]> git.saurik.com Git - bison.git/blame_incremental - src/tables.c
Complete --help.
[bison.git] / src / tables.c
... / ...
CommitLineData
1/* Output the generated parsing program for Bison.
2
3 Copyright (C) 1984, 1986, 1989, 1992, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of Bison, the GNU Compiler Compiler.
7
8 This program is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21#include <config.h>
22#include "system.h"
23
24#include <bitsetv.h>
25#include <quotearg.h>
26
27#include "complain.h"
28#include "conflicts.h"
29#include "files.h"
30#include "getargs.h"
31#include "gram.h"
32#include "lalr.h"
33#include "reader.h"
34#include "symtab.h"
35#include "tables.h"
36
37/* Several tables are indexed both by state and nonterminal numbers.
38 We call such an index a `vector'; i.e., a vector is either a state
39 or a nonterminal number.
40
41 Of course vector_number_t ought to be wide enough to contain
42 state_number and symbol_number. */
43typedef int vector_number;
44
45#if 0 /* Not currently used. */
46static inline vector_number
47state_number_to_vector_number (state_number s)
48{
49 return s;
50}
51#endif
52
53static inline vector_number
54symbol_number_to_vector_number (symbol_number sym)
55{
56 return state_number_as_int (nstates) + sym - ntokens;
57}
58
59int nvectors;
60
61
62/* FROMS and TOS are indexed by vector_number.
63
64 If VECTOR is a nonterminal, (FROMS[VECTOR], TOS[VECTOR]) form an
65 array of state numbers of the non defaulted GOTO on VECTOR.
66
67 If VECTOR is a state, TOS[VECTOR] is the array of actions to do on
68 the (array of) symbols FROMS[VECTOR].
69
70 In both cases, TALLY[VECTOR] is the size of the arrays
71 FROMS[VECTOR], TOS[VECTOR]; and WIDTH[VECTOR] =
72 (FROMS[VECTOR][SIZE] - FROMS[VECTOR][0] + 1) where SIZE =
73 TALLY[VECTOR].
74
75 FROMS therefore contains symbol_number and action_number,
76 TOS state_number and action_number,
77 TALLY sizes,
78 WIDTH differences of FROMS.
79
80 Let base_number be the type of FROMS, TOS, and WIDTH. */
81#define BASE_MAXIMUM INT_MAX
82#define BASE_MINIMUM INT_MIN
83
84static base_number **froms;
85static base_number **tos;
86static unsigned int **conflict_tos;
87static int *tally;
88static base_number *width;
89
90
91/* For a given state, N = ACTROW[SYMBOL]:
92
93 If N = 0, stands for `run the default action'.
94 If N = MIN, stands for `raise a syntax error'.
95 If N > 0, stands for `shift SYMBOL and go to n'.
96 If N < 0, stands for `reduce -N'. */
97typedef int action_number;
98#define ACTION_NUMBER_MINIMUM INT_MIN
99
100static action_number *actrow;
101
102/* FROMS and TOS are reordered to be compressed. ORDER[VECTOR] is the
103 new vector number of VECTOR. We skip `empty' vectors (i.e.,
104 TALLY[VECTOR] = 0), and call these `entries'. */
105static vector_number *order;
106static int nentries;
107
108base_number *base = NULL;
109/* A distinguished value of BASE, negative infinite. During the
110 computation equals to BASE_MINIMUM, later mapped to BASE_NINF to
111 keep parser tables small. */
112base_number base_ninf = 0;
113static base_number *pos = NULL;
114
115static unsigned int *conflrow;
116unsigned int *conflict_table;
117unsigned int *conflict_list;
118int conflict_list_cnt;
119static int conflict_list_free;
120
121/* TABLE_SIZE is the allocated size of both TABLE and CHECK. We start
122 with more or less the original hard-coded value (which was
123 SHRT_MAX). */
124static int table_size = 32768;
125base_number *table;
126base_number *check;
127/* The value used in TABLE to denote explicit syntax errors
128 (%nonassoc), a negative infinite. First defaults to ACTION_NUMBER_MININUM,
129 but in order to keep small tables, renumbered as TABLE_ERROR, which
130 is the smallest (non error) value minus 1. */
131base_number table_ninf = 0;
132static int lowzero;
133int high;
134
135state_number *yydefgoto;
136rule_number *yydefact;
137
138/*----------------------------------------------------------------.
