]>
Commit | Line | Data |
---|---|---|
1 | /* Generate the nondeterministic finite state machine for Bison. | |
2 | ||
3 | Copyright (C) 1984, 1986, 1989, 2000-2002, 2004-2007, 2009-2010 Free | |
4 | Software Foundation, Inc. | |
5 | ||
6 | This file is part of Bison, the GNU Compiler Compiler. | |
7 | ||
8 | This program is free software: you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation, either version 3 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
20 | ||
21 | ||
22 | /* See comments in state.h for the data structures that represent it. | |
23 | The entry point is generate_states. */ | |
24 | ||
25 | #include <config.h> | |
26 | #include "system.h" | |
27 | ||
28 | #include <bitset.h> | |
29 | #include <quotearg.h> | |
30 | ||
31 | #include "LR0.h" | |
32 | #include "closure.h" | |
33 | #include "complain.h" | |
34 | #include "getargs.h" | |
35 | #include "gram.h" | |
36 | #include "gram.h" | |
37 | #include "lalr.h" | |
38 | #include "reader.h" | |
39 | #include "reduce.h" | |
40 | #include "state.h" | |
41 | #include "symtab.h" | |
42 | ||
43 | typedef struct state_list | |
44 | { | |
45 | struct state_list *next; | |
46 | state *state; | |
47 | } state_list; | |
48 | ||
49 | static state_list *first_state = NULL; | |
50 | static state_list *last_state = NULL; | |
51 | ||
52 | ||
53 | /*------------------------------------------------------------------. | |
54 | | A state was just discovered from another state. Queue it for | | |
55 | | later examination, in order to find its transitions. Return it. | | |
56 | `------------------------------------------------------------------*/ | |
57 | ||
58 | static state * | |
59 | state_list_append (symbol_number sym, size_t core_size, item_number *core) | |
60 | { | |
61 | state_list *node = xmalloc (sizeof *node); | |
62 | state *s = state_new (sym, core_size, core); | |
63 | ||
64 | if (trace_flag & trace_automaton) | |
65 | fprintf (stderr, "state_list_append (state = %d, symbol = %d (%s))\n", | |
66 | nstates, sym, symbols[sym]->tag); | |
67 | ||
68 | node->next = NULL; | |
69 | node->state = s; | |
70 | ||
71 | if (!first_state) | |
72 | first_state = node; | |
73 | if (last_state) | |
74 | last_state->next = node; | |
75 | last_state = node; | |
76 | ||
77 | return s; | |
78 | } | |
79 | ||
80 | static int nshifts; | |
81 | static symbol_number *shift_symbol; | |
82 | ||
83 | static rule **redset; | |
84 | static state **shiftset; | |
85 | ||
86 | static item_number **kernel_base; | |
87 | static int *kernel_size; | |
88 | static item_number *kernel_items; | |
89 | ||
90 | \f | |
91 | static void | |
92 | allocate_itemsets (void) | |
93 | { | |
94 | symbol_number i; | |
95 | rule_number r; | |
96 | item_number *rhsp; | |
97 | ||
98 | /* Count the number of occurrences of all the symbols in RITEMS. | |
99 | Note that useless productions (hence useless nonterminals) are | |
100 | browsed too, hence we need to allocate room for _all_ the | |
101 | symbols. */ | |
102 | size_t count = 0; | |
103 | size_t *symbol_count = xcalloc (nsyms + nuseless_nonterminals, | |
104 | sizeof *symbol_count); | |
105 | ||
106 | for (r = 0; r < nrules; ++r) | |
107 | for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp) | |
108 | { | |
109 | count++; | |
110 | symbol_count[*rhsp]++; | |
111 | } | |
112 | ||
113 | /* See comments before new_itemsets. All the vectors of items | |
114 | live inside KERNEL_ITEMS. The number of active items after | |
115 | some symbol S cannot be more than the number of times that S | |
116 | appears as an item, which is SYMBOL_COUNT[S]. | |
117 | We allocate that much space for each symbol. */ | |
118 | ||
119 | kernel_base = xnmalloc (nsyms, sizeof *kernel_base); | |
120 | kernel_items = xnmalloc (count, sizeof *kernel_items); | |
121 | ||
122 | count = 0; | |
123 | for (i = 0; i < nsyms; i++) | |
124 | { | |
125 | kernel_base[i] = kernel_items + count; | |
126 | count += symbol_count[i]; | |
127 | } | |
128 | ||
129 | free (symbol_count); | |
130 | kernel_size = xnmalloc (nsyms, sizeof *kernel_size); | |
131 | } | |
132 | ||
133 | ||
134 | static void | |
135 | allocate_storage (void) | |
136 | { | |
137 | allocate_itemsets (); | |
