]> git.saurik.com Git - bison.git/blame_incremental - src/LR0.c
* src/reader.c, src/reader.h (user_toknums): Remove.
[bison.git] / src / LR0.c
... / ...
CommitLineData
1/* Generate the nondeterministic finite state machine for bison,
2 Copyright 1984, 1986, 1989, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of Bison, the GNU Compiler Compiler.
5
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22/* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
24
25#include "system.h"
26#include "symtab.h"
27#include "getargs.h"
28#include "reader.h"
29#include "gram.h"
30#include "state.h"
31#include "complain.h"
32#include "closure.h"
33#include "LR0.h"
34#include "lalr.h"
35#include "reduce.h"
36
37int nstates;
38/* Initialize the final state to -1, otherwise, it might be set to 0
39 by default, and since we don't compute the reductions of the final
40 state, we end up not computing the reductions of the initial state,
41 which is of course needed.
42
43 FINAL_STATE is properly set by new_state when it recognizes the
44 accessing symbol: EOF. */
45int final_state = -1;
46static state_t *first_state = NULL;
47
48static state_t *this_state = NULL;
49static state_t *last_state = NULL;
50
51static int nshifts;
52static short *shift_symbol = NULL;
53
54static short *redset = NULL;
55static short *shiftset = NULL;
56
57static short **kernel_base = NULL;
58static int *kernel_size = NULL;
59static short *kernel_items = NULL;
60
61/* hash table for states, to recognize equivalent ones. */
62
63#define STATE_HASH_SIZE 1009
64static state_t **state_hash = NULL;
65
66\f
67static void
68allocate_itemsets (void)
69{
70 int i;
71
72 /* Count the number of occurrences of all the symbols in RITEMS.
73 Note that useless productions (hence useless nonterminals) are
74 browsed too, hence we need to allocate room for _all_ the
75 symbols. */
76 int count = 0;
77 short *symbol_count = XCALLOC (short, nsyms + nuseless_nonterminals);
78
79 for (i = 0; i < nritems; ++i)
80 if (ritem[i] >= 0)
81 {
82 count++;
83 symbol_count[ritem[i]]++;
84 }
85
86 /* See comments before new_itemsets. All the vectors of items
87 live inside KERNEL_ITEMS. The number of active items after
88 some symbol cannot be more than the number of times that symbol
89 appears as an item, which is symbol_count[symbol].
90 We allocate that much space for each symbol. */
91
92 kernel_base = XCALLOC (short *, nsyms);
93 if (count)
94 kernel_items = XCALLOC (short, count);
95
96 count = 0;
97 for (i = 0; i < nsyms; i++)
98 {
99 kernel_base[i] = kernel_items + count;
100 count += symbol_count[i];
101 }
102
103 free (symbol_count);
104 kernel_size = XCALLOC (int, nsyms);
105}
106
107
108static void
109allocate_storage (void)
110{
111 allocate_itemsets ();
112
113 shiftset = XCALLOC (short, nsyms);
114 redset = XCALLOC (short, nrules + 1);
115 state_hash = XCALLOC (state_t *, STATE_HASH_SIZE);
116}
117
118
119static void
120free_storage (void)
121{
122 free (shift_symbol);
123 free (redset);
124 free (shiftset);
125 free (kernel_base);
126 free (kernel_size);
127 XFREE (kernel_items);
128 free (state_hash);
129}
130
131
132
133
134/*----------------------------------------------------------------.
