]> git.saurik.com Git - bison.git/blame_incremental - lib/timevar.c
Use git-version-gen for version names between releases.
[bison.git] / lib / timevar.c
... / ...
CommitLineData
1/* Timing variables for measuring compiler performance.
2 Copyright (C) 2000, 2002, 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Alex Samuel <samuel@codesourcery.com>
4
5 This program is free software: you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation, either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18#include <config.h>
19
20#if IN_GCC
21
22#include "system.h"
23#include "intl.h"
24#include "rtl.h"
25
26#else
27
28/* This source file is taken from the GCC source code, with slight
29 modifications that are under control of the IN_GCC preprocessor
30 variable. The !IN_GCC part of this file is specific to Bison. */
31
32# include "../src/system.h"
33# if HAVE_SYS_TIME_H
34# include <sys/time.h>
35# endif
36int timevar_report = 0;
37
38#endif
39
40
41#ifdef HAVE_SYS_TIMES_H
42# include <sys/times.h>
43#endif
44#ifdef HAVE_SYS_RESOURCE_H
45#include <sys/resource.h>
46#endif
47
48#ifndef HAVE_CLOCK_T
49typedef int clock_t;
50#endif
51
52#ifndef HAVE_STRUCT_TMS
53struct tms
54{
55 clock_t tms_utime;
56 clock_t tms_stime;
57 clock_t tms_cutime;
58 clock_t tms_cstime;
59};
60#endif
61
62#if defined HAVE_DECL_GETRUSAGE && !HAVE_DECL_GETRUSAGE
63extern int getrusage (int, struct rusage *);
64#endif
65#if defined HAVE_DECL_TIMES && !HAVE_DECL_TIMES
66extern clock_t times (struct tms *);
67#endif
68#if defined HAVE_DECL_CLOCK && !HAVE_DECL_CLOCK
69extern clock_t clock (void);
70#endif
71
72#ifndef RUSAGE_SELF
73# define RUSAGE_SELF 0
74#endif
75
76/* Calculation of scale factor to convert ticks to microseconds.
77 We mustn't use CLOCKS_PER_SEC except with clock(). */
78#if HAVE_SYSCONF && defined _SC_CLK_TCK
79# define TICKS_PER_SECOND sysconf (_SC_CLK_TCK) /* POSIX 1003.1-1996 */
80#else
81# ifdef CLK_TCK
82# define TICKS_PER_SECOND CLK_TCK /* POSIX 1003.1-1988; obsolescent */
83# else
84# ifdef HZ
85# define TICKS_PER_SECOND HZ /* traditional UNIX */
86# else
87# define TICKS_PER_SECOND 100 /* often the correct value */
88# endif
89# endif
90#endif
91
92/* Prefer times to getrusage to clock (each gives successively less
93 information). */
94#ifdef HAVE_TIMES
95# define USE_TIMES
96# define HAVE_USER_TIME
97# define HAVE_SYS_TIME
98# define HAVE_WALL_TIME
99#else
100#ifdef HAVE_GETRUSAGE
101# define USE_GETRUSAGE
102# define HAVE_USER_TIME
103# define HAVE_SYS_TIME
104#else
105#ifdef HAVE_CLOCK
106# define USE_CLOCK
107# define HAVE_USER_TIME
108#endif
109#endif
110#endif
111
112/* libc is very likely to have snuck a call to sysconf() into one of
113 the underlying constants, and that can be very slow, so we have to
114 precompute them. Whose wonderful idea was it to make all those
115 _constants_ variable at run time, anyway? */
116#ifdef USE_TIMES
117static float ticks_to_msec;
118#define TICKS_TO_MSEC (1.0 / TICKS_PER_SECOND)
119#endif
120
121#ifdef USE_CLOCK
122static float clocks_to_msec;
123#define CLOCKS_TO_MSEC (1.0 / CLOCKS_PER_SEC)
124#endif
125
126#if IN_GCC
127#include "flags.h"
128#endif
129#include "timevar.h"
130
131/* See timevar.h for an explanation of timing variables. */
132
133/* This macro evaluates to nonzero if timing variables are enabled. */
134#define TIMEVAR_ENABLE (timevar_report)
135
136/* A timing variable. */
137
138struct timevar_def
139{
140 /* Elapsed time for this variable. */
141 struct timevar_time_def elapsed;
142
143 /* If this variable is timed independently of the timing stack,
144 using timevar_start, this contains the start time. */
145 struct timevar_time_def start_time;
146