138 | ||
139 | shiftset = xnmalloc (nsyms, sizeof *shiftset); | |
140 | redset = xnmalloc (nrules, sizeof *redset); | |
141 | state_hash_new (); | |
142 | shift_symbol = xnmalloc (nsyms, sizeof *shift_symbol); | |
143 | } | |
144 | ||
145 | ||
146 | static void | |
147 | free_storage (void) | |
148 | { | |
149 | free (shift_symbol); | |
150 | free (redset); | |
151 | free (shiftset); | |
152 | free (kernel_base); | |
153 | free (kernel_size); | |
154 | free (kernel_items); | |
155 | state_hash_free (); | |
156 | } | |
157 | ||
158 | ||
159 | ||
160 | ||
161 | /*---------------------------------------------------------------. | |
162 | | Find which symbols can be shifted in S, and for each one | | |
163 | | record which items would be active after that shift. Uses the | | |
164 | | contents of itemset. | | |
165 | | | | |
166 | | shift_symbol is set to a vector of the symbols that can be | | |
167 | | shifted. For each symbol in the grammar, kernel_base[symbol] | | |
168 | | points to a vector of item numbers activated if that symbol is | | |
169 | | shifted, and kernel_size[symbol] is their numbers. | | |
170 | | | | |
171 | | itemset is sorted on item index in ritem, which is sorted on | | |
172 | | rule number. Compute each kernel_base[symbol] with the same | | |
173 | | sort. | | |
174 | `---------------------------------------------------------------*/ | |
175 | ||
176 | static void | |
177 | new_itemsets (state *s) | |
178 | { | |
179 | size_t i; | |
180 | ||
181 | if (trace_flag & trace_automaton) | |
182 | fprintf (stderr, "Entering new_itemsets, state = %d\n", s->number); | |
183 | ||
184 | memset (kernel_size, 0, nsyms * sizeof *kernel_size); | |
185 | ||
186 | nshifts = 0; | |
187 | ||
188 | for (i = 0; i < nitemset; ++i) | |
189 | if (item_number_is_symbol_number (ritem[itemset[i]])) | |
190 | { | |
191 | symbol_number sym = item_number_as_symbol_number (ritem[itemset[i]]); | |
192 | if (!kernel_size[sym]) | |
193 | { | |
194 | shift_symbol[nshifts] = sym; | |
195 | nshifts++; | |
196 | } | |
197 | ||
198 | kernel_base[sym][kernel_size[sym]] = itemset[i] + 1; | |
199 | kernel_size[sym]++; | |
200 | } | |
201 | } | |
202 | ||
203 | ||
204 | ||
205 | /*--------------------------------------------------------------. | |
206 | | Find the state we would get to (from the current state) by | | |
207 | | shifting SYM. Create a new state if no equivalent one exists | | |
208 | | already. Used by append_states. | | |
209 | `--------------------------------------------------------------*/ | |
210 | ||
211 | static state * | |
212 | get_state (symbol_number sym, size_t core_size, item_number *core) | |
213 | { | |
214 | state *s; | |
215 | ||
216 | if (trace_flag & trace_automaton) | |
217 | fprintf (stderr, "Entering get_state, symbol = %d (%s)\n", | |
218 | sym, symbols[sym]->tag); | |
219 | ||
220 | s = state_hash_lookup (core_size, core); | |
221 | if (!s) | |
222 | s = state_list_append (sym, core_size, core); | |
223 | ||
224 | if (trace_flag & trace_automaton) | |
225 | fprintf (stderr, "Exiting get_state => %d\n", s->number); | |
226 | ||
227 | return s; | |
228 | } | |
229 | ||
230 | /*---------------------------------------------------------------. | |
231 | | Use the information computed by new_itemsets to find the state | | |
232 | | numbers reached by each shift transition from S. | | |
233 | | | | |
234 | | SHIFTSET is set up as a vector of those states. | | |
235 | `---------------------------------------------------------------*/ | |
236 | ||
237 | static void | |
238 | append_states (state *s) | |
239 | { | |
240 | int i; | |
241 | ||
242 | if (trace_flag & trace_automaton) | |
243 | fprintf (stderr, "Entering append_states, state = %d\n", s->number); | |
244 | ||
245 | /* First sort shift_symbol into increasing order. */ | |
246 | ||
247 | for (i = 1; i < nshifts; i++) | |
248 | { | |
249 | symbol_number sym = shift_symbol[i]; | |
250 | int j; | |
251 | for (j = i; 0 < j && sym < shift_symbol[j - 1]; j--) | |
252 | shift_symbol[j] = shift_symbol[j - 1]; | |
253 | shift_symbol[j] = sym; | |
254 | } | |
255 | ||
256 | for (i = 0; i < nshifts; i++) | |
257 | { | |
258 | symbol_number sym = shift_symbol[i]; | |
