 if (actrow[i] == ACTION_NUMBER_MINIMUM)
340 actrow[i] = 0;
341
342 if (conflicted)
343 conflict_row (s);
344
345 return default_rule;
346}
347
348
349/*----------------------------------------.
350| Set FROMS, TOS, TALLY and WIDTH for S. |
351`----------------------------------------*/
352
353static void
354save_row (state_number s)
355{
356 symbol_number i;
357 int count;
358 base_number *sp = NULL;
359 base_number *sp1 = NULL;
360 base_number *sp2 = NULL;
361 unsigned int *sp3 = NULL;
362
363 /* Number of non default actions in S. */
364 count = 0;
365 for (i = 0; i < ntokens; i++)
366 if (actrow[i] != 0)
367 count++;
368
369 if (count == 0)
370 return;
371
372 /* Allocate non defaulted actions. */
373 froms[s] = sp1 = sp = XCALLOC (base_number, count);
374 tos[s] = sp2 = XCALLOC (base_number, count);
375 if (glr_parser)
376 conflict_tos[s] = sp3 = XCALLOC (unsigned int, count);
377 else
378 conflict_tos[s] = NULL;
379
380 /* Store non defaulted actions. */
381 for (i = 0; i < ntokens; i++)
382 if (actrow[i] != 0)
383 {
384 *sp1++ = i;
385 *sp2++ = actrow[i];
386 if (glr_parser)
387 *sp3++ = conflrow[i];
388 }
389
390 tally[s] = count;
391 width[s] = sp1[-1] - sp[0] + 1;
392}
393
394
395/*------------------------------------------------------------------.
396| Figure out the actions for the specified state, indexed by |
397| lookahead token type. |
398| |
399| The YYDEFACT table is output now. The detailed info is saved for |
400| putting into YYTABLE later. |
401`------------------------------------------------------------------*/
402
403static void
404token_actions (void)
405{
406 state_number i;
407 symbol_number j;
408 rule_number r;
409
410 int nconflict = glr_parser ? conflicts_total_count () : 0;
411
412 yydefact = XCALLOC (rule_number, nstates);
413
414 actrow = XCALLOC (action_number, ntokens);
415 conflrow = XCALLOC (unsigned int, ntokens);
416
417 conflict_list = XCALLOC (unsigned int, 1 + 2 * nconflict);
418 conflict_list_free = 2 * nconflict;
419 conflict_list_cnt = 1;
420
421 /* Find the rules which are reduced. */
422 if (!glr_parser)
423 for (r = 0; r < nrules; ++r)
424 rules[r].useful = false;
425
426 for (i = 0; i < nstates; ++i)
427 {
428 rule *default_rule = action_row (states[i]);
429 yydefact[i] = default_rule ? default_rule->number + 1 : 0;
430 save_row (i);
431
432 /* Now that the parser was computed, we can find which rules are
433 really reduced, and which are not because of SR or RR
434 conflicts. */
435 if (!glr_parser)
436 {
437 for (j = 0; j < ntokens; ++j)
438 if (actrow[j] < 0 && actrow[j] != ACTION_NUMBER_MINIMUM)
439 rules[item_number_as_rule_number (actrow[j])].useful = true;
440 if (yydefact[i])
441 rules[yydefact[i] - 1].useful = true;
442 }
443 }
444
445 free (actrow);
446 free (conflrow);
447}
448
449
450/*------------------------------------------------------------------.
451| Compute FROMS[VECTOR], TOS[VECTOR], TALLY[VECTOR], WIDTH[VECTOR], |
452| i.e., the information related to non defaulted GOTO on the nterm |
453| SYM. |
454| |
455| DEFAULT_STATE is the principal destination on SYM, i.e., the |
456| default GOTO destination on SYM. |
457`------------------------------------------------------------------*/
458
459static void
460save_column (symbol_number sym, state_number default_state)
461{
462 int i;
463 base_number *sp;
464 base_number *sp1;
465 base_number *sp2;
466 int count;
467 vector_number symno = symbol_number_to_vector_number (sym);
468
469 goto_number begin = goto_map[sym];
470 goto_number end = goto_map[sym + 1];
471
472 /* Number of non default GOTO. */
473 count = 0;
474 for (i = begin; i < end; i++)
475 if (to_state[i] != default_state)
476 count++;
477
478 if (count == 0)
479 return;
480
481 /* Allocate room for non defaulted gotos. */
482 froms[symno] = sp1 = sp = XCALLOC (base_number, count);
483 tos[symno] = sp2 = XCALLOC (base_number, count);
484
485 /* Store the state numbers of the non defaulted gotos. */
486 for (i = begin; i < end; i++)
487 if (to_state[i] != default_state)
488 {
489 *sp1++ = from_state[i];
490 *sp2++ = to_state[i];
491 }
492
493 tally[symno] = count;
494 width[symno] = sp1[-1] - sp[0] + 1;
495}
496
497
498/*-------------------------------------------------------------.
