]>
Commit | Line | Data |
---|---|---|
1 | /* Generate the nondeterministic finite state machine for Bison. | |
2 | ||
3 | Copyright (C) 1984, 1986, 1989, 2000, 2001, 2002, 2004, 2005 Free | |
4 | Software Foundation, Inc. | |
5 | ||
6 | This file is part of Bison, the GNU Compiler Compiler. | |
7 | ||
8 | Bison is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2, or (at your option) | |
11 | any later version. | |
12 | ||
13 | Bison is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with Bison; see the file COPYING. If not, write to | |
20 | the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, | |
21 | Boston, MA 02110-1301, USA. */ | |
22 | ||
23 | ||
24 | /* See comments in state.h for the data structures that represent it. | |
25 | The entry point is generate_states. */ | |
26 | ||
27 | #include <config.h> | |
28 | #include "system.h" | |
29 | ||
30 | #include <bitset.h> | |
31 | #include <quotearg.h> | |
32 | ||
33 | #include "LR0.h" | |
34 | #include "closure.h" | |
35 | #include "complain.h" | |
36 | #include "getargs.h" | |
37 | #include "gram.h" | |
38 | #include "gram.h" | |
39 | #include "lalr.h" | |
40 | #include "reader.h" | |
41 | #include "reduce.h" | |
42 | #include "state.h" | |
43 | #include "symtab.h" | |
44 | ||
45 | typedef struct state_list | |
46 | { | |
47 | struct state_list *next; | |
48 | state *state; | |
49 | } state_list; | |
50 | ||
51 | static state_list *first_state = NULL; | |
52 | static state_list *last_state = NULL; | |
53 | ||
54 | ||
55 | /*------------------------------------------------------------------. | |
56 | | A state was just discovered from another state. Queue it for | | |
57 | | later examination, in order to find its transitions. Return it. | | |
58 | `------------------------------------------------------------------*/ | |
59 | ||
60 | static state * | |
61 | state_list_append (symbol_number sym, size_t core_size, item_number *core) | |
62 | { | |
63 | state_list *node = xmalloc (sizeof *node); | |
64 | state *s = state_new (sym, core_size, core); | |
65 | ||
66 | if (trace_flag & trace_automaton) | |
67 | fprintf (stderr, "state_list_append (state = %d, symbol = %d (%s))\n", | |
68 | nstates, sym, symbols[sym]->tag); | |
69 | ||
70 | node->next = NULL; | |
71 | node->state = s; | |
72 | ||
73 | if (!first_state) | |
74 | first_state = node; | |
75 | if (last_state) | |
76 | last_state->next = node; | |
77 | last_state = node; | |
78 | ||
79 | return s; | |
80 | } | |
81 | ||
82 | static int nshifts; | |
83 | static symbol_number *shift_symbol; | |
84 | ||
85 | static rule **redset; | |
86 | static state **shiftset; | |
87 | ||
88 | static item_number **kernel_base; | |
89 | static int *kernel_size; | |
90 | static item_number *kernel_items; | |
91 | ||
92 | \f | |
93 | static void | |
94 | allocate_itemsets (void) | |
95 | { | |
96 | symbol_number i; | |
97 | rule_number r; | |
98 | item_number *rhsp; | |
99 | ||
100 | /* Count the number of occurrences of all the symbols in RITEMS. | |
101 | Note that useless productions (hence useless nonterminals) are | |
102 | browsed too, hence we need to allocate room for _all_ the | |
103 | symbols. */ | |
104 | size_t count = 0; | |
105 | size_t *symbol_count = xcalloc (nsyms + nuseless_nonterminals, | |
106 | sizeof *symbol_count); | |
107 | ||
108 | for (r = 0; r < nrules; ++r) | |
109 | for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp) | |
110 | { | |
111 | count++; | |
112 | symbol_count[*rhsp]++; | |
113 | } | |
114 | ||
115 | /* See comments before new_itemsets. All the vectors of items | |
116 | live inside KERNEL_ITEMS. The number of active items after | |
117 | some symbol S cannot be more than the number of times that S | |
118 | appears as an item, which is SYMBOL_COUNT[S]. | |
119 | We allocate that much space for each symbol. */ | |
120 | ||
121 | kernel_base = xnmalloc (nsyms, sizeof *kernel_base); | |
122 | kernel_items = xnmalloc (count, sizeof *kernel_items); | |
123 | ||
124 | count = 0; | |
125 | for (i = 0; i < nsyms; i++) | |
126 | { | |
127 | kernel_base[i] = kernel_items + count; | |
128 | count += symbol_count[i]; | |
129 | } | |
130 | ||
131 | free (symbol_count); | |