135| Find which symbols can be shifted in the current state, and for |
136| each one record which items would be active after that shift. |
137| Uses the contents of itemset. |
138| |
139| shift_symbol is set to a vector of the symbols that can be |
140| shifted. For each symbol in the grammar, kernel_base[symbol] |
141| points to a vector of item numbers activated if that symbol is |
142| shifted, and kernel_size[symbol] is their numbers. |
143`----------------------------------------------------------------*/
144
145static void
146new_itemsets (void)
147{
148 int i;
149
150 if (trace_flag)
151 fprintf (stderr, "Entering new_itemsets, state = %d\n",
152 this_state->number);
153
154 for (i = 0; i < nsyms; i++)
155 kernel_size[i] = 0;
156
157 shift_symbol = XCALLOC (short, nsyms);
158 nshifts = 0;
159
160 for (i = 0; i < nitemset; ++i)
161 {
162 int symbol = ritem[itemset[i]];
163 if (symbol >= 0)
164 {
165 if (!kernel_size[symbol])
166 {
167 shift_symbol[nshifts] = symbol;
168 nshifts++;
169 }
170
171 kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
172 kernel_size[symbol]++;
173 }
174 }
175}
176
177
178
179/*-----------------------------------------------------------------.
180| Subroutine of get_state. Create a new state for those items, if |
181| necessary. |
182`-----------------------------------------------------------------*/
183
184static state_t *
185new_state (int symbol)
186{
187 state_t *p;
188
189 if (trace_flag)
190 fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n",
191 this_state->number, symbol, symbols[symbol]->tag);
192
193 if (nstates >= MAXSHORT)
194 fatal (_("too many states (max %d)"), MAXSHORT);
195
196 p = STATE_ALLOC (kernel_size[symbol]);
197 p->accessing_symbol = symbol;
198 p->number = nstates;
199 p->nitems = kernel_size[symbol];
200
201 shortcpy (p->items, kernel_base[symbol], kernel_size[symbol]);
202
203 last_state->next = p;
204 last_state = p;
205 nstates++;
206
207 /* If this is the eoftoken, then this is the final state. */
208 if (symbol == 0)
209 final_state = p->number;
210
211 return p;
212}
213
214
215/*--------------------------------------------------------------.
216| Find the state number for the state we would get to (from the |
217| current state) by shifting symbol. Create a new state if no |
218| equivalent one exists already. Used by append_states. |
219`--------------------------------------------------------------*/
220
221static int
222get_state (int symbol)
223{
224 int key;
225 int i;
226 state_t *sp;
227
228 if (trace_flag)
229 fprintf (stderr, "Entering get_state, state = %d, symbol = %d (%s)\n",
230 this_state->number, symbol, symbols[symbol]->tag);
231
232 /* Add up the target state's active item numbers to get a hash key.
233 */
234 key = 0;
235 for (i = 0; i < kernel_size[symbol]; ++i)
236 key += kernel_base[symbol][i];
237 key = key % STATE_HASH_SIZE;
238 sp = state_hash[key];
239
240 if (sp)
241 {
242 int found = 0;
243 while (!found)
244 {
245 if (sp->nitems == kernel_size[symbol])
246 {
247 found = 1;
248 for (i = 0; i < kernel_size[symbol]; ++i)
249 if (kernel_base[symbol][i] != sp->items[i])
250 found = 0;
251 }
252
253 if (!found)
254 {
255 if (sp->link)
256 {
257 sp = sp->link;
258 }
259 else /* bucket exhausted and no match */
260 {
261 sp = sp->link = new_state (symbol);
262 found = 1;
263 }
264 }
265 }
266 }
267 else /* bucket is empty */
268 {
269 state_hash[key] = sp = new_state (symbol);
270 }
271
272 if (trace_flag)
273 fprintf (stderr, "Exiting get_state => %d\n", sp->number);
274
275 return sp->number;
276}
277
278/*------------------------------------------------------------------.
