]> git.saurik.com Git - bison.git/blame_incremental - src/LR0.c
* src/LR0.h (first_shift, first_reduction): Remove.
[bison.git] / src / LR0.c
... / ...
CommitLineData
1/* Generate the nondeterministic finite state machine for bison,
2 Copyright 1984, 1986, 1989, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of Bison, the GNU Compiler Compiler.
5
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22/* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
24
25#include "system.h"
26#include "getargs.h"
27#include "reader.h"
28#include "gram.h"
29#include "state.h"
30#include "complain.h"
31#include "closure.h"
32#include "LR0.h"
33#include "lalr.h"
34#include "reduce.h"
35
36int nstates;
37int final_state;
38state_t *first_state = NULL;
39shifts *first_shift = NULL;
40
41static state_t *this_state = NULL;
42static state_t *last_state = NULL;
43static shifts *last_shift = NULL;
44
45static int nshifts;
46static short *shift_symbol = NULL;
47
48static short *redset = NULL;
49static short *shiftset = NULL;
50
51static short **kernel_base = NULL;
52static int *kernel_size = NULL;
53static short *kernel_items = NULL;
54
55/* hash table for states, to recognize equivalent ones. */
56
57#define STATE_HASH_SIZE 1009
58static state_t **state_hash = NULL;
59
60\f
61static void
62allocate_itemsets (void)
63{
64 int i;
65
66 /* Count the number of occurrences of all the symbols in RITEMS.
67 Note that useless productions (hence useless nonterminals) are
68 browsed too, hence we need to allocate room for _all_ the
69 symbols. */
70 int count = 0;
71 short *symbol_count = XCALLOC (short, nsyms + nuseless_nonterminals);
72
73 for (i = 0; ritem[i]; ++i)
74 if (ritem[i] > 0)
75 {
76 count++;
77 symbol_count[ritem[i]]++;
78 }
79
80 /* See comments before new_itemsets. All the vectors of items
81 live inside KERNEL_ITEMS. The number of active items after
82 some symbol cannot be more than the number of times that symbol
83 appears as an item, which is symbol_count[symbol].
84 We allocate that much space for each symbol. */
85
86 kernel_base = XCALLOC (short *, nsyms);
87 if (count)
88 kernel_items = XCALLOC (short, count);
89
90 count = 0;
91 for (i = 0; i < nsyms; i++)
92 {
93 kernel_base[i] = kernel_items + count;
94 count += symbol_count[i];
95 }
96
97 free (symbol_count);
98 kernel_size = XCALLOC (int, nsyms);
99}
100
101
102static void
103allocate_storage (void)
104{
105 allocate_itemsets ();
106
107 shiftset = XCALLOC (short, nsyms);
108 redset = XCALLOC (short, nrules + 1);
109 state_hash = XCALLOC (state_t *, STATE_HASH_SIZE);
110}
111
112
113static void
114free_storage (void)
115{
116 free (shift_symbol);
117 free (redset);
118 free (shiftset);
119 free (kernel_base);
120 free (kernel_size);
121 XFREE (kernel_items);
122 free (state_hash);
123}
124
125
126
127
128/*----------------------------------------------------------------.
129| Find which symbols can be shifted in the current state, and for |
130| each one record which items would be active after that shift. |
131| Uses the contents of itemset. |
132| |
133| shift_symbol is set to a vector of the symbols that can be |
134| shifted. For each symbol in the grammar, kernel_base[symbol] |
135| points to a vector of item numbers activated if that symbol is |
136| shifted, and kernel_size[symbol] is their numbers. |
137`----------------------------------------------------------------*/
138
139static void
140new_itemsets (void)
141{
142 int i;
143
144 if (trace_flag)
145 fprintf (stderr, "Entering new_itemsets, state = %d\n",
146 this_state->number);
147
148 for (i = 0; i < nsyms; i++)
149 kernel_size[i] = 0;
150
151 shift_symbol = XCALLOC (short, nsyms);
152 nshifts = 0;
153
154 for (i = 0; i < nitemset; ++i)
155 {
156 int symbol = ritem[itemset[i]];
157 if (symbol > 0)
158 {
159 if (!kernel_size[symbol])
160 {
161 shift_symbol[nshifts] = symbol;
162 nshifts++;
163 }
164
165 kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
166 kernel_size[symbol]++;
167 }
168 }
169}
170
171
172
173/*-----------------------------------------------------------------.