139| If TABLE (and CHECK) appear to be small to be addressed at |
140| DESIRED, grow them. Note that TABLE[DESIRED] is to be used, so |
141| the desired size is at least DESIRED + 1. |
142`----------------------------------------------------------------*/
143
144static void
145table_grow (int desired)
146{
147 int old_size = table_size;
148
149 while (table_size <= desired)
150 table_size *= 2;
151
152 if (trace_flag & trace_resource)
153 fprintf (stderr, "growing table and check from: %d to %d\n",
154 old_size, table_size);
155
156 table = xnrealloc (table, table_size, sizeof *table);
157 conflict_table = xnrealloc (conflict_table, table_size,
158 sizeof *conflict_table);
159 check = xnrealloc (check, table_size, sizeof *check);
160
161 for (/* Nothing. */; old_size < table_size; ++old_size)
162 {
163 table[old_size] = 0;
164 conflict_table[old_size] = 0;
165 check[old_size] = -1;
166 }
167}
168
169
170
171
172/*-------------------------------------------------------------------.
173| For GLR parsers, for each conflicted token in S, as indicated |
174| by non-zero entries in CONFLROW, create a list of possible |
175| reductions that are alternatives to the shift or reduction |
176| currently recorded for that token in S. Store the alternative |
177| reductions followed by a 0 in CONFLICT_LIST, updating |
178| CONFLICT_LIST_CNT, and storing an index to the start of the list |
179| back into CONFLROW. |
180`-------------------------------------------------------------------*/
181
182static void
183conflict_row (state *s)
184{
185 int i, j;
186 reductions *reds = s->reductions;
187
188 if (!nondeterministic_parser)
189 return;
190
191 for (j = 0; j < ntokens; j += 1)
192 if (conflrow[j])
193 {
194 conflrow[j] = conflict_list_cnt;
195
196 /* Find all reductions for token J, and record all that do not
197 match ACTROW[J]. */
198 for (i = 0; i < reds->num; i += 1)
199 if (bitset_test (reds->lookahead_tokens[i], j)
200 && (actrow[j]
201 != rule_number_as_item_number (reds->rules[i]->number)))
202 {
203 aver (0 < conflict_list_free);
204 conflict_list[conflict_list_cnt] = reds->rules[i]->number + 1;
205 conflict_list_cnt += 1;
206 conflict_list_free -= 1;
207 }
208
209 /* Leave a 0 at the end. */
210 aver (0 < conflict_list_free);
211 conflict_list[conflict_list_cnt] = 0;
212 conflict_list_cnt += 1;
213 conflict_list_free -= 1;
214 }
215}
216
217
218/*------------------------------------------------------------------.
219| Decide what to do for each type of token if seen as the |
220| lookahead in specified state. The value returned is used as the |
221| default action (yydefact) for the state. In addition, ACTROW is |
222| filled with what to do for each kind of token, index by symbol |
223| number, with zero meaning do the default action. The value |
224| ACTION_NUMBER_MINIMUM, a very negative number, means this |
225| situation is an error. The parser recognizes this value |
226| specially. |
227| |
228| This is where conflicts are resolved. The loop over lookahead |
229| rules considered lower-numbered rules last, and the last rule |
230| considered that likes a token gets to handle it. |
231| |
232| For GLR parsers, also sets CONFLROW[SYM] to an index into |
233| CONFLICT_LIST iff there is an unresolved conflict (s/r or r/r) |
234| with symbol SYM. The default reduction is not used for a symbol |
235| that has any such conflicts. |
236`------------------------------------------------------------------*/
237
238static rule *
239action_row (state *s)
240{
241 int i;
242 rule *default_rule = NULL;
243 reductions *reds = s->reductions;
244 transitions *trans = s->transitions;
245 errs *errp = s->errs;
246 /* Set to nonzero to inhibit having any default reduction. */
247 bool nodefault = false;
248 bool conflicted = false;
249
250 for (i = 0; i < ntokens; i++)
251 actrow[i] = conflrow[i] = 0;
252
253 if (reds->lookahead_tokens)
254 {
255 int j;
256 bitset_iterator biter;