132 | kernel_size = xnmalloc (nsyms, sizeof *kernel_size); | |
133 | } | |
134 | ||
135 | ||
136 | static void | |
137 | allocate_storage (void) | |
138 | { | |
139 | allocate_itemsets (); | |
140 | ||
141 | shiftset = xnmalloc (nsyms, sizeof *shiftset); | |
142 | redset = xnmalloc (nrules, sizeof *redset); | |
143 | state_hash_new (); | |
144 | shift_symbol = xnmalloc (nsyms, sizeof *shift_symbol); | |
145 | } | |
146 | ||
147 | ||
148 | static void | |
149 | free_storage (void) | |
150 | { | |
151 | free (shift_symbol); | |
152 | free (redset); | |
153 | free (shiftset); | |
154 | free (kernel_base); | |
155 | free (kernel_size); | |
156 | free (kernel_items); | |
157 | state_hash_free (); | |
158 | } | |
159 | ||
160 | ||
161 | ||
162 | ||
163 | /*---------------------------------------------------------------. | |
164 | | Find which symbols can be shifted in S, and for each one | | |
165 | | record which items would be active after that shift. Uses the | | |
166 | | contents of itemset. | | |
167 | | | | |
168 | | shift_symbol is set to a vector of the symbols that can be | | |
169 | | shifted. For each symbol in the grammar, kernel_base[symbol] | | |
170 | | points to a vector of item numbers activated if that symbol is | | |
171 | | shifted, and kernel_size[symbol] is their numbers. | | |
172 | `---------------------------------------------------------------*/ | |
173 | ||
174 | static void | |
175 | new_itemsets (state *s) | |
176 | { | |
177 | size_t i; | |
178 | ||
179 | if (trace_flag & trace_automaton) | |
180 | fprintf (stderr, "Entering new_itemsets, state = %d\n", s->number); | |
181 | ||
182 | memset (kernel_size, 0, nsyms * sizeof *kernel_size); | |
183 | ||
184 | nshifts = 0; | |
185 | ||
186 | for (i = 0; i < nritemset; ++i) | |
187 | if (ritem[itemset[i]] >= 0) | |
188 | { | |
189 | symbol_number sym = item_number_as_symbol_number (ritem[itemset[i]]); | |
190 | if (!kernel_size[sym]) | |
191 | { | |
192 | shift_symbol[nshifts] = sym; | |
193 | nshifts++; | |
194 | } | |
195 | ||
196 | kernel_base[sym][kernel_size[sym]] = itemset[i] + 1; | |
197 | kernel_size[sym]++; | |
198 | } | |
199 | } | |
200 | ||
201 | ||
202 | ||
203 | /*--------------------------------------------------------------. | |
204 | | Find the state we would get to (from the current state) by | | |
205 | | shifting SYM. Create a new state if no equivalent one exists | | |
206 | | already. Used by append_states. | | |
207 | `--------------------------------------------------------------*/ | |
208 | ||
209 | static state * | |
210 | get_state (symbol_number sym, size_t core_size, item_number *core) | |
211 | { | |
212 | state *s; | |
213 | ||
214 | if (trace_flag & trace_automaton) | |
215 | fprintf (stderr, "Entering get_state, symbol = %d (%s)\n", | |
216 | sym, symbols[sym]->tag); | |
217 | ||
218 | s = state_hash_lookup (core_size, core); | |
219 | if (!s) | |
220 | s = state_list_append (sym, core_size, core); | |
221 | ||
222 | if (trace_flag & trace_automaton) | |
223 | fprintf (stderr, "Exiting get_state => %d\n", s->number); | |
224 | ||
225 | return s; | |
226 | } | |
227 | ||
228 | /*---------------------------------------------------------------. | |
229 | | Use the information computed by new_itemsets to find the state | | |
230 | | numbers reached by each shift transition from S. | | |
231 | | | | |
232 | | SHIFTSET is set up as a vector of those states. | | |
233 | `---------------------------------------------------------------*/ | |
234 | ||
235 | static void | |
236 | append_states (state *s) | |
237 | { | |
238 | int i; | |
239 | ||
240 | if (trace_flag & trace_automaton) | |
241 | fprintf (stderr, "Entering append_states, state = %d\n", s->number); | |
242 | ||
243 | /* First sort shift_symbol into increasing order. */ | |
244 | ||
245 | for (i = 1; i < nshifts; i++) | |
246 | { | |
247 | symbol_number sym = shift_symbol[i]; | |
248 | int j; | |
249 | for (j = i; 0 < j && sym < shift_symbol[j - 1]; j--) | |
250 | shift_symbol[j] = shift_symbol[j - 1]; | |
251 | shift_symbol[j] = sym; | |
252 | } | |
253 | ||
254 | for (i = 0; i < nshifts; i++) | |
255 | { | |
256 | symbol_number sym = shift_symbol[i]; | |
257 | shiftset[i] = get_state (sym, kernel_size[sym], kernel_base[sym]); | |