499| Return `the' most common destination GOTO on SYM (a nterm). |
500`-------------------------------------------------------------*/
501
502static state_number
503default_goto (symbol_number sym, short state_count[])
504{
505 state_number s;
506 int i;
507 goto_number m = goto_map[sym];
508 goto_number n = goto_map[sym + 1];
509 state_number default_state = (state_number) -1;
510 int max = 0;
511
512 if (m == n)
513 return (state_number) -1;
514
515 for (s = 0; s < nstates; s++)
516 state_count[s] = 0;
517
518 for (i = m; i < n; i++)
519 state_count[to_state[i]]++;
520
521 for (s = 0; s < nstates; s++)
522 if (state_count[s] > max)
523 {
524 max = state_count[s];
525 default_state = s;
526 }
527
528 return default_state;
529}
530
531
532/*-------------------------------------------------------------------.
533| Figure out what to do after reducing with each rule, depending on |
534| the saved state from before the beginning of parsing the data that |
535| matched this rule. |
536| |
537| The YYDEFGOTO table is output now. The detailed info is saved for |
538| putting into YYTABLE later. |
539`-------------------------------------------------------------------*/
540
541static void
542goto_actions (void)
543{
544 symbol_number i;
545 short *state_count = XCALLOC (short, nstates);
546 yydefgoto = XMALLOC (state_number, nvars);
547
548 /* For a given nterm I, STATE_COUNT[S] is the number of times there
549 is a GOTO to S on I. */
550 for (i = ntokens; i < nsyms; ++i)
551 {
552 state_number default_state = default_goto (i, state_count);
553 save_column (i, default_state);
554 yydefgoto[i - ntokens] = default_state;
555 }
556 free (state_count);
557}
558
559
560/*------------------------------------------------------------------.
561| Compute ORDER, a reordering of vectors, in order to decide how to |
562| pack the actions and gotos information into yytable. |
563`------------------------------------------------------------------*/
564
565static void
566sort_actions (void)
567{
568 int i;
569
570 nentries = 0;
571
572 for (i = 0; i < nvectors; i++)
573 if (tally[i] > 0)
574 {
575 int k;
576 int t = tally[i];
577 int w = width[i];
578 int j = nentries - 1;
579
580 while (j >= 0 && (width[order[j]] < w))
581 j--;
582
583 while (j >= 0 && (width[order[j]] == w) && (tally[order[j]] < t))
584 j--;
585
586 for (k = nentries - 1; k > j; k--)
587 order[k + 1] = order[k];
588
589 order[j + 1] = i;
590 nentries++;
591 }
592}
593
594
595/* If VECTOR is a state which actions (reflected by FROMS, TOS, TALLY
596 and WIDTH of VECTOR) are common to a previous state, return this
597 state number.
598
599 In any other case, return -1. */
600
601static state_number
602matching_state (vector_number vector)
603{
604 vector_number i = order[vector];
605 int t;
606 int w;
607 int prev;
608
609 /* If VECTOR is a nterm, return -1. */
610 if (i >= (int) nstates)
611 return -1;
612
613 t = tally[i];
614 w = width[i];
615
616 /* If VECTOR has GLR conflicts, return -1 */
617 if (conflict_tos[i] != NULL)
618 {
619 int j;
620 for (j = 0; j < t; j += 1)
621 if (conflict_tos[i][j] != 0)
622 return -1;
623 }
624
625 for (prev = vector - 1; prev >= 0; prev--)
626 {
627 vector_number j = order[prev];
628 int k;
629 int match = 1;
630
631 /* Given how ORDER was computed, if the WIDTH or TALLY is
632 different, there cannot be a matching state. */
633 if (width[j] != w || tally[j] != t)
634 return -1;
635
636 for (k = 0; match && k < t; k++)
637 if (tos[j][k] != tos[i][k] || froms[j][k] != froms[i][k]
638 || (conflict_tos[j] != NULL && conflict_tos[j][k] != 0))
639 match = 0;
640
641 if (match)
642 return j;
643 }
644
645 return -1;
646}
647
648
649static base_number
650pack_vector (vector_number vector)
651{
652 vector_number i = order[vector];
653 int j;
654 int t = tally[i];
655 int loc = 0;
656 base_number *from = froms[i];
657 base_number *to = tos[i];
658 unsigned int *conflict_to = conflict_tos[i];
659
660 if (! t)
661 abort ();
662
663 for (j = lowzero - from[0]; ; j++)
664 {
665 int k;
666 int ok = 1;
667
668 if ((int) table_size <= j)
669 abort ();
670
671 for (k = 0; ok && k < t; k++)
672 {
673 loc = j + state_number_as_int (from[k]);
674 if (loc >= (int) table_size)
675 table_grow (loc);
676
677 if (table[loc] != 0)
678 ok = 0;
679 }
680
681 for (k = 0; ok && k < vector; k++)
682 if (pos[k] == j)
683 ok = 0;
684
685 if (ok)
686 {
687 for (k = 0; k < t; k++)
688 {
689 loc = j + from[k];
690 table[loc] = to[k];
691 if (glr_parser && conflict_to != NULL)
692 conflict_table[loc] = conflict_to[k];
693 check[loc] = from[k];
694 }
695
696 while (table[lowzero] != 0)
697 lowzero++;
698
699 if (loc > high)
700 high = loc;
701
702 if (! (BASE_MINIMUM <= j && j <= BASE_MAXIMUM))
703 abort ();
704 return j;
705 }
706 }
707}
708
709
710/*-------------------------------------------------------------.
