]>
Commit | Line | Data |
---|---|---|
1 | /* Generate the nondeterministic finite state machine for bison, | |
2 | Copyright 1984, 1986, 1989, 2000, 2001, 2002 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of Bison, the GNU Compiler Compiler. | |
5 | ||
6 | Bison is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
10 | ||
11 | Bison is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with Bison; see the file COPYING. If not, write to | |
18 | the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
19 | Boston, MA 02111-1307, USA. */ | |
20 | ||
21 | ||
22 | /* See comments in state.h for the data structures that represent it. | |
23 | The entry point is generate_states. */ | |
24 | ||
25 | #include "system.h" | |
26 | #include "bitset.h" | |
27 | #include "quotearg.h" | |
28 | #include "symtab.h" | |
29 | #include "gram.h" | |
30 | #include "getargs.h" | |
31 | #include "reader.h" | |
32 | #include "gram.h" | |
33 | #include "state.h" | |
34 | #include "complain.h" | |
35 | #include "closure.h" | |
36 | #include "LR0.h" | |
37 | #include "lalr.h" | |
38 | #include "reduce.h" | |
39 | ||
40 | typedef struct state_list_s | |
41 | { | |
42 | struct state_list_s *next; | |
43 | state_t *state; | |
44 | } state_list_t; | |
45 | ||
46 | static state_list_t *first_state = NULL; | |
47 | static state_list_t *last_state = NULL; | |
48 | ||
49 | static void | |
50 | state_list_append (state_t *state) | |
51 | { | |
52 | state_list_t *node = XMALLOC (state_list_t, 1); | |
53 | node->next = NULL; | |
54 | node->state = state; | |
55 | ||
56 | if (!first_state) | |
57 | first_state = node; | |
58 | if (last_state) | |
59 | last_state->next = node; | |
60 | last_state = node; | |
61 | } | |
62 | ||
63 | static int nshifts; | |
64 | static symbol_number_t *shift_symbol = NULL; | |
65 | ||
66 | static short *redset = NULL; | |
67 | static state_number_t *shiftset = NULL; | |
68 | ||
69 | static item_number_t **kernel_base = NULL; | |
70 | static int *kernel_size = NULL; | |
71 | static item_number_t *kernel_items = NULL; | |
72 | ||
73 | \f | |
74 | static void | |
75 | allocate_itemsets (void) | |
76 | { | |
77 | symbol_number_t i; | |
78 | rule_number_t r; | |
79 | item_number_t *rhsp; | |
80 | ||
81 | /* Count the number of occurrences of all the symbols in RITEMS. | |
82 | Note that useless productions (hence useless nonterminals) are | |
83 | browsed too, hence we need to allocate room for _all_ the | |
84 | symbols. */ | |
85 | int count = 0; | |
86 | short *symbol_count = XCALLOC (short, nsyms + nuseless_nonterminals); | |
87 | ||
88 | for (r = 1; r < nrules + 1; ++r) | |
89 | for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp) | |
90 | { | |
91 | count++; | |
92 | symbol_count[*rhsp]++; | |
93 | } | |
94 | ||
95 | /* See comments before new_itemsets. All the vectors of items | |
96 | live inside KERNEL_ITEMS. The number of active items after | |
97 | some symbol cannot be more than the number of times that symbol | |
98 | appears as an item, which is SYMBOL_COUNT[SYMBOL]. | |
99 | We allocate that much space for each symbol. */ | |
100 | ||
101 | kernel_base = XCALLOC (item_number_t *, nsyms); | |
102 | if (count) | |
103 | kernel_items = XCALLOC (item_number_t, count); | |
104 | ||
105 | count = 0; | |
106 | for (i = 0; i < nsyms; i++) | |
107 | { | |
108 | kernel_base[i] = kernel_items + count; | |
109 | count += symbol_count[i]; | |
110 | } | |
111 | ||
112 | free (symbol_count); | |
113 | kernel_size = XCALLOC (int, nsyms); | |
114 | } | |
115 | ||
116 | ||
117 | static void | |
118 | allocate_storage (void) | |
119 | { | |
120 | allocate_itemsets (); | |
121 | ||
122 | shiftset = XCALLOC (state_number_t, nsyms); | |
123 | redset = XCALLOC (short, nrules + 1); | |
124 | state_hash_new (); | |
125 | shift_symbol = XCALLOC (symbol_number_t, nsyms); | |
126 | } | |
127 | ||
128 | ||
129 | static void | |
130 | free_storage (void) | |
131 | { | |
132 | free (shift_symbol); | |
133 | free (redset); | |
134 | free (shiftset); | |
135 | free (kernel_base); | |
136 | free (kernel_size); | |
137 | XFREE (kernel_items); | |
138 | state_hash_free (); | |
139 | } | |
140 | ||
141 | ||
142 | ||
143 | ||
144 | /*---------------------------------------------------------------. | |
145 | | Find which symbols can be shifted in STATE, and for each one | | |
146 | | record which items would be active after that shift. Uses the | | |