257 /* loop over all the rules available here which require
258 lookahead (in reverse order to give precedence to the first
259 rule) */
260 for (i = reds->num - 1; i >= 0; --i)
261 /* and find each token which the rule finds acceptable
262 to come next */
263 BITSET_FOR_EACH (biter, reds->lookahead_tokens[i], j, 0)
264 {
265 /* and record this rule as the rule to use if that
266 token follows. */
267 if (actrow[j] != 0)
268 {
269 conflicted = true;
270 conflrow[j] = 1;
271 }
272 actrow[j] = rule_number_as_item_number (reds->rules[i]->number);
273 }
274 }
275
276 /* Now see which tokens are allowed for shifts in this state. For
277 them, record the shift as the thing to do. So shift is preferred
278 to reduce. */
279 FOR_EACH_SHIFT (trans, i)
280 {
281 symbol_number sym = TRANSITION_SYMBOL (trans, i);
282 state *shift_state = trans->states[i];
283
284 if (actrow[sym] != 0)
285 {
286 conflicted = true;
287 conflrow[sym] = 1;
288 }
289 actrow[sym] = state_number_as_int (shift_state->number);
290
291 /* Do not use any default reduction if there is a shift for
292 error */
293 if (sym == errtoken->number)
294 nodefault = true;
295 }
296
297 /* See which tokens are an explicit error in this state (due to
298 %nonassoc). For them, record ACTION_NUMBER_MINIMUM as the
299 action. */
300 for (i = 0; i < errp->num; i++)
301 {
302 symbol *sym = errp->symbols[i];
303 actrow[sym->number] = ACTION_NUMBER_MINIMUM;
304 }
305
306 /* Now find the most common reduction and make it the default action
307 for this state. */
308
309 if (reds->num >= 1 && !nodefault)
310 {
311 if (s->consistent)
312 default_rule = reds->rules[0];
313 else
314 {
315 int max = 0;
316 for (i = 0; i < reds->num; i++)
317 {
318 int count = 0;
319 rule *r = reds->rules[i];
320 symbol_number j;
321
322 for (j = 0; j < ntokens; j++)
323 if (actrow[j] == rule_number_as_item_number (r->number))
324 count++;
325
326 if (count > max)
327 {
328 max = count;
329 default_rule = r;
330 }
331 }
332
333 /* GLR parsers need space for conflict lists, so we can't
334 default conflicted entries. For non-conflicted entries
335 or as long as we are not building a GLR parser,
336 actions that match the default are replaced with zero,
337 which means "use the default". */
338
339 if (max > 0)
340 {
341 int j;
342 for (j = 0; j < ntokens; j++)
343 if (actrow[j] == rule_number_as_item_number (default_rule->number)
344 && ! (nondeterministic_parser && conflrow[j]))
345 actrow[j] = 0;
346 }
347 }
348 }
349
350 /* If have no default rule, the default is an error.
351 So replace any action which says "error" with "use default". */
352
353 if (!default_rule)
354 for (i = 0; i < ntokens; i++)
355 if (actrow[i] == ACTION_NUMBER_MINIMUM)
356 actrow[i] = 0;
357
358 if (conflicted)
359 conflict_row (s);
360
361 return default_rule;
362}
363
364
365/*----------------------------------------.
366| Set FROMS, TOS, TALLY and WIDTH for S. |
367`----------------------------------------*/
368
369static void
370save_row (state_number s)
371{
372 symbol_number i;
373 int count;
374 base_number *sp;
375 base_number *sp1;
376 base_number *sp2;
377 unsigned int *sp3;
378
379 /* Number of non default actions in S. */
380 count = 0;
381 for (i = 0; i < ntokens; i++)
382 if (actrow[i] != 0)
383 count++;
384
385 if (count == 0)
386 return;
387
388 /* Allocate non defaulted actions. */
389 froms[s] = sp = sp1 = xnmalloc (count, sizeof *sp1);
390 tos[s] = sp2 = xnmalloc (count, sizeof *sp2);
391 conflict_tos[s] = sp3 =
392 nondeterministic_parser ? xnmalloc (count, sizeof *sp3) : NULL;
393
394 /* Store non defaulted actions. */
395 for (i = 0; i < ntokens; i++)
396 if (actrow[i] != 0)
397 {
398 *sp1++ = i;
399 *sp2++ = actrow[i];
400 if (nondeterministic_parser)
401 *sp3++ = conflrow[i];
402 }
403
404 tally[s] = count;
405 width[s] = sp1[-1] - sp[0] + 1;
406}
407
408
409/*------------------------------------------------------------------.