259 | shiftset[i] = get_state (sym, kernel_size[sym], kernel_base[sym]); | |
260 | } | |
261 | } | |
262 | ||
263 | ||
264 | /*----------------------------------------------------------------. | |
265 | | Find which rules can be used for reduction transitions from the | | |
266 | | current state and make a reductions structure for the state to | | |
267 | | record their rule numbers. | | |
268 | `----------------------------------------------------------------*/ | |
269 | ||
270 | static void | |
271 | save_reductions (state *s) | |
272 | { | |
273 | int count = 0; | |
274 | size_t i; | |
275 | ||
276 | /* Find and count the active items that represent ends of rules. */ | |
277 | for (i = 0; i < nitemset; ++i) | |
278 | { | |
279 | item_number item = ritem[itemset[i]]; | |
280 | if (item_number_is_rule_number (item)) | |
281 | { | |
282 | rule_number r = item_number_as_rule_number (item); | |
283 | redset[count++] = &rules[r]; | |
284 | if (r == 0) | |
285 | { | |
286 | /* This is "reduce 0", i.e., accept. */ | |
287 | aver (!final_state); | |
288 | final_state = s; | |
289 | } | |
290 | } | |
291 | } | |
292 | ||
293 | /* Make a reductions structure and copy the data into it. */ | |
294 | state_reductions_set (s, count, redset); | |
295 | } | |
296 | ||
297 | \f | |
298 | /*---------------. | |
299 | | Build STATES. | | |
300 | `---------------*/ | |
301 | ||
302 | static void | |
303 | set_states (void) | |
304 | { | |
305 | states = xcalloc (nstates, sizeof *states); | |
306 | ||
307 | while (first_state) | |
308 | { | |
309 | state_list *this = first_state; | |
310 | ||
311 | /* Pessimization, but simplification of the code: make sure all | |
312 | the states have valid transitions and reductions members, | |
313 | even if reduced to 0. It is too soon for errs, which are | |
314 | computed later, but set_conflicts. */ | |
315 | state *s = this->state; | |
316 | if (!s->transitions) | |
317 | state_transitions_set (s, 0, 0); | |
318 | if (!s->reductions) | |
319 | state_reductions_set (s, 0, 0); | |
320 | ||
321 | states[s->number] = s; | |
322 | ||
323 | first_state = this->next; | |
324 | free (this); | |
325 | } | |
326 | first_state = NULL; | |
327 | last_state = NULL; | |
328 | } | |
329 | ||
330 | ||
331 | /*-------------------------------------------------------------------. | |
332 | | Compute the nondeterministic finite state machine (see state.h for | | |
333 | | details) from the grammar. | | |
334 | `-------------------------------------------------------------------*/ | |
335 | ||
336 | void | |
337 | generate_states (void) | |
338 | { | |
339 | item_number initial_core = 0; | |
340 | state_list *list = NULL; | |
341 | allocate_storage (); | |
342 | new_closure (nritems); | |
343 | ||
344 | /* Create the initial state. The 0 at the lhs is the index of the | |
345 | item of this initial rule. */ | |
346 | state_list_append (0, 1, &initial_core); | |
347 | ||
348 | /* States are queued when they are created; process them all. */ | |
349 | for (list = first_state; list; list = list->next) | |
350 | { | |
351 | state *s = list->state; | |
352 | if (trace_flag & trace_automaton) | |
353 | fprintf (stderr, "Processing state %d (reached by %s)\n", | |
354 | s->number, | |
355 | symbols[s->accessing_symbol]->tag); | |
356 | /* Set up itemset for the transitions out of this state. itemset gets a | |
357 | vector of all the items that could be accepted next. */ | |
358 | closure (s->items, s->nitems); | |
359 | /* Record the reductions allowed out of this state. */ | |
360 | save_reductions (s); | |
361 | /* Find the itemsets of the states that shifts can reach. */ | |
362 | new_itemsets (s); | |
363 | /* Find or create the core structures for those states. */ | |
364 | append_states (s); | |
365 | ||
366 | /* Create the shifts structures for the shifts to those states, | |
367 | now that the state numbers transitioning to are known. */ | |
368 | state_transitions_set (s, nshifts, shiftset); | |
369 | } | |
370 | ||
371 | /* discard various storage */ | |
372 | free_closure (); | |
373 | free_storage (); | |
374 | ||
375 | /* Set up STATES. */ | |
376 | set_states (); | |
377 | } |