174| Subroutine of get_state. Create a new state for those items, if |
175| necessary. |
176`-----------------------------------------------------------------*/
177
178static state_t *
179new_state (int symbol)
180{
181 state_t *p;
182
183 if (trace_flag)
184 fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n",
185 this_state->number, symbol, tags[symbol]);
186
187 if (nstates >= MAXSHORT)
188 fatal (_("too many states (max %d)"), MAXSHORT);
189
190 p = STATE_ALLOC (kernel_size[symbol]);
191 p->accessing_symbol = symbol;
192 p->number = nstates;
193 p->nitems = kernel_size[symbol];
194
195 shortcpy (p->items, kernel_base[symbol], kernel_size[symbol]);
196
197 last_state->next = p;
198 last_state = p;
199 nstates++;
200
201 return p;
202}
203
204
205/*--------------------------------------------------------------.
206| Find the state number for the state we would get to (from the |
207| current state) by shifting symbol. Create a new state if no |
208| equivalent one exists already. Used by append_states. |
209`--------------------------------------------------------------*/
210
211static int
212get_state (int symbol)
213{
214 int key;
215 int i;
216 state_t *sp;
217
218 if (trace_flag)
219 fprintf (stderr, "Entering get_state, state = %d, symbol = %d (%s)\n",
220 this_state->number, symbol, tags[symbol]);
221
222 /* Add up the target state's active item numbers to get a hash key.
223 */
224 key = 0;
225 for (i = 0; i < kernel_size[symbol]; ++i)
226 key += kernel_base[symbol][i];
227 key = key % STATE_HASH_SIZE;
228 sp = state_hash[key];
229
230 if (sp)
231 {
232 int found = 0;
233 while (!found)
234 {
235 if (sp->nitems == kernel_size[symbol])
236 {
237 found = 1;
238 for (i = 0; i < kernel_size[symbol]; ++i)
239 if (kernel_base[symbol][i] != sp->items[i])
240 found = 0;
241 }
242
243 if (!found)
244 {
245 if (sp->link)
246 {
247 sp = sp->link;
248 }
249 else /* bucket exhausted and no match */
250 {
251 sp = sp->link = new_state (symbol);
252 found = 1;
253 }
254 }
255 }
256 }
257 else /* bucket is empty */
258 {
259 state_hash[key] = sp = new_state (symbol);
260 }
261
262 if (trace_flag)
263 fprintf (stderr, "Exiting get_state => %d\n", sp->number);
264
265 return sp->number;
266}
267
268/*------------------------------------------------------------------.
269| Use the information computed by new_itemsets to find the state |
270| numbers reached by each shift transition from the current state. |
271| |
272| shiftset is set up as a vector of state numbers of those states. |
273`------------------------------------------------------------------*/
274
275static void
276append_states (void)
277{
278 int i;
279 int j;
280 int symbol;
281
282 if (trace_flag)
283 fprintf (stderr, "Entering append_states, state = %d\n",
284 this_state->number);
285
286 /* first sort shift_symbol into increasing order */
287
288 for (i = 1; i < nshifts; i++)
289 {
290 symbol = shift_symbol[i];
291 j = i;
292 while (j > 0 && shift_symbol[j - 1] > symbol)
293 {
294 shift_symbol[j] = shift_symbol[j - 1];
295 j--;
296 }
297 shift_symbol[j] = symbol;
298 }
299
300 for (i = 0; i < nshifts; i++)
301 shiftset[i] = get_state (shift_symbol[i]);
302}
303
304
305static void
306new_states (void)
307{
308 first_state = last_state = this_state = STATE_ALLOC (0);
309 nstates = 1;
310}
311
312
313/*------------------------------------------------------------.
314| Save the NSHIFTS of SHIFTSET into the current linked list. |
315`------------------------------------------------------------*/
316
317static void
318save_shifts (void)
319{
320 shifts *p = shifts_new (nshifts);
321
322 p->number = this_state->number;
323 shortcpy (p->shifts, shiftset, nshifts);
324 this_state->shifts = p;
325
326 if (last_shift)
327 last_shift->next = p;
328 else
329 first_shift = p;
330 last_shift = p;
331}
332
333
334/*------------------------------------------------------------------.