410| Figure out the actions for the specified state, indexed by |
411| lookahead token type. |
412| |
413| The YYDEFACT table is output now. The detailed info is saved for |
414| putting into YYTABLE later. |
415`------------------------------------------------------------------*/
416
417static void
418token_actions (void)
419{
420 state_number i;
421 symbol_number j;
422 rule_number r;
423
424 int nconflict = nondeterministic_parser ? conflicts_total_count () : 0;
425
426 yydefact = xnmalloc (nstates, sizeof *yydefact);
427
428 actrow = xnmalloc (ntokens, sizeof *actrow);
429 conflrow = xnmalloc (ntokens, sizeof *conflrow);
430
431 conflict_list = xnmalloc (1 + 2 * nconflict, sizeof *conflict_list);
432 conflict_list_free = 2 * nconflict;
433 conflict_list_cnt = 1;
434
435 /* Find the rules which are reduced. */
436 if (!nondeterministic_parser)
437 for (r = 0; r < nrules; ++r)
438 rules[r].useful = false;
439
440 for (i = 0; i < nstates; ++i)
441 {
442 rule *default_rule = action_row (states[i]);
443 yydefact[i] = default_rule ? default_rule->number + 1 : 0;
444 save_row (i);
445
446 /* Now that the parser was computed, we can find which rules are
447 really reduced, and which are not because of SR or RR
448 conflicts. */
449 if (!nondeterministic_parser)
450 {
451 for (j = 0; j < ntokens; ++j)
452 if (actrow[j] < 0 && actrow[j] != ACTION_NUMBER_MINIMUM)
453 rules[item_number_as_rule_number (actrow[j])].useful = true;
454 if (yydefact[i])
455 rules[yydefact[i] - 1].useful = true;
456 }
457 }
458
459 free (actrow);
460 free (conflrow);
461}
462
463
464/*------------------------------------------------------------------.
465| Compute FROMS[VECTOR], TOS[VECTOR], TALLY[VECTOR], WIDTH[VECTOR], |
466| i.e., the information related to non defaulted GOTO on the nterm |
467| SYM. |
468| |
469| DEFAULT_STATE is the principal destination on SYM, i.e., the |
470| default GOTO destination on SYM. |
471`------------------------------------------------------------------*/
472
473static void
474save_column (symbol_number sym, state_number default_state)
475{
476 goto_number i;
477 base_number *sp;
478 base_number *sp1;
479 base_number *sp2;
480 int count;
481 vector_number symno = symbol_number_to_vector_number (sym);
482
483 goto_number begin = goto_map[sym - ntokens];
484 goto_number end = goto_map[sym - ntokens + 1];
485
486 /* Number of non default GOTO. */
487 count = 0;
488 for (i = begin; i < end; i++)
489 if (to_state[i] != default_state)
490 count++;
491
492 if (count == 0)
493 return;
494
495 /* Allocate room for non defaulted gotos. */
496 froms[symno] = sp = sp1 = xnmalloc (count, sizeof *sp1);
497 tos[symno] = sp2 = xnmalloc (count, sizeof *sp2);
498
499 /* Store the state numbers of the non defaulted gotos. */
500 for (i = begin; i < end; i++)
501 if (to_state[i] != default_state)
502 {
503 *sp1++ = from_state[i];
504 *sp2++ = to_state[i];
505 }
506
507 tally[symno] = count;
508 width[symno] = sp1[-1] - sp[0] + 1;
509}
510
511
512/*-------------------------------------------------------------.
513| Return `the' most common destination GOTO on SYM (a nterm). |
514`-------------------------------------------------------------*/
515
516static state_number
517default_goto (symbol_number sym, size_t state_count[])
518{
519 state_number s;
520 goto_number i;
521 goto_number m = goto_map[sym - ntokens];
522 goto_number n = goto_map[sym - ntokens + 1];
523 state_number default_state = -1;
524 size_t max = 0;
525
526 if (m == n)
527 return -1;
528
529 for (s = 0; s < nstates; s++)
530 state_count[s] = 0;
531
532 for (i = m; i < n; i++)
533 state_count[to_state[i]]++;
534
535 for (s = 0; s < nstates; s++)
536 if (state_count[s] > max)
537 {
538 max = state_count[s];
539 default_state = s;
540 }
541
542 return default_state;
543}
544
545
546/*-------------------------------------------------------------------.