147 /* The name of this timing variable. */
148 const char *name;
149
150 /* Non-zero if this timing variable is running as a standalone
151 timer. */
152 unsigned standalone : 1;
153
154 /* Non-zero if this timing variable was ever started or pushed onto
155 the timing stack. */
156 unsigned used : 1;
157};
158
159/* An element on the timing stack. Elapsed time is attributed to the
160 topmost timing variable on the stack. */
161
162struct timevar_stack_def
163{
164 /* The timing variable at this stack level. */
165 struct timevar_def *timevar;
166
167 /* The next lower timing variable context in the stack. */
168 struct timevar_stack_def *next;
169};
170
171/* Declared timing variables. Constructed from the contents of
172 timevar.def. */
173static struct timevar_def timevars[TIMEVAR_LAST];
174
175/* The top of the timing stack. */
176static struct timevar_stack_def *stack;
177
178/* A list of unused (i.e. allocated and subsequently popped)
179 timevar_stack_def instances. */
180static struct timevar_stack_def *unused_stack_instances;
181
182/* The time at which the topmost element on the timing stack was
183 pushed. Time elapsed since then is attributed to the topmost
184 element. */
185static struct timevar_time_def start_time;
186
187static void get_time (struct timevar_time_def *);
188static void timevar_accumulate (struct timevar_time_def *,
189 struct timevar_time_def *,
190 struct timevar_time_def *);
191
192/* Fill the current times into TIME. The definition of this function
193 also defines any or all of the HAVE_USER_TIME, HAVE_SYS_TIME, and
194 HAVE_WALL_TIME macros. */
195
196static void
197get_time (now)
198 struct timevar_time_def *now;
199{
200 now->user = 0;
201 now->sys = 0;
202 now->wall = 0;
203
204 if (!TIMEVAR_ENABLE)
205 return;
206
207 {
208#ifdef USE_TIMES
209 struct tms tms;
210 now->wall = times (&tms) * ticks_to_msec;
211#if IN_GCC
212 now->user = tms.tms_utime * ticks_to_msec;
213 now->sys = tms.tms_stime * ticks_to_msec;
214#else
215 now->user = (tms.tms_utime + tms.tms_cutime) * ticks_to_msec;
216 now->sys = (tms.tms_stime + tms.tms_cstime) * ticks_to_msec;
217#endif
218#endif
219#ifdef USE_GETRUSAGE
220 struct rusage rusage;
221#if IN_GCC
222 getrusage (RUSAGE_SELF, &rusage);
223#else
224 getrusage (RUSAGE_CHILDREN, &rusage);
225#endif
226 now->user = rusage.ru_utime.tv_sec + rusage.ru_utime.tv_usec * 1e-6;
227 now->sys = rusage.ru_stime.tv_sec + rusage.ru_stime.tv_usec * 1e-6;
228#endif
229#ifdef USE_CLOCK
230 now->user = clock () * clocks_to_msec;
231#endif
232 }
233}
234
235/* Add the difference between STOP and START to TIMER. */
236
237static void
238timevar_accumulate (timer, start, stop)
239 struct timevar_time_def *timer;
240 struct timevar_time_def *start;
241 struct timevar_time_def *stop;
242{
243 timer->user += stop->user - start->user;
244 timer->sys += stop->sys - start->sys;
245 timer->wall += stop->wall - start->wall;
246}
247
248/* Initialize timing variables. */
249
250void
251init_timevar ()
252{
253 if (!TIMEVAR_ENABLE)
254 return;
255
256 /* Zero all elapsed times. */
257 memset ((void *) timevars, 0, sizeof (timevars));
258
259 /* Initialize the names of timing variables. */
260#define DEFTIMEVAR(identifier__, name__) \
261 timevars[identifier__].name = name__;
262#include "timevar.def"
263#undef DEFTIMEVAR
264
265#ifdef USE_TIMES
266 ticks_to_msec = TICKS_TO_MSEC;
267#endif
268#ifdef USE_CLOCK
269 clocks_to_msec = CLOCKS_TO_MSEC;
270#endif
271}
272
273/* Push TIMEVAR onto the timing stack. No further elapsed time is
274 attributed to the previous topmost timing variable on the stack;
275 subsequent elapsed time is attributed to TIMEVAR, until it is
276 popped or another element is pushed on top.