335| Subroutine of augment_automaton. Create the next-to-final state, |
336| to which a shift has already been made in the initial state. |
337| |
338| The task of this state consists in shifting (actually, it's a |
339| goto, but shifts and gotos are both stored in SHIFTS) the start |
340| symbols, hence the name. |
341`------------------------------------------------------------------*/
342
343static void
344insert_start_shifting_state (void)
345{
346 state_t *statep;
347 shifts *sp;
348
349 statep = STATE_ALLOC (0);
350 statep->number = nstates;
351
352 /* The distinctive feature of this state from the
353 eof_shifting_state, is that it is labeled as post-start-symbol
354 shifting. I fail to understand why this state, and the
355 post-start-start can't be merged into one. But it does fail if
356 you try. --akim */
357 statep->accessing_symbol = start_symbol;
358
359 last_state->next = statep;
360 last_state = statep;
361
362 /* Make a shift from this state to (what will be) the final state. */
363 sp = shifts_new (1);
364 statep->shifts = sp;
365 sp->number = nstates++;
366 sp->shifts[0] = nstates;
367
368 last_shift->next = sp;
369 last_shift = sp;
370}
371
372
373/*-----------------------------------------------------------------.
374| Subroutine of augment_automaton. Create the final state, which |
375| shifts `0', the end of file. The initial state shifts the start |
376| symbol, and goes to here. |
377`-----------------------------------------------------------------*/
378
379static void
380insert_eof_shifting_state (void)
381{
382 state_t *statep;
383 shifts *sp;
384
385 /* Make the final state--the one that follows a shift from the
386 next-to-final state.
387 The symbol for that shift is 0 (end-of-file). */
388 statep = STATE_ALLOC (0);
389 statep->number = nstates;
390
391 last_state->next = statep;
392 last_state = statep;
393
394 /* Make the shift from the final state to the termination state. */
395 sp = shifts_new (1);
396 statep->shifts = sp;
397 sp->number = nstates++;
398 sp->shifts[0] = nstates;
399
400 last_shift->next = sp;
401 last_shift = sp;
402}
403
404
405/*---------------------------------------------------------------.
406| Subroutine of augment_automaton. Create the accepting state. |
407`---------------------------------------------------------------*/
408
409static void
410insert_accepting_state (void)
411{
412 state_t *statep;
413
414 /* Note that the variable `final_state' refers to what we sometimes
415 call the termination state. */
416 final_state = nstates;
417
418 /* Make the termination state. */
419 statep = STATE_ALLOC (0);
420 statep->number = nstates++;
421 last_state->next = statep;
422 last_state = statep;
423}
424
425
426
427
428
429/*------------------------------------------------------------------.
430| Make sure that the initial state has a shift that accepts the |
431| grammar's start symbol and goes to the next-to-final state, which |
432| has a shift going to the final state, which has a shift to the |
433| termination state. Create such states and shifts if they don't |
434| happen to exist already. |
435`------------------------------------------------------------------*/
436
437static void
438augment_automaton (void)
439{
440 if (!first_shift->nshifts)
441 {
442 /* There are no shifts for any state. Make one shift, from the
443 initial state to the next-to-final state. */
444
445 shifts *sp = shifts_new (1);
446 first_state->shifts = sp;
447 sp->shifts[0] = nstates;
448
449 /* Initialize the chain of shifts with sp. */
450 first_shift = sp;
451 last_shift = sp;
452
453 /* Create the next-to-final state, with shift to
454 what will be the final state. */
455 insert_start_shifting_state ();
456 }
457 else if (first_shift->number == 0)
458 {
459 state_t *statep = first_state->next;
460 shifts *sp = first_shift;
461 shifts *sp1 = NULL;
462 /* The states reached by shifts from FIRST_STATE are numbered
463 1..(SP->NSHIFTS). Look for one reached by START_SYMBOL. */
464 while (statep->accessing_symbol != start_symbol
465 && statep->number < sp->nshifts)
466 statep = statep->next;
467
468 if (statep->accessing_symbol == start_symbol)
469 {
470 /* We already have a next-to-final state.