547| Figure out what to do after reducing with each rule, depending on |
548| the saved state from before the beginning of parsing the data that |
549| matched this rule. |
550| |
551| The YYDEFGOTO table is output now. The detailed info is saved for |
552| putting into YYTABLE later. |
553`-------------------------------------------------------------------*/
554
555static void
556goto_actions (void)
557{
558 symbol_number i;
559 size_t *state_count = xnmalloc (nstates, sizeof *state_count);
560 yydefgoto = xnmalloc (nvars, sizeof *yydefgoto);
561
562 /* For a given nterm I, STATE_COUNT[S] is the number of times there
563 is a GOTO to S on I. */
564 for (i = ntokens; i < nsyms; ++i)
565 {
566 state_number default_state = default_goto (i, state_count);
567 save_column (i, default_state);
568 yydefgoto[i - ntokens] = default_state;
569 }
570 free (state_count);
571}
572
573
574/*------------------------------------------------------------------.
575| Compute ORDER, a reordering of vectors, in order to decide how to |
576| pack the actions and gotos information into yytable. |
577`------------------------------------------------------------------*/
578
579static void
580sort_actions (void)
581{
582 int i;
583
584 nentries = 0;
585
586 for (i = 0; i < nvectors; i++)
587 if (tally[i] > 0)
588 {
589 int k;
590 int t = tally[i];
591 int w = width[i];
592 int j = nentries - 1;
593
594 while (j >= 0 && (width[order[j]] < w))
595 j--;
596
597 while (j >= 0 && (width[order[j]] == w) && (tally[order[j]] < t))
598 j--;
599
600 for (k = nentries - 1; k > j; k--)
601 order[k + 1] = order[k];
602
603 order[j + 1] = i;
604 nentries++;
605 }
606}
607
608
609/* If VECTOR is a state which actions (reflected by FROMS, TOS, TALLY
610 and WIDTH of VECTOR) are common to a previous state, return this
611 state number.
612
613 In any other case, return -1. */
614
615static state_number
616matching_state (vector_number vector)
617{
618 vector_number i = order[vector];
619 int t;
620 int w;
621 int prev;
622
623 /* If VECTOR is a nterm, return -1. */
624 if (nstates <= i)
625 return -1;
626
627 t = tally[i];
628 w = width[i];
629
630 /* If VECTOR has GLR conflicts, return -1 */
631 if (conflict_tos[i] != NULL)
632 {
633 int j;
634 for (j = 0; j < t; j += 1)
635 if (conflict_tos[i][j] != 0)
636 return -1;
637 }
638
639 for (prev = vector - 1; prev >= 0; prev--)
640 {
641 vector_number j = order[prev];
642 int k;
643 int match = 1;
644
645 /* Given how ORDER was computed, if the WIDTH or TALLY is
646 different, there cannot be a matching state. */
647 if (width[j] != w || tally[j] != t)
648 return -1;
649
650 for (k = 0; match && k < t; k++)
651 if (tos[j][k] != tos[i][k] || froms[j][k] != froms[i][k]
652 || (conflict_tos[j] != NULL && conflict_tos[j][k] != 0))
653 match = 0;
654
655 if (match)
656 return j;
657 }
658
659 return -1;
660}
661
662
663static base_number
664pack_vector (vector_number vector)
665{
666 vector_number i = order[vector];
667 int j;
668 int t = tally[i];
669 int loc = 0;
670 base_number *from = froms[i];
671 base_number *to = tos[i];
672 unsigned int *conflict_to = conflict_tos[i];
673
674 aver (t != 0);
675
676 for (j = lowzero - from[0]; ; j++)
677 {
678 int k;
679 bool ok = true;
680
681 aver (j < table_size);
682
683 for (k = 0; ok && k < t; k++)
684 {
685 loc = j + state_number_as_int (from[k]);
686 if (table_size <= loc)
687 table_grow (loc);
688
689 if (table[loc] != 0)
690 ok = false;
691 }
692
693 for (k = 0; ok && k < vector; k++)
694 if (pos[k] == j)
695 ok = false;
696
697 if (ok)
698 {
699 for (k = 0; k < t; k++)
700 {
701 loc = j + from[k];
702 table[loc] = to[k];
703 if (nondeterministic_parser && conflict_to != NULL)
704 conflict_table[loc] = conflict_to[k];
705 check[loc] = from[k];
706 }
707
708 while (table[lowzero] != 0)
709 lowzero++;
710
711 if (loc > high)
712 high = loc;
713
714 aver (BASE_MINIMUM <= j && j <= BASE_MAXIMUM);
715 return j;
716 }
717 }
718}
719
720
721/*-------------------------------------------------------------.