277
278 TIMEVAR cannot be running as a standalone timer. */
279
280void
281timevar_push (timevar)
282 timevar_id_t timevar;
283{
284 struct timevar_def *tv = &timevars[timevar];
285 struct timevar_stack_def *context;
286 struct timevar_time_def now;
287
288 if (!TIMEVAR_ENABLE)
289 return;
290
291 /* Mark this timing variable as used. */
292 tv->used = 1;
293
294 /* Can't push a standalone timer. */
295 if (tv->standalone)
296 abort ();
297
298 /* What time is it? */
299 get_time (&now);
300
301 /* If the stack isn't empty, attribute the current elapsed time to
302 the old topmost element. */
303 if (stack)
304 timevar_accumulate (&stack->timevar->elapsed, &start_time, &now);
305
306 /* Reset the start time; from now on, time is attributed to
307 TIMEVAR. */
308 start_time = now;
309
310 /* See if we have a previously-allocated stack instance. If so,
311 take it off the list. If not, malloc a new one. */
312 if (unused_stack_instances != NULL)
313 {
314 context = unused_stack_instances;
315 unused_stack_instances = unused_stack_instances->next;
316 }
317 else
318 context = (struct timevar_stack_def *)
319 xmalloc (sizeof (struct timevar_stack_def));
320
321 /* Fill it in and put it on the stack. */
322 context->timevar = tv;
323 context->next = stack;
324 stack = context;
325}
326
327/* Pop the topmost timing variable element off the timing stack. The
328 popped variable must be TIMEVAR. Elapsed time since the that
329 element was pushed on, or since it was last exposed on top of the
330 stack when the element above it was popped off, is credited to that
331 timing variable. */
332
333void
334timevar_pop (timevar)
335 timevar_id_t timevar;
336{
337 struct timevar_time_def now;
338 struct timevar_stack_def *popped = stack;
339
340 if (!TIMEVAR_ENABLE)
341 return;
342
343 if (&timevars[timevar] != stack->timevar)
344 abort ();
345
346 /* What time is it? */
347 get_time (&now);
348
349 /* Attribute the elapsed time to the element we're popping. */
350 timevar_accumulate (&popped->timevar->elapsed, &start_time, &now);
351
352 /* Reset the start time; from now on, time is attributed to the
353 element just exposed on the stack. */
354 start_time = now;
355
356 /* Take the item off the stack. */
357 stack = stack->next;
358
359 /* Don't delete the stack element; instead, add it to the list of
360 unused elements for later use. */
361 popped->next = unused_stack_instances;
362 unused_stack_instances = popped;
363}
364
365/* Start timing TIMEVAR independently of the timing stack. Elapsed
366 time until timevar_stop is called for the same timing variable is
367 attributed to TIMEVAR. */
368
369void
370timevar_start (timevar)
371 timevar_id_t timevar;
372{
373 struct timevar_def *tv = &timevars[timevar];
374
375 if (!TIMEVAR_ENABLE)
376 return;
377
378 /* Mark this timing variable as used. */
379 tv->used = 1;
380
381 /* Don't allow the same timing variable to be started more than
382 once. */
383 if (tv->standalone)
384 abort ();
385 tv->standalone = 1;
386
387 get_time (&tv->start_time);
388}
389
390/* Stop timing TIMEVAR. Time elapsed since timevar_start was called
391 is attributed to it. */
392
393void
394timevar_stop (timevar)
395 timevar_id_t timevar;
396{
397 struct timevar_def *tv = &timevars[timevar];
398 struct timevar_time_def now;
399
400 if (!TIMEVAR_ENABLE)
401 return;
402
403 /* TIMEVAR must have been started via timevar_start. */
404 if (!tv->standalone)
405 abort ();
406
407 get_time (&now);
408 timevar_accumulate (&tv->elapsed, &tv->start_time, &now);
409}
410
411/* Fill the elapsed time for TIMEVAR into ELAPSED. Returns
412 update-to-date information even if TIMEVAR is currently running. */
413
414void
415timevar_get (timevar, elapsed)
416 timevar_id_t timevar;
417 struct timevar_time_def *elapsed;
418{
419 struct timevar_def *tv = &timevars[timevar];
420 struct timevar_time_def now;
421
422 *elapsed = tv->elapsed;
423
424 /* Is TIMEVAR currently running as a standalone timer? */