711| Remap the negative infinite in TAB from NINF to the greatest |
712| possible smallest value. Return it. |
713| |
714| In most case this allows us to use shorts instead of ints in |
715| parsers. |
716`-------------------------------------------------------------*/
717
718static base_number
719table_ninf_remap (base_number tab[], size_t size, base_number ninf)
720{
721 base_number res = 0;
722 size_t i;
723
724 for (i = 0; i < size; i++)
725 if (tab[i] < res && tab[i] != ninf)
726 res = tab[i];
727
728 --res;
729
730 for (i = 0; i < size; i++)
731 if (tab[i] == ninf)
732 tab[i] = res;
733
734 return res;
735}
736
737static void
738pack_table (void)
739{
740 int i;
741
742 base = XCALLOC (base_number, nvectors);
743 pos = XCALLOC (base_number, nentries);
744 table = XCALLOC (base_number, table_size);
745 conflict_table = XCALLOC (unsigned int, table_size);
746 check = XCALLOC (base_number, table_size);
747
748 lowzero = 0;
749 high = 0;
750
751 for (i = 0; i < nvectors; i++)
752 base[i] = BASE_MINIMUM;
753
754 for (i = 0; i < (int) table_size; i++)
755 check[i] = -1;
756
757 for (i = 0; i < nentries; i++)
758 {
759 state_number s = matching_state (i);
760 base_number place;
761
762 if (s < 0)
763 /* A new set of state actions, or a nonterminal. */
764 place = pack_vector (i);
765 else
766 /* Action of I were already coded for S. */
767 place = base[s];
768
769 pos[i] = place;
770 base[order[i]] = place;
771 }
772
773 /* Use the greatest possible negative infinites. */
774 base_ninf = table_ninf_remap (base, nvectors, BASE_MINIMUM);
775 table_ninf = table_ninf_remap (table, high + 1, ACTION_NUMBER_MINIMUM);
776
777 free (pos);
778}
779
780\f
781
782/*-----------------------------------------------------------------.
783| Compute and output yydefact, yydefgoto, yypact, yypgoto, yytable |
784| and yycheck. |
785`-----------------------------------------------------------------*/
786
787void
788tables_generate (void)
789{
790 int i;
791
792 /* This is a poor way to make sure the sizes are properly
793 correlated. In particular the signedness is not taken into
794 account. But it's not useless. */
795 verify (sizes_are_properly_correlated,
796 (sizeof nstates <= sizeof nvectors
797 && sizeof nvars <= sizeof nvectors));
798
799 nvectors = state_number_as_int (nstates) + nvars;
800
801 froms = XCALLOC (base_number *, nvectors);
802 tos = XCALLOC (base_number *, nvectors);
803 conflict_tos = XCALLOC (unsigned int *, nvectors);
804 tally = XCALLOC (short, nvectors);
805 width = XCALLOC (base_number, nvectors);
806
807 token_actions ();
808
809 goto_actions ();
810 free (goto_map + ntokens);
811 free (from_state);
812 free (to_state);
813
814 order = XCALLOC (vector_number, nvectors);
815 sort_actions ();
816 pack_table ();
817 free (order);
818
819 free (tally);
820 free (width);
821
822 for (i = 0; i < nvectors; i++)
823 {
824 free (froms[i]);
825 free (tos[i]);
826 XFREE (conflict_tos[i]);
827 }
828
829 free (froms);
830 free (tos);
831 free (conflict_tos);
832}
833
834
835/*-------------------------.
836| Free the parser tables. |
837`-------------------------*/
838
839void
840tables_free (void)
841{
842 free (base);
843 free (conflict_table);
844 free (conflict_list);
845 free (table);
846 free (check);
847 free (yydefgoto);
848 free (yydefact);
849}