722| Remap the negative infinite in TAB from NINF to the greatest |
723| possible smallest value. Return it. |
724| |
725| In most case this allows us to use shorts instead of ints in |
726| parsers. |
727`-------------------------------------------------------------*/
728
729static base_number
730table_ninf_remap (base_number tab[], int size, base_number ninf)
731{
732 base_number res = 0;
733 int i;
734
735 for (i = 0; i < size; i++)
736 if (tab[i] < res && tab[i] != ninf)
737 res = tab[i];
738
739 --res;
740
741 for (i = 0; i < size; i++)
742 if (tab[i] == ninf)
743 tab[i] = res;
744
745 return res;
746}
747
748static void
749pack_table (void)
750{
751 int i;
752
753 base = xnmalloc (nvectors, sizeof *base);
754 pos = xnmalloc (nentries, sizeof *pos);
755 table = xcalloc (table_size, sizeof *table);
756 conflict_table = xcalloc (table_size, sizeof *conflict_table);
757 check = xnmalloc (table_size, sizeof *check);
758
759 lowzero = 0;
760 high = 0;
761
762 for (i = 0; i < nvectors; i++)
763 base[i] = BASE_MINIMUM;
764
765 for (i = 0; i < table_size; i++)
766 check[i] = -1;
767
768 for (i = 0; i < nentries; i++)
769 {
770 state_number s = matching_state (i);
771 base_number place;
772
773 if (s < 0)
774 /* A new set of state actions, or a nonterminal. */
775 place = pack_vector (i);
776 else
777 /* Action of I were already coded for S. */
778 place = base[s];
779
780 pos[i] = place;
781 base[order[i]] = place;
782 }
783
784 /* Use the greatest possible negative infinites. */
785 base_ninf = table_ninf_remap (base, nvectors, BASE_MINIMUM);
786 table_ninf = table_ninf_remap (table, high + 1, ACTION_NUMBER_MINIMUM);
787
788 free (pos);
789}
790
791\f
792
793/*-----------------------------------------------------------------.
794| Compute and output yydefact, yydefgoto, yypact, yypgoto, yytable |
795| and yycheck. |
796`-----------------------------------------------------------------*/
797
798void
799tables_generate (void)
800{
801 int i;
802
803 /* This is a poor way to make sure the sizes are properly
804 correlated. In particular the signedness is not taken into
805 account. But it's not useless. */
806 verify (sizeof nstates <= sizeof nvectors
807 && sizeof nvars <= sizeof nvectors);
808
809 nvectors = state_number_as_int (nstates) + nvars;
810
811 froms = xcalloc (nvectors, sizeof *froms);
812 tos = xcalloc (nvectors, sizeof *tos);
813 conflict_tos = xcalloc (nvectors, sizeof *conflict_tos);
814 tally = xcalloc (nvectors, sizeof *tally);
815 width = xnmalloc (nvectors, sizeof *width);
816
817 token_actions ();
818
819 goto_actions ();
820 free (goto_map);
821 free (from_state);
822 free (to_state);
823
824 order = xcalloc (nvectors, sizeof *order);
825 sort_actions ();
826 pack_table ();
827 free (order);
828
829 free (tally);
830 free (width);
831
832 for (i = 0; i < nvectors; i++)
833 {
834 free (froms[i]);
835 free (tos[i]);
836 free (conflict_tos[i]);
837 }
838
839 free (froms);
840 free (tos);
841 free (conflict_tos);
842}
843
844
845/*-------------------------.
846| Free the parser tables. |
847`-------------------------*/
848
849void
850tables_free (void)
851{
852 free (base);
853 free (conflict_table);
854 free (conflict_list);
855 free (table);
856 free (check);
857 free (yydefgoto);
858 free (yydefact);
859}