425 if (tv->standalone)
426 {
427 get_time (&now);
428 timevar_accumulate (elapsed, &tv->start_time, &now);
429 }
430 /* Or is TIMEVAR at the top of the timer stack? */
431 else if (stack->timevar == tv)
432 {
433 get_time (&now);
434 timevar_accumulate (elapsed, &start_time, &now);
435 }
436}
437
438/* Summarize timing variables to FP. The timing variable TV_TOTAL has
439 a special meaning -- it's considered to be the total elapsed time,
440 for normalizing the others, and is displayed last. */
441
442void
443timevar_print (fp)
444 FILE *fp;
445{
446 /* Only print stuff if we have some sort of time information. */
447#if defined HAVE_USER_TIME || defined HAVE_SYS_TIME || defined HAVE_WALL_TIME
448 unsigned int /* timevar_id_t */ id;
449 struct timevar_time_def *total = &timevars[TV_TOTAL].elapsed;
450 struct timevar_time_def now;
451
452 if (!TIMEVAR_ENABLE)
453 return;
454
455 /* Update timing information in case we're calling this from GDB. */
456
457 if (fp == 0)
458 fp = stderr;
459
460 /* What time is it? */
461 get_time (&now);
462
463 /* If the stack isn't empty, attribute the current elapsed time to
464 the old topmost element. */
465 if (stack)
466 timevar_accumulate (&stack->timevar->elapsed, &start_time, &now);
467
468 /* Reset the start time; from now on, time is attributed to
469 TIMEVAR. */
470 start_time = now;
471
472 fputs (_("\nExecution times (seconds)\n"), fp);
473 for (id = 0; id < (unsigned int) TIMEVAR_LAST; ++id)
474 {
475 struct timevar_def *tv = &timevars[(timevar_id_t) id];
476 const float tiny = 5e-3;
477
478 /* Don't print the total execution time here; that goes at the
479 end. */
480 if ((timevar_id_t) id == TV_TOTAL)
481 continue;
482
483 /* Don't print timing variables that were never used. */
484 if (!tv->used)
485 continue;
486
487 /* Don't print timing variables if we're going to get a row of
488 zeroes. */
489 if (tv->elapsed.user < tiny
490 && tv->elapsed.sys < tiny
491 && tv->elapsed.wall < tiny)
492 continue;
493
494 /* The timing variable name. */
495 fprintf (fp, " %-22s:", tv->name);
496
497#ifdef HAVE_USER_TIME
498 /* Print user-mode time for this process. */
499 fprintf (fp, "%7.2f (%2.0f%%) usr",
500 tv->elapsed.user,
501 (total->user == 0 ? 0 : tv->elapsed.user / total->user) * 100);
502#endif /* HAVE_USER_TIME */
503
504#ifdef HAVE_SYS_TIME
505 /* Print system-mode time for this process. */
506 fprintf (fp, "%7.2f (%2.0f%%) sys",
507 tv->elapsed.sys,
508 (total->sys == 0 ? 0 : tv->elapsed.sys / total->sys) * 100);
509#endif /* HAVE_SYS_TIME */
510
511#ifdef HAVE_WALL_TIME
512 /* Print wall clock time elapsed. */
513 fprintf (fp, "%7.2f (%2.0f%%) wall",
514 tv->elapsed.wall,
515 (total->wall == 0 ? 0 : tv->elapsed.wall / total->wall) * 100);
516#endif /* HAVE_WALL_TIME */
517
518 putc ('\n', fp);
519 }
520
521 /* Print total time. */
522 fputs (_(" TOTAL :"), fp);
523#ifdef HAVE_USER_TIME
524 fprintf (fp, "%7.2f ", total->user);
525#endif
526#ifdef HAVE_SYS_TIME
527 fprintf (fp, "%7.2f ", total->sys);
528#endif
529#ifdef HAVE_WALL_TIME
530 fprintf (fp, "%7.2f\n", total->wall);
531#endif
532
533#endif /* defined (HAVE_USER_TIME) || defined (HAVE_SYS_TIME)
534 || defined (HAVE_WALL_TIME) */
535}
536
537/* Returns time (user + system) used so far by the compiler process,
538 in microseconds. */
539
540long
541get_run_time ()
542{
543 struct timevar_time_def total_elapsed;
544 timevar_get (TV_TOTAL, &total_elapsed);
545 return total_elapsed.user + total_elapsed.sys;
546}
547
548/* Prints a message to stderr stating that time elapsed in STR is
549 TOTAL (given in microseconds). */
550
551void
552print_time (str, total)
553 const char *str;
554 long total;
555{
556 long all_time = get_run_time ();
557 fprintf (stderr,
558 _("time in %s: %ld.%06ld (%ld%%)\n"),
559 str, total / 1000000, total % 1000000,
560 all_time == 0 ? 0
561 : (long) (((100.0 * (double) total) / (double) all_time) + .5));
562}