471 Make sure it has a shift to what will be the final state. */
472 while (sp && sp->number < statep->number)
473 {
474 sp1 = sp;
475 sp = sp->next;
476 }
477
478 if (sp && sp->number == statep->number)
479 {
480 int i;
481 shifts *sp2 = shifts_new (sp->nshifts + 1);
482 sp2->number = statep->number;
483 statep->shifts = sp2;
484 sp2->shifts[0] = nstates;
485 for (i = sp->nshifts; i > 0; i--)
486 sp2->shifts[i] = sp->shifts[i - 1];
487
488 /* Patch sp2 into the chain of shifts in place of sp,
489 following sp1. */
490 sp2->next = sp->next;
491 sp1->next = sp2;
492 if (sp == last_shift)
493 last_shift = sp2;
494 XFREE (sp);
495 }
496 else
497 {
498 shifts *sp2 = shifts_new (1);
499 sp2->number = statep->number;
500 statep->shifts = sp2;
501 sp2->shifts[0] = nstates;
502
503 /* Patch sp2 into the chain of shifts between sp1 and sp. */
504 sp2->next = sp;
505 sp1->next = sp2;
506 if (sp == 0)
507 last_shift = sp2;
508 }
509 }
510 else
511 {
512 int i, k;
513 shifts *sp2;
514 sp = first_shift;
515
516 /* There is no next-to-final state as yet. */
517 /* Add one more shift in first_shift,
518 going to the next-to-final state (yet to be made). */
519 sp2 = shifts_new (sp->nshifts + 1);
520 first_state->shifts = sp2;
521 /* Stick this shift into the vector at the proper place. */
522 statep = first_state->next;
523 for (k = 0, i = 0; i < sp->nshifts; k++, i++)
524 {
525 if (statep->accessing_symbol > start_symbol && i == k)
526 sp2->shifts[k++] = nstates;
527 sp2->shifts[k] = sp->shifts[i];
528 statep = statep->next;
529 }
530 if (i == k)
531 sp2->shifts[k++] = nstates;
532
533 /* Patch sp2 into the chain of shifts
534 in place of sp, at the beginning. */
535 sp2->next = sp->next;
536 first_shift = sp2;
537 if (last_shift == sp)
538 last_shift = sp2;
539
540 XFREE (sp);
541
542 /* Create the next-to-final state, with shift to
543 what will be the final state. */
544 insert_start_shifting_state ();
545 }
546 }
547 else
548 {
549 /* The initial state didn't even have any shifts.
550 Give it one shift, to the next-to-final state. */
551 shifts *sp = shifts_new (1);
552 first_state->shifts = sp;
553 sp->shifts[0] = nstates;
554
555 /* Patch sp into the chain of shifts at the beginning. */
556 sp->next = first_shift;
557 first_shift = sp;
558
559 /* Create the next-to-final state, with shift to
560 what will be the final state. */
561 insert_start_shifting_state ();
562 }
563
564 insert_eof_shifting_state ();
565 insert_accepting_state ();
566}
567
568
569/*----------------------------------------------------------------.
570| Find which rules can be used for reduction transitions from the |
571| current state and make a reductions structure for the state to |
572| record their rule numbers. |
573`----------------------------------------------------------------*/
574
575static void
576save_reductions (void)
577{
578 int count;
579 int i;
580
581 /* Find and count the active items that represent ends of rules. */
582
583 count = 0;
584 for (i = 0; i < nitemset; ++i)
585 {
586 int item = ritem[itemset[i]];
587 if (item < 0)
588 redset[count++] = -item;
589 }
590
591 /* Make a reductions structure and copy the data into it. */
592
593 if (count)
594 {
595 reductions *p = REDUCTIONS_ALLOC (count);
596 p->nreds = count;
597 shortcpy (p->rules, redset, count);
598
599 this_state->reductions = p;
600 }
601}
602
603\f
604/*-------------------------------------------------------------------.
605| Compute the nondeterministic finite state machine (see state.h for |
606| details) from the grammar. |
607`-------------------------------------------------------------------*/
608
609void
610generate_states (void)
611{
612 allocate_storage ();
613 new_closure (nitems);
614 new_states ();
615
616 while (this_state)
617 {
618 if (trace_flag)
619 fprintf (stderr, "Processing state %d (reached by %s)\n",
620 this_state->number, tags[this_state->accessing_symbol]);
621 /* Set up ruleset and itemset for the transitions out of this
622 state. ruleset gets a 1 bit for each rule that could reduce
623 now. itemset gets a vector of all the items that could be
624 accepted next. */
625 closure (this_state->items, this_state->nitems);
626 /* record the reductions allowed out of this state */
627 save_reductions ();
628 /* find the itemsets of the states that shifts can reach */
629 new_itemsets ();
630 /* find or create the core structures for those states */
631 append_states ();
632
633 /* create the shifts structures for the shifts to those states,
634 now that the state numbers transitioning to are known */
635 save_shifts ();
636
637 /* states are queued when they are created; process them all */
638 this_state = this_state->next;
639 }
640
641 /* discard various storage */
642 free_closure ();
643 free_storage ();
644
645 /* set up initial and final states as parser wants them */
646 augment_automaton ();
647}