258 | } | |
259 | } | |
260 | ||
261 | ||
262 | /*----------------------------------------------------------------. | |
263 | | Find which rules can be used for reduction transitions from the | | |
264 | | current state and make a reductions structure for the state to | | |
265 | | record their rule numbers. | | |
266 | `----------------------------------------------------------------*/ | |
267 | ||
268 | static void | |
269 | save_reductions (state *s) | |
270 | { | |
271 | int count = 0; | |
272 | size_t i; | |
273 | ||
274 | /* Find and count the active items that represent ends of rules. */ | |
275 | for (i = 0; i < nritemset; ++i) | |
276 | { | |
277 | item_number item = ritem[itemset[i]]; | |
278 | if (item_number_is_rule_number (item)) | |
279 | { | |
280 | rule_number r = item_number_as_rule_number (item); | |
281 | redset[count++] = &rules[r]; | |
282 | if (r == 0) | |
283 | { | |
284 | /* This is "reduce 0", i.e., accept. */ | |
285 | assert (!final_state); | |
286 | final_state = s; | |
287 | } | |
288 | } | |
289 | } | |
290 | ||
291 | /* Make a reductions structure and copy the data into it. */ | |
292 | state_reductions_set (s, count, redset); | |
293 | } | |
294 | ||
295 | \f | |
296 | /*---------------. | |
297 | | Build STATES. | | |
298 | `---------------*/ | |
299 | ||
300 | static void | |
301 | set_states (void) | |
302 | { | |
303 | states = xcalloc (nstates, sizeof *states); | |
304 | ||
305 | while (first_state) | |
306 | { | |
307 | state_list *this = first_state; | |
308 | ||
309 | /* Pessimization, but simplification of the code: make sure all | |
310 | the states have valid transitions and reductions members, | |
311 | even if reduced to 0. It is too soon for errs, which are | |
312 | computed later, but set_conflicts. */ | |
313 | state *s = this->state; | |
314 | if (!s->transitions) | |
315 | state_transitions_set (s, 0, 0); | |
316 | if (!s->reductions) | |
317 | state_reductions_set (s, 0, 0); | |
318 | ||
319 | states[s->number] = s; | |
320 | ||
321 | first_state = this->next; | |
322 | free (this); | |
323 | } | |
324 | first_state = NULL; | |
325 | last_state = NULL; | |
326 | } | |
327 | ||
328 | ||
329 | /*-------------------------------------------------------------------. | |
330 | | Compute the nondeterministic finite state machine (see state.h for | | |
331 | | details) from the grammar. | | |
332 | `-------------------------------------------------------------------*/ | |
333 | ||
334 | void | |
335 | generate_states (void) | |
336 | { | |
337 | item_number initial_core = 0; | |
338 | state_list *list = NULL; | |
339 | allocate_storage (); | |
340 | new_closure (nritems); | |
341 | ||
342 | /* Create the initial state. The 0 at the lhs is the index of the | |
343 | item of this initial rule. */ | |
344 | state_list_append (0, 1, &initial_core); | |
345 | ||
346 | /* States are queued when they are created; process them all. */ | |
347 | for (list = first_state; list; list = list->next) | |
348 | { | |
349 | state *s = list->state; | |
350 | if (trace_flag & trace_automaton) | |
351 | fprintf (stderr, "Processing state %d (reached by %s)\n", | |
352 | s->number, | |
353 | symbols[s->accessing_symbol]->tag); | |
354 | /* Set up ruleset and itemset for the transitions out of this | |
355 | state. ruleset gets a 1 bit for each rule that could reduce | |
356 | now. itemset gets a vector of all the items that could be | |
357 | accepted next. */ | |
358 | closure (s->items, s->nitems); | |
359 | /* Record the reductions allowed out of this state. */ | |
360 | save_reductions (s); | |
361 | /* Find the itemsets of the states that shifts can reach. */ | |
362 | new_itemsets (s); | |
363 | /* Find or create the core structures for those states. */ | |
364 | append_states (s); | |
365 | ||
366 | /* Create the shifts structures for the shifts to those states, | |
367 | now that the state numbers transitioning to are known. */ | |
368 | state_transitions_set (s, nshifts, shiftset); | |
369 | } | |
370 | ||
371 | /* discard various storage */ | |
372 | free_closure (); | |
373 | free_storage (); | |
374 | ||
375 | /* Set up STATES. */ | |
376 | set_states (); | |
377 | } |