147 | | contents of itemset. | | |
148 | | | | |
149 | | shift_symbol is set to a vector of the symbols that can be | | |
150 | | shifted. For each symbol in the grammar, kernel_base[symbol] | | |
151 | | points to a vector of item numbers activated if that symbol is | | |
152 | | shifted, and kernel_size[symbol] is their numbers. | | |
153 | `---------------------------------------------------------------*/ | |
154 | ||
155 | static void | |
156 | new_itemsets (state_t *state) | |
157 | { | |
158 | int i; | |
159 | ||
160 | if (trace_flag) | |
161 | fprintf (stderr, "Entering new_itemsets, state = %d\n", | |
162 | state->number); | |
163 | ||
164 | for (i = 0; i < nsyms; i++) | |
165 | kernel_size[i] = 0; | |
166 | ||
167 | nshifts = 0; | |
168 | ||
169 | for (i = 0; i < nritemset; ++i) | |
170 | if (ritem[itemset[i]] >= 0) | |
171 | { | |
172 | symbol_number_t symbol | |
173 | = item_number_as_symbol_number (ritem[itemset[i]]); | |
174 | if (!kernel_size[symbol]) | |
175 | { | |
176 | shift_symbol[nshifts] = symbol; | |
177 | nshifts++; | |
178 | } | |
179 | ||
180 | kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1; | |
181 | kernel_size[symbol]++; | |
182 | } | |
183 | } | |
184 | ||
185 | ||
186 | ||
187 | /*-----------------------------------------------------------------. | |
188 | | Subroutine of get_state. Create a new state for those items, if | | |
189 | | necessary. | | |
190 | `-----------------------------------------------------------------*/ | |
191 | ||
192 | static state_t * | |
193 | new_state (symbol_number_t symbol, size_t core_size, item_number_t *core) | |
194 | { | |
195 | state_t *res; | |
196 | ||
197 | if (trace_flag) | |
198 | fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n", | |
199 | nstates, symbol, symbol_tag_get (symbols[symbol])); | |
200 | ||
201 | res = state_new (symbol, core_size, core); | |
202 | state_hash_insert (res); | |
203 | ||
204 | /* If this is the eoftoken, and this is not the initial state, then | |
205 | this is the final state. */ | |
206 | if (symbol == 0 && first_state) | |
207 | final_state = res; | |
208 | ||
209 | state_list_append (res); | |
210 | return res; | |
211 | } | |
212 | ||
213 | ||
214 | /*--------------------------------------------------------------. | |
215 | | Find the state number for the state we would get to (from the | | |
216 | | current state) by shifting symbol. Create a new state if no | | |
217 | | equivalent one exists already. Used by append_states. | | |
218 | `--------------------------------------------------------------*/ | |
219 | ||
220 | static state_number_t | |
221 | get_state (symbol_number_t symbol, size_t core_size, item_number_t *core) | |
222 | { | |
223 | state_t *sp; | |
224 | ||
225 | if (trace_flag) | |
226 | fprintf (stderr, "Entering get_state, symbol = %d (%s)\n", | |
227 | symbol, symbol_tag_get (symbols[symbol])); | |
228 | ||
229 | sp = state_hash_lookup (core_size, core); | |
230 | if (!sp) | |
231 | sp = new_state (symbol, core_size, core); | |
232 | ||
233 | if (trace_flag) | |
234 | fprintf (stderr, "Exiting get_state => %d\n", sp->number); | |
235 | ||
236 | return sp->number; | |
237 | } | |
238 | ||
239 | /*------------------------------------------------------------------. | |
240 | | Use the information computed by new_itemsets to find the state | | |
241 | | numbers reached by each shift transition from STATE. | | |
242 | | | | |
243 | | SHIFTSET is set up as a vector of state numbers of those states. | | |
244 | `------------------------------------------------------------------*/ | |
245 | ||
246 | static void | |
247 | append_states (state_t *state) | |
248 | { | |
249 | int i; | |
250 | int j; | |
251 | symbol_number_t symbol; | |
252 | ||
253 | if (trace_flag) | |
254 | fprintf (stderr, "Entering append_states, state = %d\n", | |
255 | state->number); | |
256 | ||
257 | /* first sort shift_symbol into increasing order */ | |
258 | ||
259 | for (i = 1; i < nshifts; i++) | |
260 | { | |
261 | symbol = shift_symbol[i]; | |
262 | j = i; | |
263 | while (j > 0 && shift_symbol[j - 1] > symbol) | |
264 | { | |
265 | shift_symbol[j] = shift_symbol[j - 1]; | |
266 | j--; | |
267 | } | |
268 | shift_symbol[j] = symbol; | |
269 | } | |
270 | ||
271 | for (i = 0; i < nshifts; i++) | |
272 | { | |
273 | symbol = shift_symbol[i]; | |
274 | shiftset[i] = get_state (symbol, | |