279| Use the information computed by new_itemsets to find the state |
280| numbers reached by each shift transition from the current state. |
281| |
282| shiftset is set up as a vector of state numbers of those states. |
283`------------------------------------------------------------------*/
284
285static void
286append_states (void)
287{
288 int i;
289 int j;
290 int symbol;
291
292 if (trace_flag)
293 fprintf (stderr, "Entering append_states, state = %d\n",
294 this_state->number);
295
296 /* first sort shift_symbol into increasing order */
297
298 for (i = 1; i < nshifts; i++)
299 {
300 symbol = shift_symbol[i];
301 j = i;
302 while (j > 0 && shift_symbol[j - 1] > symbol)
303 {
304 shift_symbol[j] = shift_symbol[j - 1];
305 j--;
306 }
307 shift_symbol[j] = symbol;
308 }
309
310 for (i = 0; i < nshifts; i++)
311 shiftset[i] = get_state (shift_symbol[i]);
312}
313
314
315static void
316new_states (void)
317{
318 first_state = last_state = this_state = STATE_ALLOC (0);
319 nstates = 1;
320}
321
322
323/*------------------------------------------------------------.
324| Save the NSHIFTS of SHIFTSET into the current linked list. |
325`------------------------------------------------------------*/
326
327static void
328save_shifts (void)
329{
330 shifts *p = shifts_new (nshifts);
331 shortcpy (p->shifts, shiftset, nshifts);
332 this_state->shifts = p;
333}
334
335
336/*----------------------------------------------------------------.
337| Find which rules can be used for reduction transitions from the |
338| current state and make a reductions structure for the state to |
339| record their rule numbers. |
340`----------------------------------------------------------------*/
341
342static void
343save_reductions (void)
344{
345 int count = 0;
346 int i;
347
348 /* If this is the final state, we want it to have no reductions at
349 all, although it has one for `START_SYMBOL EOF .'. */
350 if (this_state->number == final_state)
351 return;
352
353 /* Find and count the active items that represent ends of rules. */
354 for (i = 0; i < nitemset; ++i)
355 {
356 int item = ritem[itemset[i]];
357 if (item < 0)
358 redset[count++] = -item;
359 }
360
361 /* Make a reductions structure and copy the data into it. */
362 this_state->reductions = reductions_new (count);
363 shortcpy (this_state->reductions->rules, redset, count);
364}
365
366\f
367/*--------------------.
368| Build STATE_TABLE. |
369`--------------------*/
370
371static void
372set_state_table (void)
373{
374 state_t *sp;
375 state_table = XCALLOC (state_t *, nstates);
376
377 for (sp = first_state; sp; sp = sp->next)
378 {
379 /* Pessimization, but simplification of the code: make sure all
380 the states have a shifts, errs, and reductions, even if
381 reduced to 0. */
382 if (!sp->shifts)
383 sp->shifts = shifts_new (0);
384 if (!sp->errs)
385 sp->errs = errs_new (0);
386 if (!sp->reductions)
387 sp->reductions = reductions_new (0);
388
389 state_table[sp->number] = sp;
390 }
391}
392
393/*-------------------------------------------------------------------.
394| Compute the nondeterministic finite state machine (see state.h for |
395| details) from the grammar. |
396`-------------------------------------------------------------------*/
397
398void
399generate_states (void)
400{
401 allocate_storage ();
402 new_closure (nritems);
403 new_states ();
404
405 while (this_state)
406 {
407 if (trace_flag)
408 fprintf (stderr, "Processing state %d (reached by %s)\n",
409 this_state->number,
410 symbols[this_state->accessing_symbol]->tag);
411 /* Set up ruleset and itemset for the transitions out of this
412 state. ruleset gets a 1 bit for each rule that could reduce
413 now. itemset gets a vector of all the items that could be
414 accepted next. */
415 closure (this_state->items, this_state->nitems);
416 /* record the reductions allowed out of this state */
417 save_reductions ();
418 /* find the itemsets of the states that shifts can reach */
419 new_itemsets ();
420 /* find or create the core structures for those states */
421 append_states ();
422
423 /* create the shifts structures for the shifts to those states,
424 now that the state numbers transitioning to are known */
425 save_shifts ();
426
427 /* states are queued when they are created; process them all */
428 this_state = this_state->next;
429 }
430
431 /* discard various storage */
432 free_closure ();
433 free_storage ();
434
435 /* Set up STATE_TABLE. */
436 set_state_table ();
437}