275 | kernel_size[symbol], kernel_base[symbol]); | |
276 | } | |
277 | } | |
278 | ||
279 | ||
280 | static void | |
281 | new_states (void) | |
282 | { | |
283 | /* The 0 at the lhs is the index of the item of this initial rule. */ | |
284 | kernel_base[0][0] = 0; | |
285 | kernel_size[0] = 1; | |
286 | state_list_append (new_state (0, kernel_size[0], kernel_base[0])); | |
287 | } | |
288 | ||
289 | ||
290 | ||
291 | /*----------------------------------------------------------------. | |
292 | | Find which rules can be used for reduction transitions from the | | |
293 | | current state and make a reductions structure for the state to | | |
294 | | record their rule numbers. | | |
295 | `----------------------------------------------------------------*/ | |
296 | ||
297 | static void | |
298 | save_reductions (state_t *state) | |
299 | { | |
300 | int count = 0; | |
301 | int i; | |
302 | ||
303 | /* If this is the final state, we want it to have no reductions at | |
304 | all, although it has one for `START_SYMBOL EOF .'. */ | |
305 | if (final_state && state->number == final_state->number) | |
306 | return; | |
307 | ||
308 | /* Find and count the active items that represent ends of rules. */ | |
309 | for (i = 0; i < nritemset; ++i) | |
310 | { | |
311 | int item = ritem[itemset[i]]; | |
312 | if (item < 0) | |
313 | redset[count++] = -item; | |
314 | } | |
315 | ||
316 | /* Make a reductions structure and copy the data into it. */ | |
317 | state_reductions_set (state, count, redset); | |
318 | } | |
319 | ||
320 | \f | |
321 | /*---------------. | |
322 | | Build STATES. | | |
323 | `---------------*/ | |
324 | ||
325 | static void | |
326 | set_states (void) | |
327 | { | |
328 | states = XCALLOC (state_t *, nstates); | |
329 | ||
330 | while (first_state) | |
331 | { | |
332 | state_list_t *this = first_state; | |
333 | ||
334 | /* Pessimization, but simplification of the code: make sure all | |
335 | the states have a shifts, errs, and reductions, even if | |
336 | reduced to 0. */ | |
337 | state_t *state = this->state; | |
338 | if (!state->shifts) | |
339 | state_shifts_set (state, 0, 0); | |
340 | if (!state->errs) | |
341 | state->errs = errs_new (0); | |
342 | if (!state->reductions) | |
343 | state_reductions_set (state, 0, 0); | |
344 | ||
345 | states[state->number] = state; | |
346 | ||
347 | first_state = this->next; | |
348 | free (this); | |
349 | } | |
350 | first_state = NULL; | |
351 | last_state = NULL; | |
352 | } | |
353 | ||
354 | ||
355 | /*-------------------------------------------------------------------. | |
356 | | Compute the nondeterministic finite state machine (see state.h for | | |
357 | | details) from the grammar. | | |
358 | `-------------------------------------------------------------------*/ | |
359 | ||
360 | void | |
361 | generate_states (void) | |
362 | { | |
363 | state_list_t *list = NULL; | |
364 | allocate_storage (); | |
365 | new_closure (nritems); | |
366 | new_states (); | |
367 | list = first_state; | |
368 | ||
369 | while (list) | |
370 | { | |
371 | state_t *state = list->state; | |
372 | if (trace_flag) | |
373 | fprintf (stderr, "Processing state %d (reached by %s)\n", | |
374 | state->number, | |
375 | symbol_tag_get (symbols[state->accessing_symbol])); | |
376 | /* Set up ruleset and itemset for the transitions out of this | |
377 | state. ruleset gets a 1 bit for each rule that could reduce | |
378 | now. itemset gets a vector of all the items that could be | |
379 | accepted next. */ | |
380 | closure (state->items, state->nitems); | |
381 | /* Record the reductions allowed out of this state. */ | |
382 | save_reductions (state); | |
383 | /* Find the itemsets of the states that shifts can reach. */ | |
384 | new_itemsets (state); | |
385 | /* Find or create the core structures for those states. */ | |
386 | append_states (state); | |
387 | ||
388 | /* Create the shifts structures for the shifts to those states, | |
389 | now that the state numbers transitioning to are known. */ | |
390 | state_shifts_set (state, nshifts, shiftset); | |
391 | ||
392 | /* States are queued when they are created; process them all. | |
393 | */ | |
394 | list = list->next; | |
395 | } | |
396 | ||
397 | /* discard various storage */ | |
398 | free_closure (); | |
399 | free_storage (); | |
400 | ||
401 | /* Set up STATES. */ | |
402 | set_states (); | |
403 | } |